
5867357813049

ISBN 978-1-304-58673-5
90000

The Code Review Guide Book was first published in 2008 with the idea of having code

reviews and testing in one volume.

This version of the Code Review Guide Book was started in April of 2013 wiith a small

group of volunteers committeed to updating the information contained in the guide book.

2013 Edition

© 2013 OWASP Foundation

This document is released under the Creatvive Commons ATtribution-­ShareAlike 3.0

license. For any reuse or distribution, you must make clear to others the license terms of

this work.

Cover photo: Black wasp. http://www.morguefile.com/archive/display/604130

OWASP Foundation

Code Review Guide Book
v. 2.0 ALPHA

OWASP CODE REVIEW GUIDE - V2.0 1

Code Review Guide
Version 2.0 Pre-Alpha

Project Leaders Eoin Keary and Larry Conklin - November 7, 2013

The code review guide is currently at release version 1.1 and the second best selling OWASP
book in 2008. Many positive comments have been feedback regarding this initial version and
believe it’s a key enabler for the OWASP fight against software insecurity. It has even
inspired individuals to build tools based on its information. The combination of a book on
secure code review and tools to support such an activity is very powerful as it gives the
developer community a place to start regarding secure application development.

© 2013 OWASP Foundation
This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 license

OWASP CODE REVIEW GUIDE - V2.0 2

Prefix
This document is a pre Alpha release to demonstrate where we are to date in relation to the OWASP
Code Review Guide. OWASP volunteers develop the Code Review Guide, people like you. The aim of
the guide is to help developers and code reviewers alike navigate a source code review and pinpoint
areas of weakness from a security standpoint.

If you would like to contribute please feel free to contact the team, we are not hard to find on the
interwar. If you have feedback, suggestions, or would like to send OWASP lots of donations to assist
in developing great documents, please also get in touch….

Thanks Eoin, Larry & Sam

OWASP CODE REVIEW GUIDE - V2.0 3

1.2.1 What is source code review and Static Analysis 12!
1.2.2 What is Code Review (Needs Content) 12!
1.2.3 Manual Review 12!
1.2.3.1 Choosing a static analysis tool 13!
1.2.4 Advantages of Code Review to Development Practices 14!
1.2.5 Why Code Review 17!
1.2.5.1 Scope and Objective of secure code review (Needs Content) 18!
1.2.6 We can’t hack ourselves secure 19!
1.2.7 360 Review: Coupling source code review and Testing / Hybrid Reviews (Needs
Content) 19!
1.2.8 Can static code analyzers do it all? 19!
2.1 The code review approach (Needs Content) 22!
2.1.1 Preparation and context 22!
2.1.2 Understanding Code layout/Design/Architecture (Needs Content) 27!
2.2 SDLC Integration (Needs Content) 27!
2.2.1 Deployment Models (Needs Content) 27!
2.2.1.1 Secure deployment configurations (Needs Content) 27!
2.2.1.2 Metrics and code review (Needs Content) 27!
2.2.1.3 Source and sink reviews (Needs Content) 27!
2.2.1.4 Code review coverage (Needs Content) 27!
2.2.1.5 Design Reviews (Needs Content) 27!
2.2.1.6 A Risk based approach to code review (Needs Content) 43!
2.2.2 Crawling Code 43!
2.2.2.1 Searching for Code in .NET 44!
2.2.2.2 Searching for Code in Java 51!
2.2.2.3 Searching for Code in Classic ASP 56!
2.2.2.4 Searching for Code in Javascript and AJAX 58!
2.2.2.5 Searching for Code in C++ and Apache 59!

OWASP CODE REVIEW GUIDE - V2.0 4

2.2.3 Code Reviews and Compliance (Needs Content) 61!
3.1 Reviewing code for Authentication controls (Needs Content) 62!
3.1.1 Forgot Password 62!
3.1.2 Authentication (Needs Content) 64!
3.1.3 CAPTCHA 64!
3.1.4 Out of Band Considerations (Needs Content) 67!
3.2 Reviewing code for Authorization weakness 67!
3.2.1 Checking authorization upon every request 68!
3.2.2 Reducing the attack surface (Needs Content) 69!
3.2.3 SSL/TLS Implementations 70!
3.2.4 Reviewing code for session handling 70!
3.2.5 Reviewing client side code (Needs Content) 73!
3.2.5.1 Javascript 73!
3.2.5.2 JSON (Needs Content) 74!
3.2.5.3 Content Security Policy (Needs Content) 74!
3.2.5.4 “Jacking”/Framing 74!
3.2.5.5 HTML 5? (Needs Content) 75!
3.2.5.6 Browser Defenses Policy (Needs Content) 75!
3.2.5.7 Etc… (Needs Content) 75!
3.2.6 Review code for input validation (Needs Content) 75!
3.2.6.1 Regex Gotchas (Needs Content) 75!
3.2.6.2 ESAPI (Needs Content) 75!
3.2.7 Review code for contextual encoding 76!
3.2.7.1 HTML Attribute 76!
3.2.7.2 HTML Entity 77!
3.2.7.3 Javascript Parameters 79!
3.2.7.4 JQuery (Needs Content) 81!
3.2.8 Reviewing file and resource handling code (Needs Content) 81!

OWASP CODE REVIEW GUIDE - V2.0 5

3.2.9 Resource Exhaustion - error handling (Needs Content) 81!
3.2.9.1 Native Calls (Needs Content) 81!
3.2.10 Reviewing logging code - Detective Security (Needs Content) 81!
3.2.11 Reviewing Error handling and Error messages 82!
3.2.12 Reviewing Security alerts (Needs Content) 99!
3.2.13 Reviewing for active defense 100!
3.2.14 Reviewing Secure Storage (Needs Content) 105!
3.2.15 Hashing & Salting - When, How, and Where 105!
4.1 Review Code for XSS 111!
4.2 Persistent - The Anti Pattern (Needs Content) 112!
4.2.1 .NET 112!
4.2.2 Java 115!
4.2.3 PHP 118!
4.2.4 Ruby (Needs Content) 118!
4.3 Reflected - The Anti Pattern (Needs Content) 119!
4.3.1 .NET 119!
4.3.2 Java 120!
4.3.3 PHP 121!
4.3.4 Ruby (Needs Content) 122!
4.4 Stored - The Anti Pattern (Needs Content) 122!
4.4.1 .NET (Needs Content) 122!
4.4.2 Java 122!
4.4.3 PHP (Needs Content) 123!
4.4.4 Ruby (Needs Content) 123!
4.5 DOM XSS 123!
4.6 JQuery Mistakes (Needs Content) 125!
4.7 Reviewing code for SQL Injection (Needs Content) 125!
4.7.1 PHP 125!

OWASP CODE REVIEW GUIDE - V2.0 6

4.7.2 Java 128!
4.7.3 .NET (Needs Content) 129!
4.7.4 HQL (Needs Content) 129!
4.8 The Anti Pattern 129!
4.8.1 PHP (Needs Content) 131!
4.8.2 Java (Needs Content) 132!
4.8.3 .NET (Needs Content) 132!
4.8.4 Ruby (Needs Content) 132!
4.8.5 Cold Fusion 132!
4.9 Reviewing code for CSRF Issues 132!
4.10 Transactional logic / Non idempotent functions / State Changing Functions
(Needs Content) 132!
4.11 Reviewing code for poor logic /Business logic/Complex authorization (Needs
Content) 133!
4.12 Reviewing Secure Communications (Needs Content) 133!
4.12.1 .NET Config 133!
4.12.2 Spring Config (Needs Content) 144!
4.12.3 HTTP Headers (Needs Content) 144!
4.13 Tech-Stack Pitfalls (Needs Content) 145!
4.14 Framework Specific Issues (Needs Content) 145!
4.14.1 Spring 145!
4.14.2 Structs (Needs Content) 148!
4.14.3 Drupal (Needs Content) 148!
4.14.4 Ruby on Rails (Needs Content) 148!
4.14.5 Django (Needs Content) 148!
4.14.6 .NET Security / MVC 148!
4.14.7 Security in ASP .NET applications 156!
4.14.7.1 Strongly Named Assemblies 157!

OWASP CODE REVIEW GUIDE - V2.0 7

4.14.7.1.1 Round Tripping 161!
4.14.7.1.2 How to prevent Round tripping 162!
4.14.7.2 Setting the right Configurations 162!
4.14.7.3 Authentication Options 166!
4.14.7.4 Code Review for Managed Code - .Net 1.0 and up 167!
4.14.7.5 Using OWASP Top 10 as your guideline 174!
4.14.7.6 Code review for Unsafe Code (C#) 178!
4.14.8 PHP Specific Issues (Needs Content) 180!
4.14.9 Classic ASP 180!
4.14.10 C# (Needs Content) 180!
4.14.11 C/C++ (Needs Content) 180!
4.14.12 Objective C (Needs Content) 180!
4.14.13 Java (Needs Content) 181!
4.14.14 Android (Needs Content) 183!
4.14.15 Coldfusion (Needs Content) 183!
4.14.16 CodeIgniter (Needs Content) 183!

OWASP CODE REVIEW GUIDE - V2.0 8

1.1 Forward
The OWASP Code Review guide is the result of initially contributing and leading the Testing Guide.
Initially, it was thought to place Code review and testing into the same guide; it seemed like a good
idea at the time. But the topic called security code review got too big and evolved into its own stand-
alone guide.

Eoin Keary started the Code Review guide in 2006. This current version was started in April 2013 via
the OWASP Project Reboot initiative. The OWASP Code Review team consists of a small, but
talented, group of volunteers who should really get out more often.

It is common knowledge that more secure software can be produced and developed in a more cost
effective way when bugs are detected early on in the systems development lifecycle. Organizations
with a proper code review functions integrated into the software development lifecycle (SDLC)
produced remarkably better code from a security standpoint. Simply put "We can't hack ourselves
secure". Attackers have more time to fine vulnerabilities on a system than the time allocated to a
defender. Hacking our way secure amounts to an uneven battlefield; Asymmetric warfare, a losing
battle.

By necessity, this guide does not cover all languages; it mainly focuses on .NET and Java, but has a
little C/C++ and PHP thrown in also. However, the techniques advocated in the book can be easily
adapted to almost any code environment. Fortunately, the security flaws in web applications are
remarkably consistent across programming languages.

OWASP CODE REVIEW GUIDE - V2.0 9

1.2 Code Review Guide Introduction
Code review is probably the single-most effective technique for identifying security flaws early in the
system development lifecycle. When used together with automated tools and manual penetration
testing, code review can significantly increase the cost effectiveness of an application security
verification effort.

This guide does not prescribe a process for performing a security code review. Rather, this guide
focuses on the mechanics of reviewing code for certain vulnerabilities, and provides guidance on how
the effort should be structured and executed.

Manual security code review provides insight into the “real risk” associated with insecure code. This is
the single most important value from a manual approach. A human reviewer can understand the
context of a bug or vulnerability in code. Context requires human understanding of what is being
assessed. With appropriate context we can make a serious risk estimate that accounts for both the
likelihood of attack and the business impact of a breach. Correct categorization of vulnerabilities helps
with priority of remediation and fixing the right things as opposed to wasting time fixing everything.

Why Does Code Have Vulnerabilities?

MITRE has catalogued circa 800 different kinds of software weaknesses in their CWE project. These
are all different ways that software developers can make mistakes that lead to insecurity. Every one of
these weaknesses is subtle and many are seriously tricky. Software developers are not taught about
these weaknesses in school and most do not receive any training on the job about these problems.

These problems have become so important in recent years because we continue to increase
connectivity and to add technologies and protocols at a shocking rate. Our ability to invent technology
has seriously outstripped our ability to secure it. Many of the technologies in use today simply have
not received any security scrutiny.

There are many reasons why businesses are not spending the appropriate amount of time on
security. Ultimately, these reasons stem from an underlying problem in the software market. Because
software is essentially a black box, it is extremely difficult to tell the difference between good code and
insecure code. Without this visibility, buyers won’t pay more for secure code, and vendors would be
foolish to spend extra effort to produce secure code.

One goal for this project is to help software buyers gain visibility into the security of software and start
to effect change in the software market.

Nevertheless, we still frequently get pushback when we advocate for security code review. Here are
some of the (unjustified) excuses that we hear for not putting more effort into security:

OWASP CODE REVIEW GUIDE - V2.0 10

''“We never get hacked (that I know of), we don’t need security”''

''“We have a firewall that protects our applications”''

''"We trust our employees not to attack our applications" ''

Over the last 10 years, the [[team]] involved with the OWASP Code Review Project has performed
thousands of application reviews, and found that every single application has had serious
vulnerabilities. If you haven’t reviewed your code for security holes, the likelihood that your application
has problems is virtually 100%.

Still, there are many organizations that choose not to know about the security of their code. To them,
we offer Rumsfeld’s cryptic explanation of what we actually know. If you’re making informed decisions
to take risk in your enterprise, we fully support you. However, if you don’t even know what risks you
are taking, you are being irresponsible both to your shareholders and your customers.

“...we know, there are known knowns; there are things we know we know. We also know there are
known unknowns; that is to say we know there are some things we do not know. But there are also
unknown unknowns -- the ones we don't know we don't know.”- Donald Rumsfeld

What is Security Code Review?

Security code review is the process of auditing the source code for an application to verify that the
proper security and logical controls are present, that they work as intended, and that they have been
invoked in all the right places. Code review is a way of helping ensure that the application has been
developed so as to be “self-defending” in its given environment.

Security code review is a method helping assure secure application developers are following secure
development techniques. A general rule of thumb is that a penetration test should not discover any
additional application vulnerabilities relating to the developed code after the application has
undergone a proper security code review. - al least very few issues should be discovered.

All security code reviews are a combination of human effort and technology support. At one end of the
spectrum is an inexperienced person with a text editor. At the other end of the scale is a security
expert with an advanced static analysis (SAST) tool. Unfortunately, it takes a fairly serious level of
expertise to use the current application security tools effectively. They also don't understand dynamic
data /page flow or business logic. SAST tools are great for coverage and setting a minimum baseline.

Tools can be used to perform this task but they always need human verification. Tools do not
understand context, which is the keystone of security code review. Tools are good at assessing large

OWASP CODE REVIEW GUIDE - V2.0 11

amounts of code and pointing out possible issues, but a person needs to verify every single result to
determine if it is a real issue, if it is actually exploitable, and calculate the risk to the enterprise.

Human reviewers are also necessary to fill in for the significant blind spots where automated tools
simply cannot check.

OWASP CODE REVIEW GUIDE - V2.0 12

1.2.1 What is source code review and Static Analysis

What is Security Source Code Review?

Source code review is the practice of reviewing developed code for vulnerabilities. There are many
ways to review the security of an application and it is recommended to perform more than one method
to help ensure more assessment coverage. Penetration testing is great at finding certain bugs such as
technical signature or API based issues. Issues related to privacy, information leakage, denial of
service is more suited to code review. Source code review is also good practice as you are finding
issues early in the SDLC. Locating and fixing issues early in your SDLC makes it cheaper in terms of
effort and cost to remediate. It also empowers developers to understand security bugs at the source
code level such that they may not repeat the same mistakes.

What is static analysis?

Static Code Analysis is usually performed as part of a Source code review and is carried out at the
Implementation phase of SDLC. Static Code Analysis commonly refers to the running of static code
analysis tools that attempts to highlight possible vulnerabilities whiting the ‘static’ (non-running) source
code by using techniques such as Taint Analysis, Data Flow Analysis, Control Flow Graph, and
Lexical Analysis. When the analysis is performed on a runtime environment, it is referred to as
Dynamic Code Analysis. Ideally, such tools would automatically find security flaws with a high degree
of confidence that what is found is indeed a flaw. However, this is beyond the state of the art for many
types of application security flaws. Thus, such tools frequently serve as aids for an analyst to help
them zero in on security relevant portions of code so they can find flaws more efficiently, rather than a
tool that simply finds flaws automatically.

1.2.2 What is Code Review (Needs Content)

Lorem Ipsum

1.2.3 Manual Review

Manual review is sited when a risk-based approach to the code review is required. Risk based code
review works by.

1. Identification of the trust boundaries in the code. 2. Identification of data paths and storage classes.
3. Identification of authorization components. 4. Identification of authentication components. 5. Review
of input validation and encoding methods. 6. Review of logging components.

<more description is required here>

OWASP CODE REVIEW GUIDE - V2.0 13

Manual review is good for :

Data leakage detection Resource usage/exhaustion detection Business Logic review* Denial of
service Deep Dive review

Not so good for: Business Logic review* Level of coverage

1.2.3.1 Choosing a static analysis tool

Choosing a static analysis tool is a difficult task since there are a lot of choices. The comparison
charts below should help you decide which tool is right for you. This list is not exhaustive. The first
thing to do is to look to for a tool that supports the programming language of your choice. You also
have to decide whether you want a commercial tool or a free one. Usually the commercial tools have
more features and are more reliable than the free ones. The major commercial tools are equally
effective but their usability might differ. Next, there is the type of analysis you are looking for: Security
or Quality, Static or Dynamic analysis. You should also check the compatibility of the tool with your
programming environment. This was the easy part to narrow the choice down to a few tools. The next
step requires you to do some work since it is quite subjective. The best thing to do is to test a few
tools to see if you are satisfied with different aspects such as the user experience, the reporting of
vulnerabilities, the level of false positives, the customization, the customer support… The choice
should not be based on the number of features, but on the features that you need and how they could
be integrated in your SDLC. Also, before choosing the tool, the security expertise of the targeted users
should be clearly evaluated in order to choose an appropriate tool.

OWASP CODE REVIEW GUIDE - V2.0 14

Free static analysis tools

Commercial static analysis tools

1.2.4 Advantages of Code Review to Development Practices

Advantages of Code Review to Development Practices

OWASP CODE REVIEW GUIDE - V2.0 15

Integrating code review into your company’s development processes can have many benefits that will
be explored below. Some of these benefits depend upon the tools you use to perform code reviews,
how well that data is backed up, and how well those tools are used. The days of bringing developers
into a room and displaying code on a projector, whilst recording the review results on a printed copy
and behind us, many tools exist to make code review more efficient and to track the review
records/decisions. When the code review process is structured correctly, the act of reviewing code
can provide educational, audible and historical benefits to any organization.

The following provides a list of benefits that a code review procedure can add to development team.

Provides an Historical Record

If any developer has joined a company, or moved teams within a company, and had to maintain or
enhance a piece of code written years ago, one of the biggest frustrations can be the lack of context
the new developer has on the code. Various schools of opinion exist on code documentation, both
within the code (comments) and external to the code (design/functional docs, wikis, etc.), opinions
ranging from zero-documentation tolerance through to near-NASA level documentation where the size
of the documentation far exceeds the size of the code module.

If you think about the discussions that occur during a code review, many of these discussions, if
recorded, would provide valuable information (context) to module maintainers and new programmers.
From the writer describing the module along with some of their design decisions, to each reviewers
comments, stating why they think one SQL query should be restructured, or an algorithm changed,
there is a development story unfolding in front of the reviewers eyes which can (and should) be used
by future coders on the module, who are probably not involved in the review meetings.

Capturing those review discussions in a review tool automatically, and storing them for future
reference, will provide the development organization with a history of the changes on the module
which can be queried at a later time by new developers. These discussions can also contain links to
any architectural/functional/design/test specifications, bug or enhancement numbers, etc.

Verification Change has been tested

When a developer is about to submit code into the repository, how do you know they have sufficiently
tested it? Adding a description of the tests they have run (manually or automated) against the
changed code can give reviewers (and management) confidence that the change will work and not
cause any regressions. Also by declaring the tests the writer has ran against their change, the author
is allowing reviewers to suggest further testing that may have been missed by the author.

OWASP CODE REVIEW GUIDE - V2.0 16

In a development scenario where automated unit or component testing exists, the coding guidelines
can require the developer include those unit/component tests in the code review. This again allows
reviewers within this type of automated environment to ensure the correct unit/component tests are
going to be included in the environment, keeping the quality of the continuous integration.

Coding Education for Junior Developers

After you learn the basics of a language and read a few of the best practices book, how can you get
good on-the-job skills to learn more? Besides buddy coding (which rarely happens and is never cost
effective) and training sessions (brown bag sessions on coding, tech talks, etc.) the design and code
decisions discussed during a code review can be a learning experience for junior developers. Many
experienced developers may admit to this being a two way street, where new developers can come in
with new ideas or tricks that the older developers can learn from. Altogether this cross-pollination of
experience and ideas can only be beneficial to a development organization.

Familiarization with Code Base

When a new feature is developed, it is often integrated with the main code base, and here code
review can be a conduit for the wider team to learn about the new feature and how it's code will impact
the wider product. This helps prevent functional duplication where separate teams end up coding the
same small piece of functionality.

This also applies for development environments with silo'ed teams. Here the code review author can
reach out to other teams to gain their insight, and allow those other teams to review their code, and
everyone then learns a bit more about the company's code.

Pre-warning of Integration Clashes

In a busy code base there will be times (especially on core code) where multiple developers can be
writing code affecting the same module. Many people have had the experience of cutting the code
and running the tests, only to discover upon submission that some other change has modified the
functionality, requiring the author to recode and retest some aspects of their change. Spreading the
word on upcoming changes via code reviews gives a greater chance of a developer learning that a
change is about to impact their upcoming commit, and development timelines, etc., can be updated
accordingly.

Coding Guidelines Touch point

OWASP CODE REVIEW GUIDE - V2.0 17

Many development environments have coding guidelines which new code must adhere to. Coding
guidelines can take many forms, but it's worth pointing out that security guidelines can be a
particularly relevant touch point within a code review as unfortunately, though typically, the security
issues are understood by a subset of the development team. Therefore it can be possible to include
teams with various technical expertise into the code reviews, i.e. someone from the security team (or
that person in the corner who knows all the security stuff) can be invited as a technical subject expert
to the review to check the code from their particular angle. This is where the OWASP top 10 could be
enforced.

1.2.5 Why Code Review

Security code review aims to identify security flaws in the application related to its features and design
along with their exact root causes. With the increasing complexity of the applications and the advent
of new technologies the traditional way of testing may fail to detect all the security flaws present in the
applications. Thus, there is a need to understand the code of the application, external components,
technologies and configurations to be able to uproot all the flaws in different kinds of applications.
Such a deep dive into the application code also helps in determining exact mitigation techniques that
can be used to avert the security flaws. Let’s look in further detail of the benefits of security code
reviews.

Root cause analysis (Source to sink) – There are various reasons why security flaws manifest in
the application like lack of validation, parameter mishandling etc. During the assessment, the code is
thoroughly studied and such flaws are checked. In the process the exact root cause of the flaws are
captured. The complete data flow is traced and source to sink analysis is carried out. Source to sink
analysis here means to determine what are possible inputs to the application i.e. source, and how are
they being processed by it. Sink refers an insecure code pattern like for instance, a dynamic SQL
query. So, its analyzing what is the source (input) and the sink (vulnerable code pattern) for any
vulnerability. Consider a scenario where the source is a user input. It flows through the different
classes/components of the application and finally falls into a concatenated SQL query i.e. a sink, and
there is no proper validation being applied to it in the path. In this case the application will be
vulnerable to SQL Injection attack, as identified by the source to sink analysis. Such an analysis
exactly helps in understanding, which vulnerable inputs can lead to a possibility of an exploit in the
application.

Design Analysis – Design is an important aspect of security code review. The dynamic testing
approach does not involve design analysis, which also serves as it one of the limitations. The design

OWASP CODE REVIEW GUIDE - V2.0 18

flaws are difficult to uncover and requires knowledge of the entire data flow, input sources,
integrations and all the configurations of the application. Thus, the flaws related to mishandling of non-
user inputs and external integrations like server-to-server, which are unlikely to get covered in a
dynamic testing approach can be easily determined in a security code review. It covers the end-to-end
analysis of the application.

All Instances of the Vulnerabilities – Once a flaw is identified the next step of the security code
review process is to enumerate its all the possible instances present in the application. Through
security code reviews we can uncover insecure patterns present in all the files of the application.
Here, all insecure instances includes the list of different the insecure code patterns that lead to a
vulnerability and all of their occurrences. For instance, an application can be vulnerable to XSS
vulnerability because of use of unvalidated inputs in insecure display methods like scriplets,
response.write method etc. at several places.

Uncommon Security Flaws – Security code reviews is very specific to the application being
reviewed. It may highlight some flaws that are new or specific to the code implementation of the
application like insecure termination of execution flow, synchronization error etc. These flaws can only
be uncovered if we understand the application code flow and its logic well. Thus, security code review
is not just about scanning the code for set of unknown insecure code patterns. But it also involves
understanding the code implementation of the application and enumerating the flaws specific to it.

Limitations of Existing Security Controls – The application being reviewed might have been
designed with some security controls in place like centralized blacklist validation etc. or there could be
some inbuilt validation/security controls present in the application platform being used. These security
controls must be studied carefully to identify if they are foolproof. According to the implementation of
the control, the nature of attack or any specific attack vector that can be used to bypass it, must be
analyzed. Enumerating the weakness in the existing security control is another important aspect of the
security code reviews.

Specific Recommendations – The security code reviews also helps to come up with mitigation
techniques that can best suit the application, instead of a generic one.

1.2.5.1 Scope and Objective of secure code review (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 19

1.2.6 We can’t hack ourselves secure

We can’t hack ourselves secure. Penetration testing is generally a point in time test. As source code
changes the value of the findings of a penetration test degrade with time. There are also privacy,
compliance and stability and availability concerns, which are generally not covered by penetration
testing. Data information leakage in a cloud environment for example may not be discovered via a
penetration test.

1.2.7 360 Review: Coupling source code review and Testing / Hybrid Reviews (Needs
Content)

Lorem Ipsum

1.2.8 Can static code analyzers do it all?

Secure code review is a process of enumerating the flaws in the application. The flaws may exist in
the application due to insecure code, design or configuration. Out of which the flaws that arise due to
insecure code can be enumerated to a great extent through automated analysis, as most of them are
associated with insecure patterns.

Automated analysis can be carried out through any of the following three options:

Static Code analyzers or scanners

Custom scripts based on some pattern search

Open source tools

Though some scripts and some open source tools are efficient enough in finding insecure code
patterns but they often lack the capability of tracing the data flow. The use of static code analyzers or
the scanners, which identify the insecure code pattern along with source to the sink analysis, fulfill this
limitation.

With this we come to the next big question i.e. Can scanners i.e. static code analyzers do it
all?

Static code analyzers or the scanners are the most comprehensive options to automate the process of
review.

Some of the advantages of static code scanners are:

1. Reduction in manual efforts – Secure code review can be at times be a tedious process of
analyzing thousands of lines of code for a host of vulnerabilities. Moreover as the type of patterns to
be scanned almost remains common across application the task also tends to get a bit repetitive. In

OWASP CODE REVIEW GUIDE - V2.0 20

such a scenario, scanners play a big role is automating the process of searching the vulnerabilities
through big numbers of lines of code.

2. Time efficient – Scanners are must time efficient than manual reviews. In most cases the scanners
have proved to be much faster than manual process of reviewing the source code.

3. Finds all the instances of the vulnerabilities - Scanners are very effective in identifying all the
instances of a particular vulnerability with their exact location. This is really helpful for larger code
base where tracing for flaws in all the files is difficult.

4. Source to sink analysis – Most scanners today trace the code and identify the vulnerabilities
through source to sink analysis. They identify the inputs to the application and trace them thoroughly
throughout the code till they find them to be associated with any insecure code pattern. Such a source
to sink analysis helps the developers in understanding the flaws better as they get a complete root
cause analysis of the flaw.

5. Exhaustive coverage of vulnerability patterns – Most of the scanners have well-defined set of
test cases covering all the well-known vulnerabilities. Thus through the use of scanners we can
ensure that the code gets thoroughly checked for all the pre-defined set of flaws.

6. Elaborate reporting format – Scanners provide a detailed report on the observed vulnerabilities
with exact code snippets, risk rating and complete description of the vulnerabilities. This helps the
development teams to easily understand the flaws and implement necessary controls.

Limitations of static code analyzers:

1. Business Logic Flaws remain untouched – The flaws that are related to application’s logic,
transactions, and specific sensitive data remain untouched by the scanners. The security controls that
needs to be implemented in the application specific its features and design are often not pointed by
the scanners. This stands as a biggest limitation of the static code analyzers.

2. Limited scope – Static code analyzers are often designed for specific frameworks or certain set of
vulnerable patterns, they fail to address the issues not covered in their search pattern repository. So
the scanners often fail in catching up the vulnerabilities of the new versions of the framework that
keeps coming up.

3. Custom validations - Most of the static analyzers tool miss out the custom validations added in the
application while identifying the flaws. These could include blacklist or whitelist validation present in
the application before the input sources. It could also mean the customization added by the
developers to the existing design frameworks and inbuilt framework based API, the scanners that go
by pattern based search usually miss out in understanding such intricate details of the code.

OWASP CODE REVIEW GUIDE - V2.0 21

4. Design flaws – Design flaws are lessen known issues and static code analyzers often focus more
on the code than the design. Mainly if the application design is custom built it becomes challenging for
the scanners to trace the code flow.

5. Application specific recommendations – Scanners usually provide a generic solution and do not
point out application specific code changes. If the solutions are customized as per the design and the
feasibility of the application it will be clearer to the developers and require less code change.

Parameters to be considered for commercial scanners:

1. Source to sink analysis Capabilities

2. Support for frameworks

3. Ability to understand customized code or validations

4. Coverage of Business logic cases specially the ones related to authorization

5. Option to customize the pattern search

OWASP CODE REVIEW GUIDE - V2.0 22

2 Methodology (Missing Content)
We need to add content that introducing readers to what the methodology is.

2.1 The code review approach (Needs Content)

Lorem Ipsum

2.1.1 Preparation and context

Laying the Groundwork

In order to effectively review a code baseline, it is critical that the review team understands the
business purpose of the application and the most critical business impacts. This will guide them in
their search for serious vulnerabilities. The team should also identify the different threat agents, their
motivation, and how they could potentially attack the application.

All this information can be assembled into a high-level threat model of the application that represents
all of information that is relevant to application security. The goal for the reviewer is to verify that the
key risks have been properly addressed by security controls that work properly and are used in all the
right places. In some cases the threat model will already be created, in other cases the reviewers
might need to draft one up a threat model.

Ideally the reviewer should be involved in the design phase of the application, but this is almost never
the case. However regardless of the size of the code change, the engineer initiating the code review
should direct reviewers to any relevant architecture or design documents. The easiest way to do this
is to include a link to the documents (assuming they're stored in an online document repository) in the
initial e-mail, or in the code review tool if that is supported.

Performing code review can feel like an audit, and most developers hate being audited. The way to
approach this is to create an atmosphere of collaboration between the reviewer, the development
team, the business representatives, and any other vested interests. Portraying the image of an
advisor and not a policeman is very important if you wish to get full co-operation from the development
team.

Before We Start

The reviewer(s) need to be familiar with:

1. Code: The language(s) used, the features and issues of that language from a security perspective.
The issues one needs to look out for and best practices from a security and performance perspective.

OWASP CODE REVIEW GUIDE - V2.0 23

2. Context: The working of the application being reviewed. All security is in context of what we are
trying to secure. Recommending military standard security mechanisms on an application that vends
apples would be over-kill, and out of context. What type of data is being manipulated or processed,
and what would the damage to the company be if this data was compromised? Context is the "Holy
Grail" of secure code inspection and risk assessment… we’ll see more later.

3. Audience: The intended users of the application. Is it externally facing or internal to “trusted”
users? Does this application talk to other entities (machines/services)? Do humans use this
application?

4. Importance: The size of the consequences of failure. Shall the enterprise be affected in any great
way if the application cannot perform its functions as intended?

Discovery: Gathering the Information

The reviewers will need certain information about the application in order to be effective. The
information should be assembled into a threat model that can be used to prioritize the review.
Frequently, this information can be obtained by studying design documents, business requirements,
functional specifications, test results, and the like. However, in most real-world projects, the
documentation is significantly out of date and almost never has appropriate security information. If the
development organization has procedures and templates for architecture and design documents, the
reviewer can suggest updates to ensure security is considered at these phases.

One of the most effective ways to get started is to talk with the developers and the lead architect for
the application. This does not have to be a long meeting; it could be a whiteboard session for the
development team to share some basic information about the key security considerations and
controls. A walkthrough of the actual running application is very helpful to give the reviewers a good
idea about how the application is intended to work. Also, a brief overview of the structure of the
codebase and any libraries used can help the reviewers get started.

If the information about the application cannot be gained in any other way, then the reviewers will
have to spend some time doing reconnaissance and sharing information about how the application
appears to work by examining the code.

Context, Context, Context

Security code review is not simply about reviewing code. It’s important to remember that the reason
that we review code is to ensure that the code adequately protects the information and assets it has
been entrusted with, such as money, intellectual property, trade secrets, lives, or data.

OWASP CODE REVIEW GUIDE - V2.0 24

The context in which the application is intended to operate is a very important issue in establishing
potential risk. If reviewers do not understand the business context, they will not be able to find the
most important risks and may focus on issues that are inconsequential to the business.

As preparation for a security code review, a high-level threat model should be prepared which
includes the relevant information. This process is described more fully in a later section, but the major
areas are listed here:

• Threat Agents

• Attack Surface (including any public and backend interfaces)

• Possible Attacks

• Required Security Controls (both to stop likely attacks and to meet corporate policy)

• Potential Technical Impacts

• Important Business Impacts

Defining context should provide us with the following information:

• Establish the importance of the application to the enterprise.

• Establish the boundaries of the application context.

• Establish the trust relationships between entities.

• Establish potential threats and possible controls.

The reviewers can use simple questions like the following to gather this information from the
development team:

- “What type/how sensitive is the data/asset contained in the application?”:

This is a keystone to security and assessing possible risk to the application. How desirable is the
information? What effect would it have on the enterprise if the information were compromised in any
way?

- “Is the application internal or external facing?”, “Who uses the application, and are they
trusted users?”

This is a bit of a false sense of security, as attacks take place by internal/trusted users more often
than is acknowledged. It does give us context that the application should be limited to a finite number
of identified users, but it’s not a guarantee that these users shall all behave properly. Even if a
application is sitting behind a firewall, defense in depth can be considered when the data is sensitive.

OWASP CODE REVIEW GUIDE - V2.0 25

- “Where does the application host sit?”

Users should not be allowed past the DMZ into the LAN without being authenticated. Internal users
also need to be authenticated. No authentication = no accountability and a weak audit trail.

If there are internal and external users, what are the differences from a security standpoint? How do
we identify one from another? How does authorization work?

- “How important is this application to the enterprise?”.

Is the application of minor significance or a Tier A / Mission critical application, without which the
enterprise would fail? Any good web application development policy would have additional
requirements for different applications of differing importance to the enterprise. It would be the
analyst’s job to ensure the policy was followed from a code perspective also.

A useful approach is to present the developers with a checklist, which asks the relevant questions
pertaining to any web application.

The Checklist

Defining a generic checklist that can be filled out by the development team is of high value, if the
checklist asks the correct questions in order to give us context. The checklist is a good barometer for
the level of security the developers have attempted or thought of. If security code review becomes a
common requirement, then this checklist can be incorporated into a development procedure so that
the information is always available to code reviewers. The checklist should cover the most critical
security controls and vulnerability areas such as:

• Data Validation

• Authentication

• Session Management

• Authorization

• Cryptography

• Error Handling

• Logging

• Security Configuration

• Network Architecture

OWASP CODE REVIEW GUIDE - V2.0 26

Category Vulnerable.Area Facts.to.ANALYSE

1.#Are#there#backdoor/unexposed#business#logic#classes?

2.#Are#there#unused#configurations#related#to#business#logic?

3.#If#request#parameters#are#used#to#identify#business#logic#methods,#is#there#a#proper#mapping#of#user#

privileges#and#methods/actions#allowed#to#them?

Placement.of.checks 1.#Are#security#checks#placed#before#processing#inputs?

1.#Check#if#unexposed#instance#variables#are#present#in#form#objects#that#get#bound#to#user#inputs.#If#present,#

check#if#they#have#default#values.

2.#Check#if#unexposed#instance#variables#present#in#form#objects#that#get#bound#to#user#inputs.#If#present,#

check#if#they#get#initialized#before#form#binding.

1.#Is#the#placement#of#authentication#and#authorization#check#correct?

2.#Is#there#execution#stopped/terminated#after#for#invalid#request?#I.e.#when#authentication/authorization#

check#fails?

3.#Are#the#checks#correct#implemented?#Is#there#any#backdoor#parameter?

4.#Is#the#check#applied#on#all#the#required#files#and#folder#within#web#root#directory?

1.#Is#there#any#default#configuration#like#AccessG#ALL?

2.#Does#the#configuration#get#applied#to#all#files#and#users?

3.#Incase#of#container#managed#authentication#G#Is#the#authentication#based#on#web#methods#only?

4.#Incase#of#container#managed#authentication#G#Does#the#authentication#get#applied#on#all#resources?

Insecure.Session.management 1.#Does#the#design#handle#sessions#securely?

1.#Is#Password#Complexity#Check#enforced#on#the#password?

2.#Is#password#stored#in#an#encrypted#format?

3.#Is#password#disclosed#to#user/written#to#a#file/logs/console?

Presence.of.sensitive.data.in.configuration/code.files 1.#Are#database#credentials#stored#in#an#encrypted#format?

Presence/support.for.different.insecure.data.sources.and.
their.related.flaws 1.#Does#the#design#support#weak#datastores#like#flat#files

1.#Does#the#centralized#validation#get#applied#to#all#requests#and#all#the#inputs?

2.#Does#the#centralized#validation#check#block#all#the#special#characters?

3.#Does#are#there#any#special#kind#of#request#skipped#from#validation?

4.#Does#the#design#maintain#any#exclusion#list#for#parameters#or#features#from#being#validated?

Entry.Points Insecure.Data.handling.and.validation 1.#Are#all#the#untrusted#inputs#validated?

Insecure.data.transmission
1.#Is#the#data#sent#on#encrypted#channel?##Does#the#application#use#HTTPClient#for#making#external#

connections?

2.#Does#the#design#involve#session#sharing#between#components/modules?#Is#session#validated#correctly#on#

both#ends?

Elevated.privilege.levels 3.#Does#the#design#use#any#elevated#OS/system#privileges#for#external#connections/commands?

External.API’s.used Known.flaws.present.in.3rd.party.APIs/functions 1.#Is#there#any#known#flaw#in#API's/Technology#used?#For#eg:#DWR

1.#Does#the#design#framework#provide#any#inbuilt#security#control?#Like#<%:#%>#in#ASP.NET#MVC.#

2.#Are#are#there#any#flaw/weakness#in#the#existing#inbuilt#control?

3.#Are#all#security#setting#enabled#in#the#design?

Code.Flow.–.Division.of.code.based.
on.MVC

Inbuilt.Security.Controls Common.Security.Controls
Configuration

Architecture

Design

Presence.of.backdoor.parameters/functions/files

Insecure.authentication.and.access.control.logic

Redundant.configuration

Weak.Password.Handling

Weakness.in.any.existing.security.control

Authentication.and.Access.Control.
Mechanism

Data.Access.Mechanism

Centralized.Validation.and.
Interceptors

External.Integrations

Insecure.Data.Binding.Mechanism

OWASP CODE REVIEW GUIDE - V2.0 27

2.1.2 Understanding Code layout/Design/Architecture (Needs Content)

Lorem Ipsum

2.2 SDLC Integration (Needs Content)

Lorem Ipsum

2.2.1 Deployment Models (Needs Content)

Lorem Ipsum

2.2.1.1 Secure deployment configurations (Needs Content)

Lorem Ipsum

2.2.1.2 Metrics and code review (Needs Content)

Lorem Ipsum

2.2.1.3 Source and sink reviews (Needs Content)

Lorem Ipsum

2.2.1.4 Code review coverage (Needs Content)

Lorem Ipsum

2.2.1.5 Design Reviews (Needs Content)

Introduction

This project highlights some of the vital areas of design security. We are all aware of “secure coding”
and practice it to great extent while developing applications. But do we give equal attention to –
“Secure Design”? Most of us would probably say, NO. Design level flaws are lesser-known concepts

OWASP CODE REVIEW GUIDE - V2.0 28

but their presence is a very big risk to the applications. Such flaws are hard to find in static or dynamic
application scans and instead requires deep understanding of application architecture and layout to
uncover them manually. With increasing business needs the complexities in application design and
architecture are also increasing. There is a rise in the use of custom design techniques and diverse
technologies in the applications today, which makes the need for design reviews imperative. This
project focuses on highlighting some important secure design principles that developers and
architects must adapt to build a secure application design. With the help of some design flaws we will
see the areas of design that are exposed to security risks and what measures can be taken to avoid
them in our design. It also includes mitigation techniques that can be implemented in the applications
to prevent them.

Understanding the design

- What is an application design?

A design is a blueprint of an application; it lays a foundation for its development. It illustrates the
layout of the application and identifies different application components needed for it. It is a structure
that determines execution flow of the application. Most of the application designs are based on a
concept of MVC. In such designs different components interact with each other in an ordered
sequence to serve any user request.

- Why should be review the design?

Design review should be an integral part of secure software development process. If the application is
reviewed for security at the design level many inherent backdoors can be uncovered. Design reviews
also help to implementing the security requirements in a better way.

Methodology

The methodology to be followed for design reviews is explained below:

OWASP CODE REVIEW GUIDE - V2.0 29

- Collection of Design Documents:

This phase involves collecting required information of the proposed design. It would involve all kinds
of documentation maintained by the development team about the design like flow charts, sequence
diagrams, class diagrams etc. Requirements documents are also needed to understand the objective
of the proposed design.

- Design Study:

In this phase the design is thoroughly studied mainly with respect to the data flow, different application
components and their interactions, data handling etc. This is achieved through manual analysis and
discussions with the design or technical architect’s team. The design and the architecture of the
application must be understood thoroughly to analyse vulnerable areas that can lead to security
breaches in the application. The key areas of the design that must be considered during threat
analysis are given below.

• Data Flow/Code Layout

• Access control

• Existing/Built-in Security controls

• Entry points of non-user inputs

• Integrations with external services

• Location of configurations file and data sources

• Add-ons and customization present (in case of built-in design framework)

This will help in identifying the trust boundaries for an application and thus aid in taking decisions
about the vulnerabilities and their risk levels posed to the application.

Collec&on(of(
Design(

Documents(
Design(study(Design(Analysis(

Propose(
Security(

Requirements(

Recommend(
Design(Changes(

Discussion(with(
the(team(

Design(
Finaliza&on(

OWASP CODE REVIEW GUIDE - V2.0 30

- Design Analysis:

After understanding the design the next phase is to analyse the threats for the design. This phase
involves “threat modeling” the design.

The threats must be identified for different design areas that were identified in the previous step. It
involves observing the design from an attacker’s perspective and uncovering the backdoors and
insecure areas present in it. The analysis can be done broadly on the basis of 2 important criteria:

1. Insecure Implementation – This would mean the design has a loophole, which can lead to a
security breach in the application for instance, insecure reference to business logic functions.

2. Lack of secure implementation – This would mean the design has not incorporated secure
practices. For instance, in connection to external server different security requirements to protect
confidentiality and integrity of the data are not present.

Similar instances are listed below to illustrate the points that should be broadly considered while
analysing different design areas:

• Data Flow -

a. Are user inputs used to directly reference a business logic class/function

b. Is there a data binding flaw?

c. Does it expose any backdoor parameter to invoke business logic?

d. Is the execution flow of the application correct?

• Authentication and access control -

a. Does the design implement access control for all the files?

b. Does it handle session securely?

c. Is there SSO, does it leave any backdoor?

• Existing/built-in Security Controls -

a. Weakness in any existing security control

b. Is the placement of the security controls correct?

• Architecture –

OWASP CODE REVIEW GUIDE - V2.0 31

a. Is there validation for all input sources?

b. Is the connection to external servers secure?

• Configuration/code files and datastores -

a. Are sensitive data present in configuration files?

b. Does it support any insecure data source?

A detailed checklist is available here - Excel Doc was here at the end of this activity we get a list of
threats or insecure areas applicable to the design.

- Propose Security Requirements:

After analysing the insecure areas in the design in this step a list of security requirements
corresponding to them must be created. Requirements are high level changes or additions to be
incorporated in the design, for instance: Validate the inputs fetched from the webservice response
before processing them. Any protection that is needed for resolving the vulnerable area identified in
the design would go as a security requirement for the design. This phase involves listing all the
security requirements for the design along with security risk associated with them. This risk-based
approach would help the development teams in prioritizing the security requirements.

- Recommend Design Changes:

In this phase every security requirement must be associated with a security control. A security control
best suited for the design is proposed and documented. These security controls are an elaborate view
of the security requirements. Here, we would identify exact changes or additions to be incorporated in
the design that are needed to meet any requirement or mitigate a threat. The changes or controls
recommended for the design should be clear and detailed, as given in the instances below:

a. Elaborate validation strategy with respect to:

b. Identifying right application component like servlet filters, interceptors, validator classes etc.

c. Placement of check c. Validation mechanism

d. Use of 3rd party security API’s or inbuilt design features of the frameworks

e. Encryption techniques

f. Design Patterns And so on depending on the control to be built in the design.

OWASP CODE REVIEW GUIDE - V2.0 32

- Discussion with the design team:

The list of security requirements and proposed controls must be then discussed with the development
teams. The queries of the teams should be addressed and feasibility of incorporating the controls
must be determined. Exceptions, if any must be taken into account and alternate recommendations
should be proposed. In this phase a final agreement on the security controls is achieved.

- Design Finalization:

The final design incorporated by the development teams must be reviewed again and finalized for
further development process.

Design flaws

This section describes some of the important design flaws that can leave a backdoor in the
application to access it without authentication or manipulate its business logic. We will understand
such flaws and secure design recommendations in detail.

- Business Logic Decision

During testing it is crucial to identify the key parameters related to business logic and understand how
application handles them. This section will focus on insecure business logic decisions that are based
on such parameters. Two such cases are listed below, it is important to look for such scenarios in the
application while testing.

1. Use of non-editable controls – Applications may use the values of non-editable controls, drop-down
menus, hidden fields or query string parameters for business logic processing. If such fields contain
values like the type of the user, nature of the request, status of the transaction, etc. the attackers will
get a chance to manipulate them and perform unauthorized operations. The application developers
must understand that such fields are non-editable only in the context of the proxy tool. The attackers
can easily modify their values using a proxy editor tool and try to manipulate business logic.

2. Business logic decision based on presence or absence of certain parameters - This is especially
observed in ASP.NET applications where there is provision to make the server side controls
hidden/invisible for certain users. However, in most cases it has been observed that if the users add
the parameters corresponding to the UI elements that are kept hidden/invisible to them into the
request, they are able to change the behavior of the server side logic. Consider a scenario where only

OWASP CODE REVIEW GUIDE - V2.0 33

admin user can change password of other users of the system, as a result the field to enter username
is only made visible to the admin user. However, if a normal a user tries to add username parameter
in the request he/she will be able to trick the server in believing that the request has come from an
admin user and try to change password of other users. Thus there exists a hole in such applications
where the server side behavior can be influenced with request parameters. Users can perform
unauthorized operations in the application by supplying the values for the inputs fields that are hidden
from them. Secure Design Recommendation:

• The application must not expose such parameters to the users.

• If they are exposed, the application must not rely on request parameters for logical decisions. It
mustmaintain a separate copy of such values at the server side and use the same for business logic
processing.

• Apply proper authorization checks on the server side for all transactions, wherever necessary. Do
not depend on presence of a user input for such decisions.

- Business Logic Invocation Technique

In most of the design techniques the request parameters or the URL’s serve as sole factors to
determine the processing logic. In such a scenario the elements in the request, which are used for
such identifications, may be subject to manipulation attacks to obtain access to restricted resources or
pages in the application.

Consider a design below; here the business logic class is identified based on a configuration file that
keeps the mapping of the request URL and the business logic class i.e. action class.

OWASP CODE REVIEW GUIDE - V2.0 34

What is the flaw?

A flaw in such a design could be unused configurations present in the configuration file. Such
configurations that are not exposed as valid features in the application and could serve as a potential
backdoor to it. An unused configuration present in the configuration file of the application is shown
below:

OWASP CODE REVIEW GUIDE - V2.0 35

Observe that the “TestAction” has an insecure logic to delete records from the system. This can act as
a potential backdoor to the application.

Consider another scenario

In the some designs request parameters are used to identify business logic methods. In the figure
shown below a request parameter named “event” is used to identify and invoke the corresponding
event handling methods of the business logic/action class.

OWASP CODE REVIEW GUIDE - V2.0 36

What is the flaw?

Here, the user can attempt to invoke the methods of the events that are not visible to the user.

Secure Design Recommendation:

The applications must ensure to:

• Remove ALL redundant/test/unexposed business logic configurations from the file

• Apply necessary authorization check before processing business logic method

• Maintain a mapping of method/class/view names with the privilege level of the users, wherever
applicable and restrict access of the users to restricted URLs/methods/views.

Review Criteria

Understand the business logic invocation technique used in the design of any application. Check if the
user inputs are directly (i.e. without any restriction) used to determine any of the following elements
(as applicable):

• Business logic class

• Method names

OWASP CODE REVIEW GUIDE - V2.0 37

• View component

Data Binding Technique

Another popular feature seen in most of the design frameworks today is data binding, where the
request parameters get directly bound to the variables of the corresponding business/command
object. Binding here means that the instance variables of such classes get automatically initialized
with the request parameter values based on their names. Consider a sample design given below;
observe that the business logic class binds the business object with the request parameters.

What is the flaw?

The flaw in such design is that the business objects may have variables that are not dependent on the
request parameters. Such variables could be key variables like price, max limit, role etc. having static
values or dependent on some server side processing logic. A threat in such scenarios is that an
attacker may supply additional parameters in request and try to bind values for unexposed variable of
business object class. As illustrated in the figure below, the attacker sends an additional “price”
parameter in the request and binds with the unexposed variable “price” in business object, thereby
manipulating business logic.

OWASP CODE REVIEW GUIDE - V2.0 38

Secure Design Recommendation

• An important point to be noted here is that the business/form/command objects must have only
those instance variables that are dependent on the user inputs.

• If additional variables are present those must not be vital ones like related to the business rule for
the feature.

• In any case the application must accept only desired inputs from the user and the rest must be
rejected or left unbound. And initialization of unexposed of variables, if any must take place after the
binding logic.

Review Criteria

Review the application design and check it is incorporates a data binding logic. In case it does, check
if business objects/beans that get bound to the request parameters have unexposed variables that are
meant to have static values. If such variables are initialized before the binding logic this attack will
work successfully.

Placement of Security Controls

Placement of security checks is a vital area of review in an application design. Incorrect placements
can render the applied security controls null and void. So, it is important to study the application
design and spot the correctness of such checks in the overall execution flow of the design. Most of the

OWASP CODE REVIEW GUIDE - V2.0 39

application designs are based on the concept of Model-View-Controller (MVC). They have a central
controller, which listens to all incoming request and delegates control to appropriate form/business
processing logic. And ultimately the user is rendered with a view. In such a layered design, when
there are many entities involved in processing a request, developers often go wrong in placing the
security controls at the right place. Most application developers feel “view” is the right place to have
the security checks like authentication check etc.

What is the flaw?

It thus seems logical that if you restrict the users at the page/view level they won’t be able to perform
any operation in the application. But what if instead of requesting for a page/view an unauthorized
user tries to request for an internal action like to action to add/modify any data in the application? It
will get processed but the resultant view will be denied to the user; because the flaw lies in just having
a view based access control in the applications. I am sure you will agree that a lot of processing for a
request is done before the “view” comes into picture in any design. So the request to process any
action will get processed successfully without authorization.

Consider a MVC based given in the figure below. Observe in the figure that the authentication check
is present only in the view pages.

User Applicati
on

BROWSER

Views

Views

OWASP CODE REVIEW GUIDE - V2.0 40

Observe that neither the controller servlet (central processing entity) nor the action classes have any
access control checks. So here, if the user requests for an internal action like add user details, etc.
without authentication it will get processed, but the only difference is that the user will be shown an
error page as resultant view will be disallowed to the user.

OWASP CODE REVIEW GUIDE - V2.0 41

Insecure POST-BACK’s in ASP.NET A similar flaw is predominantly observed in ASP.NET
applications where the developers tend to mix the code for handling POSTBACK’s and authentication
checks. Usually it is observed that the authentication check in the ASP.NET pages are not applied for
POSTBACKs, as indicated below. Here, if an attacker tries to access the page without authentication
an error page will be rendered. Instead, if the attacker tries to send an internal POSTBACK request
directly without authentication it would succeed.

Secure Design Recommendation:

It is imperative to place all validation checks before processing any business logic and in case of
ASP.NET applications independent of the POSTBACKs.

Review criteria

Check if the placement of the security checks is correct. The security controls like authentication
check must be place before processing any request.

Execution Flow

OWASP CODE REVIEW GUIDE - V2.0 42

Execution flow is another important consideration of design. The execution flow must terminate
appropriately in case of an error condition. However, due to mishandling of some programming
entities there could be a big hole in the application, which would allow unrestricted access to
applications. One such flaw is related to – “sendRedirect” method in J2EE applications.

 response.sendRedirect(“home.html”);

This method is used to send a redirection response to the user who then gets redirected to the
desired web component who’s URL is passesd an argument to the method. One such misconception
is that execution flow in the Servlet/JSP page that is redirecting the user stops after a call to this
method. Take a look at the code snippet below, it checks for authenticated session using an “if”
condition. If the condition fails the response.sendRedirect() is used to redirect the user to an error
page.

Note that there is code present after the If condition, which continues to fetch request parameters and
processes business logic for instance adding a new branch entry of a bank in this case.

What is the flaw?

OWASP CODE REVIEW GUIDE - V2.0 43

This flaw manifests as a result of the misconception that the execution flow in the JSP/Servlet page
stops after the “sendRedirect” call. However it does not; in this case the execution of the servlet would
continue even if an invalid session is detected by the “if” condition and thus the business logic will get
processed for unauthenticated requests.

Note: The fact that execution of a servlet or JSP continues even after sendRedirect() method, also
applies to Forward method of the RequestDispatcher Class. However, <jsp:forward> tag is an
exception, it is observed that the execution flow stops after the use of <jsp:forward> tag.

Secure Design Recommendation:

Since this flaw results from the assumption made by developers that control flow execution terminates
after a sendRedirect call, the recommendation would be to terminate the flow using a “return”
statement.

Review criteria

Check if there is an appropriate logic to terminate the execution flow is present in case of an error
condition. Check for similar instances of insecure security controls built using “sendRedirect” method.

References:

http://artechtalks.blogspot.in/

http://packetstormsecurity.com/files/119129/Insecure-Authentication-Control-In-J2EE.html

2.2.1.6 A Risk based approach to code review (Needs Content)

Lorem Ipsum

2.2.2 Crawling Code

Crawling code is the practice of scanning a code base of the review target in question. It is, in effect,
looking for key pointers wherein possible security vulnerability might reside. Certain APIs are related
to interfacing to the external world or file IO or user management, which are key areas for an attacker
to focus on. In crawling code we look for APIs relating to these areas. We also need to look for
business logic areas, which may cause security issues, but generally these are bespoke methods

OWASP CODE REVIEW GUIDE - V2.0 44

which have bespoke names and can not be detected directly, even though we may touch on certain
methods due to their relationship with a certain key API.

We also need to look for common issues relating to a specific language; issues that may not be
security related but which may affect the stability/availability of the application in the case of
extraordinary circumstances. Other issues when performing a code review are areas such a simple
copyright notice in order to protect one’s intellectual property. Generally these issues should be part of
your companies Coding Guidelines, and should be enforceable during a code review (i.e. a reviewer
can fail code review because the code violates something in the Coding Guidelines, regardless of
whether or not the code would work in its current state, and regardless on whether the original
developer agrees or not).

Crawling code can be done manually or in an automated fashion using automated tools. Crawling
code manually is probably not effective, as (as can be seen below) there are plenty of indicators,
which can apply to a language. Tools as simple as grep or wingrep can be used. Other tools are
available which would search for key words relating to a specific programming language. If you are
using a particular review tool, which allows you to specify strings to be highlighted in a review (e.g.
Python based review tools using pygments syntax highlighter, or an in-house tool for which you can
change the source code) then you could add the relevant string indicators from the lists below and
have them highlighted to reviewers automatically.

The following sections shall cover the function of crawling code for Java/J2EE, .NET and Classic ASP.
This section is best used in conjunction with the transactional analysis section also detailed in this
guide.

- Searching for Key Indicators

The basis of the code review is to locate and analyse areas of code that may have application security
implications. Assuming the code reviewer has a thorough understanding of the code, what it is
intended to do, and the context in which it is to be used, firstly one needs to sweep the code base for
areas of interest.

This can be done by performing a text search on the code base looking for keywords relating to APIs
and functions. Below is a guide for .NET framework 1.1 & 2.0

2.2.2.1 Searching for Code in .NET

Firstly one needs to be familiar with the tools one can use in order to perform text searching, following
this one needs to know what to look for.

In this section we will assume you have a copy of Visual Studio (VS) .NET at hand. VS has two types
of search "Find in Files" and a cmd line tool called Findstr.

OWASP CODE REVIEW GUIDE - V2.0 45

To start off, one could scan thorough the code looking for common patterns or keywords such as
"User", "Password", "Pswd", "Key", "Http", etc... This can be done using the "Find in Files" tool in VS
or using findstring as follows:

findstr /s /m /i /d:c:\projects\codebase\sec "http" *.*

- HTTP Request Strings

Requests from external sources are obviously a key area of a security code review. We need to
ensure that all HTTP requests received are data validated for composition, max and min length, and if
the data falls with the realms of the parameter white-list. Bottom-line is this is a key area to look at and
ensure security is enabled.

request.ac
cepttypes

request.brows
er

request.fil
es

request.heade
rs

request.httpmetho
d

request.item

request.qu
erystring

request.form request.co
okies

request.certifi
cate

request.rawurl request.server
variables

request.ur
l

request.urlrefe
rrer

request.us
eragent

request.userla
nguages

request.IsSecureC
onnection

request.Total
Bytes

request.Bi
naryRead

InputStream HiddenFie
ld.Value

TextBox.Text recordSet

- HTML Output

Here we are looking for responses to the client. Responses which go unvalidated or which echo
external input without data validation are key areas to examine. Many client side attacks result from
poor response validation. XSS relies on this somewhat.

response.write <% = HttpUtility HtmlEncode UrlEncode

OWASP CODE REVIEW GUIDE - V2.0 46

innerText innerHTML

- SQL & Database

Locating where a database may be involved in the code is an important aspect of the code review.
Looking at the database code will help determine if the application is vulnerable to SQL injection. One
aspect of this is to verify that the code uses either SqlParameter, OleDbParameter, or
OdbcParameter(System.Data.SqlClient). These are typed and treat parameters as the literal value
and not executable code in the database.

<link to SQL injection section>

exec sp_ select from insert update delete from where delete

execute sp_ exec xp_ exec @ execute
@

executestatement executeSQL

setfilter executeQuery GetQuery
ResultIn
XML

adodb sqloledb sql server

driver Server.CreateObject .Provider .Open ADODB.recordset New
OleDbConnection

ExecuteReader DataSource SqlCom
mand

Microsoft
.Jet

SqlDataReader ExecuteReader

GetString SqlDataAdapter Comman
dType

StoredPro
cedure

System.Data.sql

- Cookies

OWASP CODE REVIEW GUIDE - V2.0 47

Cookie manipulation can be key to various application security exploits, such as session
hijacking/fixation and parameter manipulation. One should examine any code relating to cookie
functionality, as this would have a bearing on session security.

System.Net.Cookie HTTPOnly document.cookie

- HTML Tags

Many of the HTML tags below can be used for client side attacks such as cross site scripting. It is
important to examine the context in which these tags are used and to examine any relevant data
validation associated with the display and use of such tags within a web application.

HtmlEncode URLEncode <applet> <frameset> <embed> <frame> <html>

<iframe> <style> <layer> <ilayer> <meta> <object
>

<frame
security

<iframe
security

<body>

- Input Controls

The input controls below are server classes used to produce and display web application form fields.
Looking for such references helps locate entry points into the application.

htmlcontrols.htmlinp
uthidden

webcontrols.hid
denfield

webcontrols.hype
rlink

webcontrols.textb
ox

webcontrol
s.label

webcontrols.linkbutt
on

webcontrols.list
box

webcontrols.chec
kboxlist

webcontrols.drop
downlist

- WEB.Config

OWASP CODE REVIEW GUIDE - V2.0 48

The .NET Framework relies on .config files to define configuration settings. The .config files are text-
based XML files. Many .config files can, and typically do, exist on a single system. Web applications
refer to a web.config file located in the application’s root directory. For ASP.NET applications,
web.config contains information about most aspects of the application’s operation.

requestEnco
ding

responseEnco
ding

trace authoriza
tion

compilation CustomErrors

httpCookies httpHandlers httpRuntime sessionSt
ate

maxRequestLe
ngth

debug

forms
protection

appSettings ConfigurationSet
tings

appSettin
gs

connectionStri
ngs

authentication
mode

allow deny credentials identity
imperson
ate

timeout remote

- Global.asax

Each application has its own Global.asax if one is required. Global.asax sets the event code and
values for an application using scripts. One must ensure that application variables do not contain
sensitive information, as they are accessible to the whole application and to all users within it.

Application_OnAuthenticateRe
quest

Application_OnAuthorizeRe
quest

Session_OnSt
art

Session_On
End

- Logging

Logging can be a source of information leakage. It is important to examine all calls to the logging
subsystem and to determine if any sensitive information is being logged. Common mistakes are
logging userID in conjunction with passwords within the authentication functionality or logging
database requests which may contains sensitive data.

OWASP CODE REVIEW GUIDE - V2.0 49

log4net Console.WriteLine System.Diagnostics.Debug System.Diagnostics.Trace

- Machine.config

Its important that many variables in machine.config can be overridden in the web.config file for a
particular application.

validateRequest enableViewState enableViewStateMac

- Threads and Concurrency

Locating code that contains multithreaded functions. Concurrency issues can result in race conditions
which may result in security vulnerabilities. The Thread keyword is where new threads objects are
created. Code that uses static global variables that hold sensitive security information may cause
session issues. Code that uses static constructors may also cause issues between threads. Not
synchronizing the Dispose method may cause issues if a number of threads call Dispose at the same
time, this may cause resource release issues.

Thread Dispose

- Class Design

Public and Sealed relate to the design at class level. Classes that are not intended to be derived from
should be sealed. Make sure all class fields are Public for a reason. Don't expose anything you don't
need to.

Public Sealed

- Reflection, Serialization

Code may be generated dynamically at runtime. Code that is generated dynamically as a function of
external input may give rise to issues. If your code contains sensitive data, does it need to be
serialized?

OWASP CODE REVIEW GUIDE - V2.0 50

Serializable AllowPartiallyTrustedCallersAtt
ribute

GetObject
Data

StrongNameIdentityPermis
sion

StrongNameIde
ntity

System.Reflection

- Exceptions & Errors

Ensure that the catch blocks do not leak information to the user in the case of an exception. Ensure
when dealing with resources that the finally block is used. Having trace enabled is not great from an
information leakage perspective. Ensure customized errors are properly implemented.

catch finally trace enabled customErrors mode

- Crypto

If cryptography is used then is a strong enough cipher used, i.e. AES or 3DES? What size key is
used? The larger the better. Where is hashing performed? Are passwords that are being persisted
hashed? They should be. How are random numbers generated? Is the PRNG "random enough"?

RNGCryptoServiceProvider SHA MD5 base64 xor

DES RC2 System.R
andom

Random System.Security.Cry
ptography

- Storage

If storing sensitive data in memory, I recommend one uses the following.

SecureString ProtectedMemory

- Authorization, Assert & Revert

OWASP CODE REVIEW GUIDE - V2.0 51

Bypassing the code access security permission? Not a good idea. Also below is a list of potentially
dangerous permissions such as calling unmanaged code, outside the CLR.

.RequestMinimum .RequestOptional Assert Debug.Assert

CodeAccessPermission ReflectionPermissio
n.MemberAccess

SecurityPermission.Co
ntrolAppDomain

SecurityPermission.U
nmanagedCode

SecurityPermission.SkipV
erification

SecurityPermission.
ControlEvidence

SecurityPermission.Seri
alizationFormatter

SecurityPermission.C
ontrolPrincipal

SecurityPermission.Contro
lDomainPolicy

SecurityPermission.
ControlPolicy

- Legacy Methods

Some standard functions that should be checked in any context include the following.

printf strcpy

2.2.2.2 Searching for Code in Java

- Input and Output Streams

These are used to read data into one’s application. They may be potential entry points into an
application. The entry points may be from an external source and must be investigated. These may
also be used in path traversal attacks or DoS attacks

<are some of these a bit wide ranging? java.io?>

java.io java.util.zip java.util.jar FileInputStream ObjectInputStream

FilterInputStrea
m

PipedInputStream SequenceInputSt
ream

StringBufferInputStream BufferedReader

ByteArrayInputS CharArrayReader File ObjectInputStream PipedInputStream

OWASP CODE REVIEW GUIDE - V2.0 52

tream

StreamTokenizer getResourceAsStre
am

java.io.FileRead
er

java.io.FileWriter java.io.RandomAcce
ssFile

java.io.File java.io.FileOutputS
tream

mkdir renameTo

- Servlets

These API calls may be avenues for parameter, header, URL, and cookie tampering, HTTP Response
Splitting and information leakage. They should be examined closely as many of such APIs obtain the
parameters directly from HTTP requests.

javax.servlet.* getParameterNam
es

getParameterValu
es

getParameter getParameterMap

getScheme getProtocol getContentType getServerNam
e

getRemoteAddr

getRemoteHost getRealPath getLocalName getAttribute getAttributeNames

getLocalAddr getAuthType getRemoteUser getCookies isSecure

HttpServletRequest getQueryString getHeaderNames getHeaders getPrincipal

getUserPrincipal isUserInRole getInputStream getOutputStre
am

getWriter

addCookie addHeader setHeader setAttribute putValue

javax.servlet.http.Coo
kie

getName getPath getDomain getComment

getMethod getPath getReader getRealPath getRequestURI

getRequestURL getServerName getValue getValueNam
es

getRequestedSession
Id

OWASP CODE REVIEW GUIDE - V2.0 53

- Cross Site Scripting

These API calls should be checked in code review as they could be a source of Cross Site Scripting
vulnerabilities.

javax.servlet.ServletOutputStream.pr
int

javax.servlet.jsp.JspWriter.print java.io.PrintWriter.print

- Response Splitting

Response splitting allows an attacker to take control of the response body by adding extra CRLFs into
headers. In HTTP the headers and bodies are separated by 2 CRLF characters, and thus if an
attackers input is used in a response header, and that input contained 2 CRLFs, then anything after
the CRLFs would be interpreted as the response body. In code review ensure you are sanitizing any
information being put into headers.

javax.servlet.http.HttpServletResponse.sendRedirect addHeader setHeader

- Redirection

Any time your application is sending a redirect response, ensure that the logic involved cannot be
manipulated by an attackers input. Especially when input is used to determine where the redirect goes
to.

sendRedirect setStatus addHeader setHeader

- SQL & Database

Searching for Java Database related code this list should help you pinpoint classes/methods which
are involved in the persistence layer of the application being reviewed.

jdbc executeQuery select insert update

delete execute executestatement createStatem java.sql.Result

OWASP CODE REVIEW GUIDE - V2.0 54

ent Set.getString

java.sql.ResultSet.g
etObject

java.sql.Statement
.executeUpdate

java.sql.Statemen
t.executeQuery

java.sql.State
ment.execute

java.sql.State
ment.addBatc
h

java.sql.Connection.
prepareStatement

java.sql.Connecti
on.prepareCall

- SSL

Looking for code which utilizes SSL as a medium for point to point encryption. The following fragments
should indicate where SSL functionality has been developed.

com.sun.net.ssl SSLContext SSLSocketFactory

TrustManagerFactory HttpsURLConnection KeyManagerFactory

- Session Management

The following APIs should be checked in code review when they control session management.

getSession invalidate getId

- Legacy Interaction

Here we may be vulnerable to command injection attacks or OS injection attacks. Java linking to the
native OS can cause serious issues and potentially give rise to total server compromise.

java.lang.Runtime.exec java.lang.Runtime.getRuntime

- Logging

We may come across some information leakage by examining code below contained in one’s
application.

OWASP CODE REVIEW GUIDE - V2.0 55

java.io.PrintStream.write log4j jLo Lumberjack MonoLog

qflog just4log log4Ant JDLabAgent

- Architectural Analysis

If we can identify major architectural components within that application (right away) it can help narrow
our search, and we can then look for known vulnerabilities in those components and frameworks:

Ajax

XMLHTTP

Struts

org.apache.struts

Spring

org.springframework

Java Server Faces (JSF)

import javax.faces

Hibernate

import org.hibernate

Castor

org.exolab.castor

JAXB

javax.xml

JMS

JMS

- Ajax and JavaScript

Look for Ajax usage, and possible JavaScript issues:

document.write eval document.cookie

OWASP CODE REVIEW GUIDE - V2.0 56

window.location document.URL window.createRequest

2.2.2.3 Searching for Code in Classic ASP

- Inputs

These API in ASP are commonly used to retrieve the input from the request. Therefore code review
should ensure these requests (and dependent logic) cannot be manipulated by an attacker.

Request Request.QueryString Request.Form

Request.ServerVariables Query_String hidden

include .inc

- Output

These APIs are used by ASP to write the response body, that will be sent to the end user. Code
review should check these requests are used in a proper manner and no sensitive information can be
returned.

Response.Write Response.BinaryWrite <%=

- Cookies

Cookies can be a source of information leakage.

.cookies

- Error Handling

<link to error handling section> Ensure errors in your application are handled properly, otherwise
an attacker could use error conditions to manipulate you application.

OWASP CODE REVIEW GUIDE - V2.0 57

err. Server.GetLastError On Error Resume Next

On Error GoTo 0

- Information in URL

These APIs are used to extract information from the URL object in the request. Code review should
check that the information extracted from the URL is sanitized.

location.href location.replace method="GET"

- Database

These APIs can be used to interact with a database, which can lead to SQL attacks. Code review can
check these API calls use sanitized input.

commandText select from update

insert into delete from where exec

execute .execute .open

ADODB. commandtype ICommand

IRowSet

- Session

These API calls can control session within ASP applications.

session.timeout session.abandon session.removeall

- DOS Prevention

The following ASP APIs can help prevent DOS attacks against your application.

OWASP CODE REVIEW GUIDE - V2.0 58

server.ScriptTimeout IsClientConnected

- Logging

Leaking information to a log can be of use to an attacker; hence the following API call can be checked
in code review to ensure no sensitive information is being written to logs.

WriteEntry

- Redirection

Do not allow attacker input to control when and where rejection occurs.

Response.AddHeader Response.AppendHeader Response.Redirect

Response.Status Response.StatusCode Server.Transfer

Server.Execute

2.2.2.4 Searching for Code in Javascript and AJAX

Ajax and JavaScript have brought functionality back to the client side, which has brought a number of
old security issues back to the forefront. The following keywords relate to API calls used to manipulate
user state or the control the browser. The event of AJAX and other Web 2.0 paradigms has pushed
security concerns back to the client side, but not excluding traditional server side security concerns.

Look for Ajax usage, and possible JavaScript issues:

eval document.cookie document.referrer document.attachEvent

document.body document.body.innerHt
ml

document.body.innerT
ext

document.close

OWASP CODE REVIEW GUIDE - V2.0 59

document.create document.execComman
d

document.forms[0].act
ion

document.location document.open document.URL document.URLUnencode
d

document.write document.writeln location.hash location.href

location.search window.alert window.attachEvent window.createRequest

window.execScript window.location window.open window.navigate

window.setInterval window.setTimeout XMLHTTP

2.2.2.5 Searching for Code in C++ and Apache

Commonly when a C++ developer is building a web service they will build a CGI program to be
invoked by a web server (though this is not efficient) or they will use the Apache httpd framework and
write a handler or filter to process HTTP requests/responses. To aid these developers, this section
deals with generic C/C++ functions used when processing HTTP input and output, along with some of
the common Apache APIs that are used in handlers.

- Legacy C/C++ Methods

For any C/C++ code interacting with web requests, code that handles strings and outputs should be
checked to ensure the logic does not have any flaws.

exec sprintf snprintf fprintf

printf stdio FILE strcpy

strncpy strcat cout cin

cerr system popen stringstream

OWASP CODE REVIEW GUIDE - V2.0 60

fstringstream malloc free

- Request Processing

When coding within Apache, the following APIs can be used to obtain data from the HTTP request
object.

headers_in ap_read_request post_read_request

- Response Processing

Depending on the type of response you wish to send to the client, the following Apache APIs can be
used.

headers_out ap_rprintf ap_send_error_response

ap_send_fd ap_vprintf

- Cookie Processing

Cookie can be obtained from the list of request headers, or from specialized Apache functions.

headers_in headers_out ap_cookie_write

ap_cookie_write2 ap_cookie_read ap_cookie_check_string

- Logging

Log messages can be implemented using custom loggers included in your module (e.g. log4cxx,
boost::log, etc), by using the Apache provided logging API, or by simply writing to standard out or
standard error.

cout cerr ap_open_stderr_log

OWASP CODE REVIEW GUIDE - V2.0 61

ap_log_error ap_log_perror ap_log_rerror

ap_error_log2stderr

- HTML Encoding

When you have got a handle for the HTML input or output in the C/C++ handler, the following methods
can be used to ensure/check HTML encoding.

ap_unescape_all ap_unescape_url ap_unescape_url_keep2f

ap_unescape_urlencoded ap_escape_path_segment

2.2.3 Code Reviews and Compliance (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 62

3 Reviewing by Technical Control (Missing Content)
We need to add content here to introduce the section.

3.1 Reviewing code for Authentication controls (Needs Content)

Lorem Ipsum

3.1.1 Forgot Password

Overview

If your web site needs to have user authentication then most likely it will require user name and
password to authenticate user accesses. However as computer system have increased in complexity,
so has authenticating users has also increased. As a result the code reviewer needs to be aware of
the benefits and drawbacks of user authentication referred to as “Direct Authentication” pattern in this
section. This section is going to emphasis design patterns for when users forget user id and or
password and what the code reviewer needs to consider when reviewing how user id and passwords
can be retrieved when forgotten by the user and how to do this in a secure manner.

General considerations

Notified user by (phone sms, email) an email where the user has to click a link in the email that takes
them to your site and ask the user to enter a new password.

Ask user to enter login credentials they already have (Facebook, Twitter, Google, Microsoft Live,
OpenID etc) to validate user before allowing user to change password.

Send notification to user to confirm register and or forgot password.

Send notifications that account information has been changed for registered email. Set appropriate
time out value. I.e. If user does not respond to email within 48 hours then user will be frozen out of
system until user re-affirms password change.

- General Considerations

OWASP CODE REVIEW GUIDE - V2.0 63

1. The identity and shared secret/password must be transferred using encryption to provide data
confidentiality. HTTPS should also be used but in itself should not be the only mechanism used for
data confidentiality.

2. A shared secret can never be stored in clear text format, even if only for a short time in a message
queue.

3. A shared secret must always be stored in hashed or encrypted format in a database.

4. The organization storing the encrypted shared secret does not need the ability to view or decrypt
users passwords. User password must never be sent back to a user.

5. If the client must cache the username and password for presentation for subsequent calls to a Web
service then a secure cache mechanism needs to be in place to protect user name and password.

6. When reporting an invalid entry back to a user, the username and or password should no be
identified as being invalid. User feed back/error message must consider both user name and
password as one item “user credential”. I.e. “The username or password you entered is incorrect.”

- AntiPatterns: Forget password.

1. Validate all fields have been completed correctly

 1. Avoid password fields being wiped out.

 2. Retain user’s email address between log-in and “Forgotten password” page.

2. CAPTCHA should be used as last resort or not all. CAPTCHA can be hacked.

3. OpenID does have security implications (e.i. if a hacker gains access to your OpenID, the hacker
now potentially have access to all the sites you use with that OpenID.

4. Make sure security questions don’t ask for information that can easily be found on social sites like
Facebook. E.I. “Mother’s maiden name”.

5. Do not mask user input of password. Show character until next character is typed in. Masking every
character only provides security if someone is standing directly over you.

OWASP CODE REVIEW GUIDE - V2.0 64

6. Do not send a onetime password to allow user to reset his/her password. This password would be
stored even if for a short time in clear text and email storage is not the place to store passwords.

7. Do not have an error message saying account does not exists for this email address. This could be
used to find out if user has an account for a porn or another site if hacker knows users email address.

8. Important: Do not allow listing of users. The password reset tokens should be uniquely generated,
and be cryptographically secure random. Otherwise a listing of users can be generated from forget
password feature.

3.1.2 Authentication (Needs Content)

Lorem Ipsum

3.1.3 CAPTCHA

CAPTCHA (an acronym for "Completely Automated Public Turing test to tell Computers and Humans
Apart".) is an access control technique.

CAPTCHA is used to prevent automated software from gaining access to webmail services like Gmail,
Hotmail and Yahoo to create e-mail spam, automated postings to blogs, forums and wikis for the
purpose of promotion (commercial, and or political) or harassment and vandalism and automated
account creation.

CAPTCHA’s have proved useful and their use has been upheld in court. Circumventing CAPTCHA
has been upheld in US Courts as a violation Digital Millennium Copyright Act anti-circumvention
section 1201(a)(3) and European Directive 2001/29/EC.

Code review of CAPTCHA’s the reviewer needs to pay attention to the following rules to make sure
the CAPTCHA is built with strong security principals.

1. Do not allow the user to enter multiple guesses after an incorrect attempt.

OWASP CODE REVIEW GUIDE - V2.0 65

2. The software designer and code review need to understand the statics of guessing. I.e. One
CAPTCHA design shows four (3 cats and 1 boat) pictures, User is requested to pick the picture where
it is not in the same category of the other pictures. Automated software will have a success rate of
25% by always picking the first picture. Second depending on the fixed pool of CAPTCHA images
over time an attacker can create a database of correct answers then gain 100% access.

3. Consider using a key being passed to the server that uses a HMAC (Hash-based message
authentication code) the answer.

Text base CAPTCHA’s should adhere to the following security design principals...

1. Randomize the CAPTCHA length: Don’t use a fixed length; it gives too much information to the
attacker.

2. Randomize the character size: Make sure the attacker can’t make educated guesses by using
several font sizes / several fonts.

3. Wave the CAPTCHA: Waving the CAPTCHA increases the difficulty for the attacker.

4. Don’t use a complex charset: Using a large charset does not improve significantly the CAPTCHA
scheme’s security and really hurts human accuracy.

5. Use anti-recognition techniques as a means of strengthening CAPTCHA security: Rotation, scaling
and rotating some characters and using various font sizes will reduce the recognition efficiency and
increase security by making character width less predictable.

6. Keep the line within the CAPTCHAs: Lines must cross only some of the CAPTCHA letters, so that it
is impossible to tell whether it is a line or a character segment.

OWASP CODE REVIEW GUIDE - V2.0 66

7. Use large lines: Using lines that are not as wide as the character segments gives an attacker a
robust discriminator and makes the line anti-segmentation technique vulnerable to many attack
techniques.

CAPTCHA does create issues for web sites that must be ADA (Americans with Disabilities Act of
1990) compliant. Code reviewer may need to be aware of web accessibilities and security to review
the CAPTCHA implementation where web site is required to be ADA complaint by law.

Examples of a CAPTCHA

References:

1. UNITED STATES of AMERICA vs KENNETH LOWSON, KRISTOFER KIRSCH, LOEL
STEVENSON Federal Indictment. February 23, 2010. Retrieved 2012-01-02.

2. http://www.google.com/recaptcha/captcha [[1]]

3. http://www.ada.gov/anprm2010/web%20anprm_2010.htm [[2]]

4. Inaccessibility of CAPTCHA - Alternatives to Visual Turing Tests on the Web
http://www.w3.org/TR/turingtest/ [[3]]

- Notes from Renchie Joan...

OWASP CODE REVIEW GUIDE - V2.0 67

If we can add a small section like, what are the uses of CAPTCHA when mapped to vulnerability
categories. eg,: Since CAPTCHA is basically a challenge-response process, it can be used an
effective mechanism against XSRF (CSRF) attack.

Or in preventing Dictionary attacks in a login screen.

Please let me know if you also think these are relevant and fit in the scope of the guide. If yes, then
we will discuss and work on it.

3.1.4 Out of Band Considerations (Needs Content)

Lorem Ipsum

3.2 Reviewing code for Authorization weakness

- Authorisation in .NET MVC 4

The usage of filters is recommended when authorization is being implemented in MVC 4 .NET MVC 3
introduced a method in global.asax called RegisterGlobalFilters.The can be used to DEFAULT DENY
access to URL's in the application.

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)

 {

 filters.Add(new HandleErrorAttribute());

 filters.Add(new System.Web.Mvc.AuthorizeAttribute());

 }

Is is recommended when reviewing MVC3/4 .NET to take a look at how authorization is being
implemented. The line above, filters.Add(newSystem.Web.Mvc.AuthorizeAttribute()); pretty much
default denies access to any request without a valid session. If this is implemented we may need to

OWASP CODE REVIEW GUIDE - V2.0 68

provide unauthorized access to certain pages such as a registration page, public welcome page or a
login page. How do we do this?

AllowAnonymous is used to provide access to public pages with no valid session required. The code
may look like this:

 [AllowAnonymous]

 public ActionResult LogMeIn(string returnUrl)

One must be careful that the pages which have AllowAnonymous enabled are actually designed for
public consumption.

3.2.1 Checking authorization upon every request

Authorization is as important as authentication. Every functionality as well as every data access
should be authorized. For data access authorization, application logic should check if the data belongs
to the authenticated user, or if the user should be able to access that data.

Functionality authorization can be achieved through access control lists on small systems (such as an
embedded system such as a router), but not via ACLs in an enterprise application. The complexity of
an authorization model cannot be implemented by ACLs, and will definitely lead to human-errors that
put the integrity of the system at risk.

- Role Based Access Control for Functionality

RBAC means assigning users to roles, and then roles to permissions. This is a more logical modeling
of actual system authorization. On top of that, allows administrators to fine-grain and re-check role-
permission assignments, and make sure that every role has exactly the permissions it is supposed to
have (and nothing more or less). Then assigning users to roles will yield minimal human-error.

There are 4 levels of RBAC standardized by NIST, level 3 and 4 are almost never found. Level 2
introduces role hierarchy on top of level 1 (the simple RBAC), and has a better matching to enterprise
model. Extended level 2 introduces hierarchical permissions as well, as one permission per
functionality is required in a system, and in big systems, the number of available permissions soon

OWASP CODE REVIEW GUIDE - V2.0 69

introduce human-errors. Depending on the size of the application, usage of different levels of RBAC
systems is strongly advised.

Unfortunately there are not many fast enough implementations of the RBAC model, since it is very
complex within. OWASP RBAC project introduces a very fast NIST Level 2 Extended RBAC
implementation.

- Authorization Checklist

1. Every entry point should be authorized. Every functionality that an application performs, is a
function, and should be authorized. Authorization should be check for every dynamic (generated)
application access.

2. Every function should be authorized. Changing password, logging out, editing a certain record, and
etc. are sample functions. Everything should be authorized.

3. Authorization checks should be fast and easy. Requiring multiple lines of complicated code for a
single authorization is not recommended.

4. Authorization can be forced, or checked (depending on tolerance of application). For example:

 if ($RBAC->hasAuthority($CurrentUser,"/users/passwords/change")) ShowChangePasswordLink();
//checked authority for visual manipulation in a view

 $RBAC->authorize("/users/passwords/change"); //force authorization on a user management model

 ChangePassword(...);

In case that a forced authorization fails, a HTTP 403 not authorized page can be shown. If the user is
not logged in yet, a login page with not authorized error is more appropriate.

3.2.2 Reducing the attack surface (Needs Content)

OWASP CODE REVIEW GUIDE - V2.0 70

Lorem Ipsum

3.2.3 SSL/TLS Implementations

Ensuring SSL with MVC.NET When reviewing MVC .NET is is important to make suer the
application transmitts and received over a secure link. It is not recommended to only have the login
pages over SSL and then default to clear. We also need to protect our session cookie as it is pretty
much as useful as users credentials.

 public static void RegisterGlobalFilters(GlobalFilterCollection filters)

 {

 filters.Add(new RequireHttpsAttribute());

 }

In the global.asax file we can review the RegisterGlobalFilters method. The attribute
RequireHttpsAttribute() can be used to make sure the application runs over SSL/TLS It is
recommended that this is enabled for SSL/TLS sites.

3.2.4 Reviewing code for session handling

General Considerations

1. If the system is critical, Session IDs should be cryptographically secure (i.e non determinable)

2. In big systems, sessions should not be stored in files (default PHP behavior). They should be
stored in memory or in databases, to prevent DOS attacks on new sessions.

3. As soon as a confidential or higher session is formed for a user, they should have all their traffic
transmitted through SSL. SessionID is almost as important as passwords.

OWASP CODE REVIEW GUIDE - V2.0 71

4. A policy should be defined and forced on an application, to define the number of sessions a user
can have. (One, Many, etc.) If this is left vague, it usually leads to security flaws.

5. Sessions require a general timeout, which happens at a certain time after creation (usually a week),
and an idle timeout, which happens after a certain time of the session being idle (usually 30 minutes).

6. The idle timeout can be changed depending on the nature of the application (smaller for banking
applications, larger for email composing clients)

7. The idle timeout doesn't have to be precise. The application can check for it every 2 minutes, and
flush all timed-out idle sessions.

8. Sessions should be rolled when they are elevated. Rolling means that the session-id should be
changed, and the session information should be transferred to the new id.

9. Sessions need to be cleared out on logout. It is a good idea to dispose of the session-id on logout
as well.

Session Attacks

OWASP CODE REVIEW GUIDE - V2.0 72

Generally three sorts of session attacks are possible:

1. Session Hijacking: stealing someone's session-id, and using it to impersonate that user.

2. Session Fixation: setting someone's session-id to a predefined value, and impersonating them
using that known value

3. Session Elevation: when the importance of a session is changed, but its ID is not.

- Session Hijacking

1. Mostly done via XSS attacks, mostly can be prevented by HTTP-Only session cookies (unless
Javascript code requires access to them).

2. It’s generally a good idea for Javascript not to need access to session cookies, as preventing all
flavors of XSS are usually the toughest part of hardening a system.

3. Session-ids should be placed inside cookies, and not in URLs. URL informations are stored in
browser's history, and HTTP Referrers, and can be accessed by attackers.

4. Geographical location checking can help detect simple hijacking scenarios. Advanced hijackers use
the same IP (or range) of the victim.

5. An active session should be warned when it is accessed from another location.

6. An active users should be warned when s/he has an active session somewhere else (if the policy
allows multiple sessions for a single user).

- Session Fixation

OWASP CODE REVIEW GUIDE - V2.0 73

1. If the application sees a new session-id that is not present in the pool, it should be rejected and a
new session-id should be advertised. This is the sole method to prevent fixation.

2. All the session-ids should be generated by the application, and then stored in a pool to be checked
later for. Application is the sole authority for session generation.

- Session Elevation

1. Whenever a session is elevated (login, logout, certain authorization), it should be rolled.

2. Many applications create sessions for visitors as well (and not just authenticated users). They
should definitely roll the session on elevation, because the user expects the application to treat them
securely after they login.

3. When a down-elevation occurs, the session information regarding the higher level should be
flushed.

3.2.5 Reviewing client side code (Needs Content)

Lorem Ipsum

3.2.5.1 Javascript

Three points of validity are required for Javascript codes:

1. Have all the logic server-side, Javascript is only the butler

2. Check for all sorts of XSS DOM Attacks

3. Check for insecure Javascript libraries and update them frequently.

OWASP CODE REVIEW GUIDE - V2.0 74

Javascript uses strings to create DOM elements. This can lead to XSS attacks. All input should be
sanitized before being converted to DOM objects.

Javascript libraries are not prone to attack. Most of them have flaws in them, recent jQuery flaw
(evaluating the document.location.hash, allowing XSS to be embedded after # in location) caused
Drupal (which is generally a safe system) to allow admin user creation for attackers!

3.2.5.2 JSON (Needs Content)

Lorem Ipsum

3.2.5.3 Content Security Policy (Needs Content)

Lorem Ipsum

3.2.5.4 “Jacking”/Framing

In order to help prevent clickjacking or UI redress attacks one of the following headers should be in all
HTTP response headers.

X-Frame-Options HTTP Response Header

// to prevent all framing of this content response.addHeader("X-FRAME-OPTIONS", "DENY");

// to allow framing of this content only by this site response.addHeader("X-FRAME-OPTIONS",
"SAMEORIGIN");

// to allow framing from a specific domain response.addHeader("X-FRAME-OPTIONS", "ALLOW-
FROM X");

Older browsers dont usderstand the above headers. In order to help prevent regress attacks we may
see the following code on the client side files.

OWASP CODE REVIEW GUIDE - V2.0 75

 Legacy Browser Clickjacking Defense

 <style id="antiCJ">body{display:none !important;}</style>

 <script type="text/javascript">

 if (self === top)

 { var antiClickjack = document.getElementByID("antiCJ");

 antiClickjack.parentNode.removeChild(antiClickjack)

 }

 else { top.location = self.location; }

 </script>

3.2.5.5 HTML 5? (Needs Content)

Lorem Ipsum

3.2.5.6 Browser Defenses Policy (Needs Content)

Lorem Ipsum

3.2.5.7 Etc… (Needs Content)

Lorem Ipsum

3.2.6 Review code for input validation (Needs Content)

Lorem Ipsum

3.2.6.1 Regex Gotchas (Needs Content)

Lorem Ipsum

3.2.6.2 ESAPI (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 76

3.2.7 Review code for contextual encoding

When untrusted data is to be rendered to the UI it MUST under both input validation and encoding.
Encoding is of significant importance given it can protect the user from client side scripting attacks.
XSS (Cross-Site-Scripting) attacks may consist of exploiting or breaching a users system:

-Session Hijacking

–Site Defacement

–Network Scanning

–Undermining CSRF Defenses

–Site Redirection/Phishing

–Load of Remotely Hosted Scripts

–Data Theft

–Keystroke Logging

The following is a suggested encoding matrix. When reviewing code is is important the untrusted data
undergoes one of the following encoding schemes depending on the context of where is data sits on
the page.

3.2.7.1 HTML Attribute

HTML Attribute Encoding: HTML attributes may contain untrusted data. It is important to determine if
any ot the HTML attributes on a given page contains data from outside the trust boundary.

Some HTML attributes are considered safeer than others such as

align, alink, alt, bgcolor, border, cellpadding, cellspacing, class, color, cols, colspan, coords, dir, face,
height, hspace, ismap, lang, marginheight, marginwidth, multiple, nohref, noresize, noshade, nowrap,
ref, rel, rev, rows, rowspan, scrolling, shape, span, summary, tabindex, title, usemap, valign, value,
vlink, vspace, width

when reviewing code for XSS we need to look for HTML attributes such as the folloiwng

OWASP CODE REVIEW GUIDE - V2.0 77

 <input type="text" name="fname" value="UNTRUSTED DATA">

Attacks may take the following format:

 "><script>/* bad stuff */</script>

- What is Attribute encoding?

HTML attribute encoding replaces a subset of characters that are important to prevent a string of
characters from breaking the attribute of an HTML element.

We replace ", &, and < with ", &, and >.

This is because the nature of attributes, the data they contain, and how they are parsed and
interpreted by a browser or HTML parser is different than how an HTML document and its elements
are read.

[XSS Prevention CheatSheet]: Except for alphanumeric characters, escape all characters with ASCII
values less than 256 with the &#xHH; format (or a named entity if available) to prevent switching out
of the attribute. The reason this rule is so broad is that developers frequently leave attributes
unquoted. Properly quoted attributes can only be escaped with the corresponding quote. Unquoted
attributes can be broken out of with many characters, including [space] % * + , - / ; < = > ^ and |.

Attribute encoding may be performed in a number of ways.

HttpUtility.HtmlAttributeEncode

http://msdn.microsoft.com/en-us/library/wdek0zbf.aspx

OWASP Java Encoder Project

OWASP Java Encoder Project https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

3.2.7.2 HTML Entity

OWASP CODE REVIEW GUIDE - V2.0 78

HTML elements which contain user controlled data or data from untrusted sourced should be
reviewed for contextual output encoding. In the case of HTML entities we need to help ensure HTML
Entity Encoding is perfromed:

- Example HTML Entity containing untrusted data:

 HTML Body Context

 UNTRUSTED DATA

 OR

 <body>...UNTRUSTED DATA </body>

 OR

 <div>UNTRUSTED DATA </div>

- HTML Entity Encoding is required

 & --> &

 < --> <

 > --> >

 " --> "

 ' --> '

It is recommended to review where/if untrusted data is placed within entity objects. searching the
source code fro the following encoders may help establish if HTML entity encoding is being done in
the application and in a consistent manner.

- OWASP Java Encoder Project

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project

OWASP CODE REVIEW GUIDE - V2.0 79

 <input type="text" name="data" value="<%= Encode.forHtmlAttribute(dataValue) %>" />

- OWASP ESAPI

http://code.google.com/p/owasp-esapi-
java/source/browse/trunk/src/main/java/org/owasp/esapi/codecs/HTMLEntityCodec.java

 String safe = ESAPI.encoder().encodeForHTML(request.getParameter("input"));

- PHP

http://php.net/manual/en/function.htmlentities.php

- .NET

http://msdn.microsoft.com/en-us/library/w3te6wfz.aspx

3.2.7.3 Javascript Parameters

Untrusted data, if being placed inside a Javascript function/code requires validation. Unvalidated data
may break out of the data context and wind up being executed in the code context on a users
browser.

- Examples of exploitation points (sinks) which are worth reviewing for:

 <script>var currentValue='UNTRUSTED DATA';</script>

 <script>someFunction('UNTRUSTED DATA');</script>

 attack: ');/* BAD STUFF */

- Potential solutions:

OWASP HTML sanatiser Project

OWASP JSON Sanitizer Project

OWASP CODE REVIEW GUIDE - V2.0 80

ESAPI javascript escaping can be call in this manner:

 String safe = ESAPI.encoder().encodeForJavaScript(request.getParameter("input"));

- Please note there are some JavaScript functions that can never safely use untrusted data as
input - EVEN IF JAVASCRIPT ESCAPED!

For example:

 <script>

 window.setInterval('...EVEN IF YOU ESCAPE UNTRUSTED DATA YOU ARE XSSED HERE...');

 </script>

- eval()

 var txtField = "A1";

 var txtUserInput = "'test@google.ie';alert(1);";

 eval("document.forms[0]." + txtField + ".value =" + A1);

- jquery

 var txtAlertMsg = "Hello World: ";

 var txtUserInput = "test<script>alert(1)<\/script>";

 $("#message").html(txtAlertMsg +"" + txtUserInput + "");

 Safe usage (use text, not html)

 $("#userInput").text("test<script>alert(1)<\/script>");<-- treat user input as text

Nested Contexts Best to avoid such nested contexts: an element attribute calling a Javascript
function etc These contexts can really mess with your mind.

 <div onclick="showError('<%=request.getParameter("errorxyz")%>')" >An error occurred</div>

OWASP CODE REVIEW GUIDE - V2.0 81

 Here we have a HTML attribute(onClick) and within a nested Javascript function call
(showError).

When the browser processes this it will first HTML decode the contents of the onclick attribute. It will
pass the results to the JavaScript Interpreter. So we have 2 contextx here...HTML and Javascript (2
browser parsers). We need to apply “layered” encoding in the RIGHT order:

1) JavaScript encode

2) HTML Attribute Encode so it "unwinds" properly and is not vulnerable.

<div onclick="showError

 ('<%= Encoder.encodeForHtml(Encoder.encodeForJavaScript(request.getParameter("error")%>')))"

 >An error occurred</div>

3.2.7.4 JQuery (Needs Content)

Lorem Ipsum

3.2.8 Reviewing file and resource handling code (Needs Content)

Lorem Ipsum

3.2.9 Resource Exhaustion - error handling (Needs Content)

Lorem Ipsum

3.2.9.1 Native Calls (Needs Content)

Lorem Ipsum

3.2.10 Reviewing logging code - Detective Security (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 82

3.2.11 Reviewing Error handling and Error messages

Error Handling

Proper error handling is important in two ways: <are these the only 2 ways?>

1. It may affect the state of the application

The initial failure to prevent the error may cause the application to traverse into an insecure state. This
covers the key premise of failing securely <include reference to antipatterns>, errors induced should
not leave the application in an insecure state. Resources should be locked down and released,
sessions terminated (if required), and calculations or business logic should be halted (depending on
the type of error, of course).

2. It may leak system information to a user

 1. An important aspect of secure application development is to prevent information leakage. Error
messages give an attacker great insight into the inner workings of an application. Weak error handling
also aids the attacker, as the errors returned may assist them in constructing correct attack vectors.

A generic error page for most errors is recommended, this approach makes it more difficult for
attackers to identify signatures of potentially successful attacks such as blind SQL injection using
booleanization <should include reference> or analysis of response time characteristics.

- Reviewing Error Handling

The purpose of reviewing the Error Handling code is to assure that the application fails safely under
all possible error conditions, expected and unexpected. No sensitive information is presented to the
user when an error occurs. A company coding guidelines should include sections on Error Handling
and how it should be controlled by an application suite, this will allow developers to code against this
guidelines as well as review against them.

For example, SQL injection is much tougher to successfully execute without some healthy error
messages. It lessens the attack footprint, and an attacker would have to resort to using “blind SQL
injection” which is more difficult and time consuming.

A well-planned error/exception handling guideline is important in a company for three reasons:

OWASP CODE REVIEW GUIDE - V2.0 83

1. Good error handling does not give an attacker any information which is a means to an end,
attacking the application

2. A proper centralized error strategy is easier to maintain and reduces the chance of any uncaught
errors “bubbling up” to the front end of an application.

3. Information leakage could lead to social engineering exploits, for example if the hosting companies
name is returned, or some employees name can be seen.

Regardless of whether the development language provide checked exceptions or not, reviewers
should remember:

1. Not all errors are exceptions

 1. Don’t rely on exception handling to be your only way of handling errors, handle all case statement
'default' sections, ensure all 'if' statements have their 'else' clauses covered, ensure that all exits from
a function (e.g. return statements, exceptions, etc) are covered. RAII concepts (e.g. auto pointers and
the like) are an advantage here. In languages like Java and C#, remember that errors are different
from exceptions (different hierarchy) and should be handled.

2. Catching an exception is not automatically handling it

 1. You’ve caught your exception, so how do you handle it? For many cases this should be obvious
enough, based on your business logic, but for some (e.g. out of memory, array index out of bounds,
etc) the handling many not be so simple.

3. Don’t catch more that you can handle

 1. Catch all clauses (e.g. 'catch(Exception e)' in Java & C# or 'catch(...) in C++) should be avoided
as you will not know what type of exception you are handling, and if you don't know the exception
type, how do you accurately handle it? It could be that the downstream server is not responding, or a
user may have exceeded their quota, or you may be out of memory, these issues should be handled
in different ways and thus should be caught in exception clauses that are specific.

OWASP CODE REVIEW GUIDE - V2.0 84

When an exception or error is thrown, we also need to log this occurrence. Sometimes this is due to
bad development, but it can be the result of an attack or some other service your application relies on
failing. This has to be imagined in the production scenario, if your application handles 'failing securely'
by returning an error response to the client, and since we don't want to leak information that error will
be generic, we need to have some way of identifying why the failure occurred. If your customer reports
1000's of errors occurred last night, you know that customer is going to want to know why. If you don't
have proper logging and traceability coded into your application then you will not be able to establish if
those errors were due to some attempted hack, or an error in your business logic when handling a
particular type of error.

All code paths that can cause an exception to be thrown should check for success in order for the
exception not to be thrown. This could be hard to impossible for a manual code review to cover,
especially for large bodies of code. However if there is a debug version of the code, then
modules/functions could throw relevant exceptions/errors and an automated tool can ensure the state
and error responses from the module is as expected. This then means the code reviewer has the job
of ensuring all relevant exceptions/errors are tested in the debug code.

- Centralized Error Handling

When reviewing code it is recommended that you assess the commonality within the application from
a error/exception handling perspective. Frameworks have error handling resources which can be
exploited to assist in secure programming, and such resources within the framework should be
reviewed to assess if the error handling is "wired-up" correctly. A generic error page should be used
for all exceptions if possible as this prevents the attacker from identifying internal responses to error
states. This also makes it more difficult for automated tools to identify successful attacks.

For JSP structs this could be controlled in the struts-config.xml file, a key file when reviewing the
wired-up struts environment:

<exception key=”bank.error.nowonga”

 path=”/NoWonga.jsp”

 type=”mybank.account.NoCashException”/>

Specification can be done for JSP in web.xml in order to handle unhandled exceptions. When
unhandled exceptions occur, but are not caught in code, the user is forwarded to a generic error page:

OWASP CODE REVIEW GUIDE - V2.0 85

<error-page>

 <exception-type>UnhandledException</exception-type>

 <location>GenericError.jsp</location>

</error-page>

Also in the case of HTTP 404 or HTTP 500 errors during the review you may find:

<error-page>

 <error-code>500</error-code>

 <location>GenericError.jsp</location>

</error-page>

For IIS development the 'Application_Error()' handler will allow the application to catch all uncaught
exceptions and handle them in a consistent way. Note this is important or else there is a chance your
exception information could be sent back to the client in the response.

For Apache development, returning failures from handlers or modules can prevent an further
processing by the Apache engine and result in an error response from the server. Response headers,
body, etc can be set by by the handler/module or can be configured using the "ErrorDocument"
configuration.

We should use a localized description string in every exception, a friendly error reason such as
“System Error – Please try again later”. When the user sees an error message, it will be derived from
this description string of the exception that was thrown, and never from the exception class which may
contain a stack trace, line number where the error occurred, class name, or method name.

Do not expose sensitive information like exception messages. Information such as paths on the local
file system is considered privileged information; any internal system information should be hidden
from the user. As mentioned before, an attacker could use this information to gather private user
information from the application or components that make up the app.

OWASP CODE REVIEW GUIDE - V2.0 86

Don’t put people’s names or any internal contact information in error messages. Don’t put any
“human” information, which would lead to a level of familiarity and a social engineering exploit.

- Failing Securely

There can be many different reasons why an application may fail, for example:

• The result of business logic conditions not being met.

• The result of the environment wherein the business logic resides fails.

• The result of upstream or downstream systems upon which the application depends fail.

• Technical hardware / physical failure.

Failures are like the Spanish Inquisition; popularly nobody expected the Spanish Inquisition (see
Monty Python) but in real life the Spanish knew when an inquisition was going to occur and were
prepared for it, similarly in an application, though you don't expect errors to occur your code should be
prepared for them to happen. In the event of a failure, it is important not to leave the "doors" of the
application open and the keys to other "rooms" within the application sitting on the table. In the course
of a logical workflow, which is designed based upon requirements, errors may occur which can be
programmatically handled, such as a connection pool not being available, or a downstream server
returning a failure.

Such areas of failure should be examined during the course of the code review. It should be examined
if resources should be released such as memory, connection pools, file handles etc.

The review of code should also include pinpointing areas where the user session should be
terminated or invalidated. Sometimes errors may occur which do not make any logical sense from a
business logic perspective or a technical standpoint, for example a logged in user looking to access
an account which is not registered to that user. Such conditions reflect possible malicious activity.
Here we should review if the code is in any way defensive and kills the user’s session object and
forwards the user to the login page. (Keep in mind that the session object should be examined upon
every HTTP request).

How to Locate the Potentially Vulnerable Code

OWASP CODE REVIEW GUIDE - V2.0 87

- Java

In Java we have the concept of an error object; the Exception object. This lives in the Java package
java.lang and is derived from the Throwable object. Exceptions are thrown when an abnormal
occurrence has occurred. Another object derived from Throwable is the Error object, which is thrown
when something more serious occurs. The Error object can be caught in a catch clause, but cannot be
handled, the best you can do is log some information about the Error and then re-throw it.

Information leakage can occur when developers use some exception methods, which ‘bubble’ to the
user UI due to a poor error handling strategy. The methods are as follows:

printStackTrace()

getStackTrace()

Also important to know is that the output of these methods is printed in System console, the same as
System.out.println(e) where there is an Exception. Be sure to not redirect the outputStream to
PrintWriter object of JSP, by convention called "out", for example:

printStackTrace(out);

Note it is possible to change where system.err and system.out write to (like modifing fd 1 & 2 in bash
or C/C++), using the java.lang.system package:

setErr() for the System.err field and setOut() for the System.out field.

This could be used on a process wide basis to ensure no output gets written to standard error or
standard out (which can be reflected back to the client) but instead write to a configured log file.

- .NET

OWASP CODE REVIEW GUIDE - V2.0 88

In .NET a System.Exception object exists and has commonly used child objects such as
ApplicationException and SystemException are used. It is not recommended that you throw or catch a
SystemException this is thrown by runtime.

When an error occurs, either the system or the currently executing application reports it by throwing
an exception containing information about the error, similar to Java. Once thrown, an exception is
handled by the application or by the default exception handler. This Exception object contains similar
methods to the Java implementation such as:

StackTrace

Source

Message

HelpLink

In .NET we need to look at the error handling strategy from the point of view of global error handling
and the handling of unexpected errors. This can be done in many ways and this article is not an
exhaustive list. Firstly, an Error Event is thrown when an unhandled exception is thrown.

This is part of the TemplateControl class, see
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cpref/html/frlrfSystemWebUITemplateControlClassErrorTopic.asp

Error handling can be done in three ways in .NET, executed in the following order:

• On the aspx or associated codebehind page in the Page_Error.

• In the global.asax file's Application_Error (as mentioned before).

• In the web.config file's customErrors section.

It is recommended to look in these areas to understand the error strategy of the application.

- Classic ASP

OWASP CODE REVIEW GUIDE - V2.0 89

Unlike Java and .NET, classic ASP pages do not have structured error handling in try-catch blocks.
Instead they have a specific object called "err". This makes error handling in a classic ASP pages
hard to do and prone to design errors on error handlers, causing race conditions and information
leakage. Also, as ASP uses VBScript (a subtract of Visual Basic), sentences like "On Error GoTo
label" are not available.

- C++

In the C++ language, any object or built in type can be thrown. However there is a STL type
std::exception which is supposed to be used as the parent of any user defined exception, indeed this
type is used in the STL and many libraries as the parent type of all exceptions. Having std::exception
encourages developers to create a hierarchy of exceptions which match the exception usage and
means all exceptions can be caught by catching a std::exception object (instead of a 'catch (...)'
block). Unlike Java, even errors that you can't recover from (e.g. std::bad_alloc which means your out
of memory) derive from std::exception, so a 'catch(std::exception& e)' is similar to 'catch (...)' except
that it allows you access to the exception so you can know what occurred and possibly print some
error information using e.what().

There are many logging libraries for C++, so if your codebase uses a particular logging class look for
usages of that logger for anywhere sensitive information can be written to the logs.

Vulnerable Patterns for Error Handling in IIS

- Page_Error

Page_Error is page level handling which is run on the server side in .NET. Below is an example but
the error information is a little too informative and hence bad practice.

<script language="C#" runat="server">

Sub Page_Error(Source As Object, E As EventArgs)

Dim message As String = Request.Url.ToString()& Server.GetLastError().ToString()

Response.Write(message) // display message

End Sub

</script>

OWASP CODE REVIEW GUIDE - V2.0 90

The text in the example above has a number of issues:

• Firstly, it displays the HTTP request to the user in the form of Request.Url.ToString(). Assuming
there has been no data validation prior to this point, we are vulnerable to cross site scripting attacks!

• Secondly, the error message and stack trace is displayed to the user using
Server.GetLastError().ToString() which divulges internal information regarding the application.

After the Page_Error is called, the Application_Error sub is called.

- Global.asax

When an error occurs, the Application_Error function is called. In this method we can log the error and
redirect to another page. In fact catching errors in Application_Error instead of Page_Error would be
an example of centralizing errors as described earlier,

<%@ Import Namespace="System.Diagnostics" %>

<script language="C#" runat="server">

void Application_Error(Object sender, EventArgs e) {

 String Message = "\n\nURL: http://localhost/" + Request.Path

 + "\n\nMESSAGE:\n " + Server.GetLastError().Message

 + "\n\nSTACK TRACE:\n" + Server.GetLastError().StackTrace;

 // Insert into Event Log

 EventLog Log = new EventLog();

 Log.Source = LogName;

 Log.WriteEntry(Message, EventLogEntryType.Error);

 Server.Redirect(Error.htm) // this shall also clear the error

}

</script>

OWASP CODE REVIEW GUIDE - V2.0 91

Above is an example of code in Global.asax and the Application_Error method. The error is logged
and then the user is redirected. Non-validated parameters are being logged here in the form of
Request.Path. Care must be taken not to log or display non-validated input from any external source.
<link to XSS>

- Web.config

Web.config has custom error tags which can be used to handle errors. This is called last and if
Page_error or Application_error is called and has functionality, that functionality shall be executed
first. If the previous two handling mechanisms do not redirect or clear (Response.Redirect or a
Server.ClearError), this will be called and you shall be forwarded to the page defined in web.config in
the customErrors section, which is configured as follows:

<customErrors mode="<On|Off|RemoteOnly>" defaultRedirect="<default redirect page>">

 <error statusCode="<HTTP status code>" redirect="<specific redirect page for listed status code>"/>

</customErrors>

The "mode" attribute value of "On" means that custom errors are enabled whilst the "Off" value means
that custom errors are disabled. The "mode" attribute can also be set to "RemoteOnly" which specifies
that custom errors are shown only to remote clients and ASP.NET errors are shown to requests
coming from the the local host. If the "mode" attribute is not set then it defaults to "RemoteOnly".

When an error occurs, if the status code of the response matches one of the error elements, then the
relevant 'redirect' value is returned as the error page. If the status code does not match then the error
page from the 'defaultRedirect' attribute will be displayed. If no value is set for 'defaultRedirect' then a
generic IIS error page is returned.

An example of the customErrors section completed for an application is as follows:

<customErrors mode="On" defaultRedirect="error.html">

 <error statusCode="500" redirect="err500.aspx"/>

 <error statusCode="404" redirect="notHere.aspx"/>

OWASP CODE REVIEW GUIDE - V2.0 92

 <error statusCode="403" redirect="notAuthz.aspx"/>

</customErrors>

Vulnerable Patterns for Error Handling in Apache

In Apache you have two choices in how to return error messages to the client:

1. You can write the error status code into the req object and write the response to appear the way
you want, then have you handler return 'DONE' (which means the Apache framework will not allow
any further handlers/filters to process the request and will send the response to the client.

2. Your handler or filter code can return pre-defined values which will tell the Apache framework the
result of your codes processsing (essentially the HTTP status code). You can then configure what
error pages should be returned for each error code.

In the interest of centralizing all error code handling, option 2 can make more sense. To return a
specific pre-defined value from your handler, refer to the Apache documentation for the list of values
to use, and then return from the handler function as shown in the following example:

static int my_handler(request_rec *r)

{

 if (problem_processing())

 {

 return HTTP_INTERNAL_SERVER_ERROR;

 }

 ... continue processing request ...

}

<what happens if an uncaught exception occurs in the filter/handler? Will httpd core like any C++
thread?>

OWASP CODE REVIEW GUIDE - V2.0 93

In the httpd.conf file you can then specify which page should be returned for each error code using the
'ErrorDocument' directive. The format of this directive is as follows:

ErrorDocument <3-digit-code> <action>

... where the 3 digit code is the HTTP response code set by the handler, and the action is a local or
external URL to be returned, or specific text to display. The following examples are taken from the
Apache ErrorDocument documentation (https://httpd.apache.org/docs/2.4/custom-error.html) which
contains more information and options on ErrorDocument directives:

ErrorDocument 500 "Sorry, our script crashed. Oh dear"

ErrorDocument 500 /cgi-bin/crash-recover

ErrorDocument 500 http://error.example.com/server_error.html

ErrorDocument 404 /errors/not_found.html

ErrorDocument 401 /subscription/how_to_subscribe.html

Leading Practice for Error Handling

- Try & Catch (Java/.NET/C++)

Code that might throw exceptions should be in a try block and code that handles exceptions in a catch
block. The catch block is a series of statements beginning with the keyword catch, followed by an
exception type and an action to be taken.

Example:

Java Try-Catch:

public class DoStuff {

 public static void Main() {

 try {

 StreamReader sr = File.OpenText("stuff.txt");

 Console.WriteLine("Reading line {0}", sr.ReadLine());

OWASP CODE REVIEW GUIDE - V2.0 94

 }

 catch(MyClassExtendedFromException e) {

 Console.WriteLine("An error occurred. Please leave to room”);

 logerror(“Error: “, e);

 }

 }

}

- .NET Try–Catch

public void run() {

 while (!stop) {

 try {

 // Perform work here

 } catch (Throwable t) {

 // Log the exception and continue

 WriteToUser(“An Error has occurred, put the kettle on”);

 logger.log(Level.SEVERE, "Unexception exception", t);

 }

 }

 }

- C++ Try–Catch

void perform_fn() {

 try {

 // Perform work here

OWASP CODE REVIEW GUIDE - V2.0 95

 } catch (const MyClassExtendedFromStdException& e) {

 // Log the exception and continue

 WriteToUser(“An Error has occurred, put the kettle on”);

 logger.log(Level.SEVERE, "Unexception exception", e);

 }

}

In general, it is best practice to catch a specific type of exception rather than use the basic
catch(Exception) or catch(Throwable) statement in the case of Java.

- The Order Of Catching Exceptions

Keep in mind that many languages will attempt to match the thrown exception to the catch clause
even if it means matching the thrown exception to a parent class. Also remember that catch clauses
are checked in the order they are coded on the page. This could leave you in the situation where a
certain type of exception might never be handled correctly, take the following example where
'non_even_argument' is a subclass of 'std::invalid_argument':

class non_even_argument : public std::invalid_argument {

public:

 explicit non_even_argument (const string& what_arg);

};

void do_fn()

{

 try

 {

 // Perform work that could throw

 }

 catch (const std::invalid_argument& e)

OWASP CODE REVIEW GUIDE - V2.0 96

 {

 // Perform generic invalid argument processing and return failure

 }

 catch (const non_even_argument& e)

 {

 // Perform specific processing to make argument even and continue processing

 }

}

The problem with this code is that when a 'non_even_argument is thrown, the catch branch handling
'std::invalid_argument' will always be executed as it is a parent of 'non_even_argument' and thus the
runtime system will consider it a match (this could also lead to slicing). Thus you need to be aware of
the hierarchy of your exception objects and ensure that you list the catch for the more specific
exceptions first in your code.

Finally

If the language in question has a finally method, use it. The finally method is guaranteed to always be
called. The finally method can be used to release resources referenced by the method that threw the
exception. This is very important. An example would be if a method gained a database connection
from a pool of connections, and an exception occurred without finally, the connection object shall not
be returned to the pool for some time (until the timeout). This can lead to pool exhaustion. finally() is
called even if no exception is thrown.

try {

 System.out.println("Entering try statement");

 out = new PrintWriter(new FileWriter("OutFile.txt"));

 //Do Stuff….

 } catch (IOException e) {

 System.err.println("Input exception ");

OWASP CODE REVIEW GUIDE - V2.0 97

 } catch (Exception e) {

 System.err.println("Error occurred!”);

 } finally {

 if (out != null) {

 out.close(); // RELEASE RESOURCES

 }

 }

A Java example showing finally() being used to release system resources.

- Classic ASP Error Handling

In classic ASP there are two ways to do error handling, the first is using the err object with a "On Error
Resume Next" and "On Error GoTo 0".

Public Function IsInteger (ByVal Number)

 Dim Res, tNumber

 Number = Trim(Number)

 tNumber=Number

 On Error Resume Next 'If an error occurs continue execution

 Number = CInt(Number) 'if Number is a alphanumeric string a Type Mismatch error will
occur

 Res = (err.number = 0) 'If there are no errors then return true

 On Error GoTo 0 'If an error occurs stop execution and display error

 re.Pattern = "^[\+\-]? *\d+$" 'only one +/- and digits are allowed

 IsInteger = re.Test(tNumber) And Res

End Function

OWASP CODE REVIEW GUIDE - V2.0 98

The second is using an error handler on an error page (http://support.microsoft.com/kb/299981).

Dim ErrObj

set ErrObj = Server.GetLastError()

'Now use ErrObj as the regular err object

- Releasing resources and good housekeeping

RAII

RAII is Resource Acquisition Is Initialization, which is a way of saying that when you first create an
instance of a type, it should be fully setup (or as much as possible) so that it's in a good state. Another
advantage of RAII is how objects are disposed of, effectively when an object instance is no longer
needed then it resources are automatically returned when the object goes out of scope (C++) or when
it's 'using' block is finished (C# 'using' directive which calls the Dispose method, or Java 7's try-with-
resources feature) <add reference to
http://docs.oracle.com/javase/7/docs/technotes/guides/language/try-with-resources.html >.

RAII has the advantage that programmers (and users to libraries) don't need to explicitly delete
objects, the objects will be removed themselves, and in the process of removing themselves
(destructor or Dispose)

- Classic ASP

For Classic ASP pages it is recommended to enclose all cleaning in a function and call it into an error
handling statement after an "On Error Resume Next".

Centralized exception handling (Struts Example)

Building an infrastructure for consistent error reporting proves more difficult than error handling. Struts
provides the ActionMessages and ActionErrors classes for maintaining a stack of error messages to
be reported, which can be used with JSP tags like <html: error> to display these error messages to
the user.

OWASP CODE REVIEW GUIDE - V2.0 99

To report a different severity of a message in a different manner (like error, warning, or information)
the following tasks are required:

1. Register, instantiate the errors under the appropriate severity

2. Identify these messages and show them in a consistent manner.

Struts ActionErrors class makes error handling quite easy:

ActionErrors errors = new ActionErrors()

errors.add("fatal", new ActionError("...."));

errors.add("error", new ActionError("...."));

errors.add("warning", new ActionError("...."));

errors.add("information", new ActionError("...."));

saveErrors(request,errors); // Important to do this

Now that we have added the errors, we display them by using tags in the HTML page.

<logic:messagePresent property="error">

<html:messages property="error" id="errMsg" >

 <bean:write name="errMsg"/>

</html:messages>

</logic:messagePresent >

- Classic ASP

For classic ASP pages you need to do some IIS configuration, follow
http://support.microsoft.com/kb/299981 for more information.

3.2.12 Reviewing Security alerts (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 100

3.2.13 Reviewing for active defense

Active Defense

Attack detection undertaken at the application layer has access to the complete context of an
interaction and enhanced information about the user. The application knows what is a high-value
issue and what is noise. Input data are already decrypted and canonicalized within the application and
therefore application-specific intrusion detection is less susceptible to advanced evasion techniques.
This leads to a very low level of attack identification false positives, providing appropriate detection
points are selected.

The fundamental requirements are the ability to perform four tasks:

• Detection of a selection of suspicious and malicious events

• Use of this knowledge centrally to identify attacks

• Selection of a predefined response

• Execution of the response.

Applications can undertake a range of responses, which may include changes to a user's account or
other changes to the application's defensive posture. It can be difficult to detect active defense in
dynamic analysis since the responses may be invisible to the tester. Code review is the best method
to determine the existence of this defense.

Other application functionality like authentication failure counts and lockout, or limits on rate of file
uploads are localized protection mechanisms. This sort of standalone logic is not active defense
equivalents in the context of this review, unless they are rigged together into an application-wide
sensory network and centralized analytical engine.

It is not a bolt-on tool or code library, but instead offers insight to an approach for organizations to
specify or develop their own implementations – specific to their own business, applications,
environments and risk profile – building upon existing standard security controls. However, some
developers may have used the following components:

• Category:OWASP Enterprise Security API

OWASP CODE REVIEW GUIDE - V2.0 101

• AppSensor demonstration code

Purpose of Code Review

In this case, a code review is being used to detect the presence of a defense, and it is the absence of
this that is a weakness. Note that active defense cannot defend an application that has known
vulnerabilities, and therefore the other parts of this guide are extremely important. The code reviewer
should note the absence of active defense as a vulnerability.

The purpose of code review is not necessarily to determine the efficacy of the active defense, but
could simply be to determine if such capability exists.

How to Locate the Attack Detection and Response Code

- Detection Points

Detection points can be integrated into presentation, business and data layers of the application.
Application-specific intrusion detection does not need to identify all invalid usage, to be able to
determine an attack. There is no need for “infinite data” or “big data” and therefore the location of
"detection points" may be very sparse within source code.

A useful approach for identifying such code is to find the name of the only guidance in this area by
searching for the string:

 AppSensor

Additionally search for AppSensor's detection point type identities:

 RE1, RE2, ... RE8

 AE1, AE2, ... AE12

OWASP CODE REVIEW GUIDE - V2.0 102

 SE1, SE2, ... SE6

 ACE1, ACE2, ... ACE4

 IE1, IE2, ... IE6

 EE1, EE2

 CIE1, CIE2, ... CIE4

 FIO1, FIO2

 HT1, HT2, HT3

 UT1, UT2, ... UT4

 STE1, STE2, STE3

 RP1, RP2, RP3, RP4

Additionally search for any tagging based on Mitre's Common Attack Pattern Enumeration and
Classification (CAPEC) such as strings like:

CAPEC-212, CAPEC-213, etc

The AppSensor detection point type identifiers and CAPEC codes will often have been used in
configuration values (e.g. in ESAPI for Java), parameter names and security event classification. Also,
examine error logging and security event logging mechanisms as these may be being used to collect
data that can then be used for attack detection. Identify the code or services called that perform this
logging and examine the event properties recorded/sent. Then identify all places where these are
called.

An examination of error handling code relating to input and output validation is very likely to reveal the
presence of detection points. For example, in a whitelist type of detection point, additional code may
have been added adjacent, or within error handling code flow:

 if (var !Match this) {

 Error handling

 Record event for attack detection

OWASP CODE REVIEW GUIDE - V2.0 103

 }

In some situations attack detection points are looking for blacklisted input, and the test may not exist
otherwise, so brand new code is added:

 if (var !Match that) {

 Record event for attack detection

 }

Identification of detection points should also have found the locations where events are recorded (the
"event store").

If detection points cannot be found, continue to review the code for execution of response, as this may
provide insight into the existence of active defense.

- Attack Identification

The event store has to be analysed in real time or very frequently, in order to identify attacks based on
predefined criteria. The criteria should be defined in configuration settings (e.g. in configuration files,
or read from another source such as a database).

A process will examine the event store to determine if an attack is in progress - typically this will be
attempting to identify an authenticated user, but it may also consider a single IP address, range of IP
addresses, or groups of users such as one or more roles, users with a particular privilege or even all
users.

- Selection of Response

Once an attack has been identified, the response will be selected based on predefined criteria. Again
an examination of configuration data should reveal the thresholds related to each detection point,
groups of detection points or overall thresholds.

Additionally search for AppSensor's response type identities as they may have been used in
configuration settings, parameter names or in logical operations:

OWASP CODE REVIEW GUIDE - V2.0 104

 ASR-A, ASR-B, ... ASR-N, ASR-P

The most common response actions are user warning messages, log out, account lockout and
administrator notification. However, as this approach is connected into the application, the possibilities
of response actions are limited only by the coded capabilities of the application.

- Execution of Response

Search code for any global includes that poll attack identification/response identified above. Response
actions (agains a user, IP address, group of users, etc) will usually be initiated by the application, but
in some cases other applications (e.g. alter a fraud setting) or infrastructure components (e.g. block
an IP address range) may also be involved.

Examine configuration files and any external communication the application performs. The following
types of responses may have been coded:

• Logging increased

• Administrator notification

• Other notification (e.g. other system)

• Proxy

• User status change

• User notification

• Timing change

• Process terminated (same as traditional defenses)

• Function amended

• Function disabled

• Account log out

• Account lock out

• Application disabled

• Collect data from user.

OWASP CODE REVIEW GUIDE - V2.0 105

Other capabilities of the application and related system components can be repurposed or extended,
to provide the selected response actions. Therefore review the code associated with any localised
security measures such as account lock out.

Leading Practice for Active Defense

The guidance for adding active response to applications given in the OWASP_AppSensor_Project,
and in particular the AppSensor Guide v2.

3.2.14 Reviewing Secure Storage (Needs Content)

Lorem Ipsum

3.2.15 Hashing & Salting - When, How, and Where

Introduction

A cryptographic hash algorithm; also called a hash "function" is a computer algorithm designed to
provide a random mapping from an arbitrary block of data (string of binary data) and return a fixed-
size bit string known as a “message digest” and achieve certain security. Cryptographic hashing
functions are used to create digital signatures, message authentication codes (MACs), other forms of
authentication and many other security applications in the information infrastructure. They are also
used to store user passwords in databases instead of storing the password in clear text and help
prevent data leakage in session management for web applications. The actual algorithm used to
create a cryptology function varies per implementation (SHA-256, SHA-512, etc.)

The code reviewer needs to be aware of three main things when reviewing code that uses
cryptographic hashing functions.

• Legality of the cryptographic hashing functions if the source code is being exported to another
country.

• The life cycle of the cryptographic hashing function being used.

• Basic programming of cryptographic hashing functions.

Legal

OWASP CODE REVIEW GUIDE - V2.0 106

In the United States in 2000, the department of Commerce Bureau of Export revised encryption export
regulations. The results of the new export regulations it that the regulations have been greatly relaxed.
However if the code is to be exported outside of the source country current export laws for the export
and import counties should be reviewed for compliance.

Case in point is if the entire message is hashed instead of a digital signature of the of message the
National Security Agency (NSA) considers this a quasi-encryption and State controls would apply.

It is always a valid choice to seek legal advice within the organization that the code review is being
done to ensure legal compliance.

Lifecycle

With security nothing is secure forever. This is especially true with cryptographic hashing functions.
Some hashing algorithms such as Windows LanMan hashes are considered completely broken.
Others like MD5, while currently considered safe for password hash usage, have known issues like
collision attacks (note that collision attacks do not affect password hashes). The code reviewer needs
to understand the weaknesses of obsolete hashing functions as well as the current best practices for
the choice of cryptographic algorithms.

Programming/Vulnerabilities

The most common programmatic issue with hashing is not using a salt value or if using a salt the salt
value is too short and or the same salt value is used in multiple hashes. The purpose of a salt is to
make it harder for an attacker to perform pre-computed hashing attack (e.g., using rainbow tables) but
other benefits of a salt can include making it difficult for an attacker to perform even password
guessing attacks by obsfucating the hashed value.

Salt

One way to generate a secure salt value is using a pseudo-random number generator. Note that a
salt value does not need to possess the quality of a cryptographically secure randomness. Best
practices is to use a cryptographically function to create the salt, salt value should be created for each
hash value, and a minimum value of 128 bits. The bits are not costly so don't save a few bits thinking
you gain something back in performance instead use a value of 256-bit salt value. It is highly
recommended.

- .Net Salt

OWASP CODE REVIEW GUIDE - V2.0 107

 private int minSaltSize = 8;

 private int maxSaltSize = 24;

 private int saltSize;

 private byte[] GetSalt(string input) {

 byte[] data;

 byte[] saltBytes;

 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();

 saltBytes = new byte[saltSize];

 rng.GetNonZeroBytes(saltBytes);

 data = Encoding.UTF8.GetBytes(input);

 byte[] dataWithSaltBytes =

 new byte[data.Length + saltBytes.Length];

 for (int i = 0; i < data.Length; i++)

 dataWithSaltBytes[i] = data[i];

 for (int i = 0; i < saltBytes.Length; i++)

 dataWithSaltBytes[data.Length + i] = saltBytes[i];

 return dataWithSaltBytes;

 }

This method uses an agile approach to calling a hash function. It is explained below.

private string computeHashWithSalt(HashAlgorithm myHash, string input) {

 byte[] data;

 data = myHash.ComputeHash(GetSalt(input));

 sb = new StringBuilder();

 for (int i = 0; i < data.Length; i++) {

 sb.Append(data[i].ToString("x2"));

 }

OWASP CODE REVIEW GUIDE - V2.0 108

 return sb.ToString();

 }

Microsoft .Net Notes on Hashing

Microsoft does not recommend using MD5 or SHA-1. With .Net 3.5 and above Microsoft supports the
Suite B set of cryptographic algorithms published by the National Security Agency (NSA).

Java – java.security.SecureRandom

PHP - ???

Ruby - ???

Perl - ???

C++ none managed code on CLR or none windows ????

Javascript ?????

The salt value does not need to be secret and can be stored along with the hash value. Some may
use a combination of account details (username, user full name, ID, creation date, etc.) as the salt for
hash to further obsfucate the hash computation: for example salt =
(username|lastname|firstname|ID|generated_salt_value).

Best Practices

Industry leading Cryptographer’s are advising that MD5 and SHA-1 should not be used for any
applications. The United State FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION (FIPS) specifies seven cryptographic hash algorithms — SHA-1, SHA-224, SHA-256,
SHA-384, SHA-512, SHA-512/224, and SHA-512/256 are approved for federal use. The code
reviewer should consider this standard because the FIPS is also widely adopted by the information
technology industry.

The code reviewer should raise a red flag if MD5 and SHA-1 are used and a risk assessment be done
to understand why these functions would be used instead of other better-suited hash functions. FIPS
does allow that MD5 can be used only when used as part of an approved key transport scheme (e.g.
SSL v3.1) where no security is provided by the algorithm.

OWASP CODE REVIEW GUIDE - V2.0 109

FIPS disapproves the following functions DES; MD51; RC4; Blowfish; Diffie-Hellman2; Diffie-Hellman3
(key agreement); EC Diffie-Hellman2 (key agreement); AES4 (non-compliant); Diffie-Hellman5 (key
agreement); EC Diffie-Hellman4 (vendor affirmed); RSA4 (key agreement); RSA2 (key wrapping).

.Net Agile Code example for hashing

App Code File: <add key="HashMethod" value="SHA512"/>

C# Code:

1: preferredHash =
HashAlgorithm.Create((string)ConfigurationManager.AppSettings["HashMethod"]);

 2:

 3: hash = computeHash(preferredHash, testString);

 4:

 5: private string computeHash(HashAlgorithm myHash, string input) {

 6: byte[] data;

 7: data = myHash.ComputeHash(Encoding.UTF8.GetBytes(input));

 8: sb = new StringBuilder();

 9: for (int i = 0; i < data.Length; i++) {

 10: sb.Append(data[i].ToString("x2"));

 11: }

 12: return sb.ToString();

 13: }

Line 1 let's us get our hashing algorithm we are going to use from the config file. If we use the
machine config file our implementation would be server wide instead of application specific. Line 3
allows us to use the config value and set it according as our choice of hashing function. ComputHash
can be SHA-256 or SHA-512.

OWASP CODE REVIEW GUIDE - V2.0 110

The drawback to this method is key size. I would suggest of giving yourself twice the size of the
largest key of hashing algorithm you could possible use to store hash values. This means we need a
varchar of 1024 if we are going to store our hash value in the database.

Afterword

Lastly, never accept in a code review an algorithm created by the programmer for hashing or copy a
hashing function taken from the Internet. Always use cryptographic functions that are provided by the
language framework the code is written in. These functions are well vetted and well tested by
experience cryptographers.

References:

http://valerieaurora.org/hash.html (Lifetimes of cryptographic hash functions)

http://docs.oracle.com/javase/6/docs/api/java/security/SecureRandom.html

http://msdn.microsoft.com/en-us/library/system.security.cryptography.rngcryptoserviceprovider.aspx

http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf

Ferguson and Schneier (2003) Practical Cryptography (see Chapter 6; section 6.2 Real Hash
Functions)

OWASP CODE REVIEW GUIDE - V2.0 111

4 Reviewing by Vulnerability
We need to add content here to introduce the section.

4.1 Review Code for XSS

Where can XSS occur?

- HTML Body Context

UNTRUSTED DATA

===HTML Attribute Context===

<input type="text" name="fname" value="UNTRUSTED DATA">

attack: "><script>/* bad stuff */</script>

===HTTP GET Parameter Context===

clickme

attack: " onclick="/* bad stuff */"

===URL Context===

clickme <iframe src="UNTRUSTED URL" />

attack: javascript:/* BAD STUFF */

===CSS Value Context===

Selection

OWASP CODE REVIEW GUIDE - V2.0 112

attack: expression(/* BAD STUFF */)

===JavaScript Variable Context===

<script>var currentValue='UNTRUSTED DATA';</script>

<script>someFunction('UNTRUSTED DATA');

</script> attack: ');/* BAD STUFF */

===JSON Parsing Context===

JSON.parse(UNTRUSTED JSON DATA)

4.2 Persistent - The Anti Pattern (Needs Content)

Lorem Ipsum

4.2.1 .NET

.NET Anti-Pattern: Mishandled Concurrency

The correct concurrency management techniques is absolutely necessary in order to guarantee data
integrity. A way to implement proper concurrency consists in creating a concurrency token which will
be checked from the moment the entity object in the database was read until the moment when the
submission will be executed. Prior to commit the final changes, the application must execute control
where the concurrency token will be compared. If the token differs, conclusions can be drawn that
another user has changed indeed the data.

The Entity Framework supports optimistic concurrency, unfortunately exceptions derived from errors
encountered between the updates is not automatically handled, neither this will protect your data from
corrupting.

Fetching Strategy issues

OWASP CODE REVIEW GUIDE - V2.0 113

Main purpose of the ORM (Object Relational Mapper) is to create an abstraction, a representation of
the database easier to manipulate and access data contained in it than retrieving it using SQL
statements. Unfortunately, many developers assume that because the ORM is the middle layer
handling the communication and manipulation of records, the data persistence will be handled without
issues. The developer should analyze and observe what occurs at the database level once the ORM
in question (such as EntityFramework, NHibernate or Ideablade for example) has been implemented.
Concurrency issues can arise from incorrect fetching strategy implementations such as for example
using ‘CachedOnly’ or ‘DataSourceThenCached’(IdeaBlade). It is highly recommended that the
developer revises the proper application depending on the implementation scenario, such as multiple
users accessing the same data at the same time in order to avoid data corruption or when data is
cached in an action by a certain Entity but the another one is not aware of this change.

Avoid the DTO pattern

Known to many NHibernate developers, the use of DTO pattern seems as something that sounds
good but could be highly inconvenient. Main reasons for not implementing are: Contrary to their name,
DTO's are no objects but a state which is defined through their behavior. By replicating multiple
objects, a developer might end up having to implement multiple changes in the domain model and the
DTO classes when for example, introducing a new property in the domain model class.

Avoid Locks

Another anti-pattern approach used by many developers is to lock regions in the database.Most of the
time , this is implemented as way to avoid concurrency, however web applications are not properly
suited for using locking which will indeed freeze the application. Locking data for the time the request
takes place will not solve this problem. Using locks in database are absolutely not recommend since
they required careful implementation planning and design.(Freeman, pg 179 ,2011)

Race conditions

If the following is run on more than one thread, it will randomly crash. It is not possible to know
deterministically whether the code will throw an ArgumentOutOfRangeException. Sometimes it will,
sometimes it won’t.(Mclean, 2010)

IList<string> list = new List<string>();

list.Add("Hello");

OWASP CODE REVIEW GUIDE - V2.0 114

…

// multi-threaded code

if(list.Count > 0)

{

 list.RemoveAt(0);

}

In that case a locking can be used, however using locks as mentioned earlier should be consider as
an option if it is absolutely necessary.

Example locking code

object lockObj = new object();

IList<string> list = new List<string>();

list.Add("Hello");

…

 // multi-threaded code

 lock(lockObj)

 {

 if(list.Count > 0)

 {

 list.RemoveAt(0);

 }

 }

Recommendations

 • The best option in this case is to alert the user who initiated the second request that his changes
cannot be applied. "This is largely because, by definition, the first request will already have

OWASP CODE REVIEW GUIDE - V2.0 115

completed".(Freeman,pg 179,2011)

• A recommended pattern when using the Entity Framework consists in "making a copy of the entity
on the client and send back both the original version unmodified and the modified version or to write
the client in such a way that it does not modify the concurrency token".(Simmons, 2009)

• Keep in mind that Detached objects (such as in the case of NHibernate or IdeaBlade ORM's)may no
longer be guaranteed to be synchronized with database state; they’re no longer under the
management of NHibernate.However they could still contain persistent data. These ORM's allow you
to reuse these instance by associating them with a new Persistence manager.

• Avoid the use DTO pattern by properly handling detached objects

References

Simmons, D. (2009, June). Anti-Patterns To Avoid In N-Tier Applications. MSDN Magazine.
Retrieved from http://msdn.microsoft.com/en-us/magazine/dd882522.aspx#id0420025

Freeman, A (2011). Applied ASP .NET 4 in Context. Apress, New York, USA

McLean, G. (2010).Pro WPF and Silverlight MVVM: Effective Application Development with Model-
View-ViewModel. Apress, New York, USA

4.2.2 Java

Java Persistence anti-patterns

Spring –Hibernate Anti-patterns

Some of the following anti-patterns are an important concern in the security area of Java applications.
A related problem with these anti-patterns is data integrity.

- Lazy loading

OWASP CODE REVIEW GUIDE - V2.0 116

This feature reduces the handling of data in an asynchronous way, which avoids unnecessary
requests to the database, however it can causes problems with persistence. Errors associated with
Lazy loading are:

org.hibernate.StaleObjectStateException: Row was updated or deleted by another transaction (or

unsaved-value mapping was incorrect)

- N+1 Select issue

This problem occurs when the collection is returned from the database, containing n+1 separate
queries instead of a single join query. This issue is quite challenging to solve because it depends on
the specific implementation of the code, therefore look for the following executions:

• Control that mapping configurations are updated for affected domain classes

• Add the @ManyToMany @Fetch(FetchMode.JOIN) as a query strategy to override the Lazy
behavior if necessary

• Review Tuning fetching strategies from Hibernate reference
(http://docs.jboss.org/hibernate/core/3.3/reference/en/html/performance.html#performance-fetching-
custom)

- Sessions per Operation anti-pattern

This anti pattern is caused by the opening and closing of individual sessions for each call executed to
the database. In order to avoid this issue, make sure the calls are planned in sequence. Control
proper implementation of persistence context. Problem occurs when DAO uses different persistence
context for each one, in other words, a different Session or EntityManager.

Example of anti-pattern : Using the following code for each operation

session = sessionFactory.openSession();

session.close()

- Open Conversation anti-pattern

Keeping a database session alive while a user 'a' is editing data meanwhile, a lock is exerted to avoid
concurrency issues can cause serious performance and bottlenecks in the application. It is not

OWASP CODE REVIEW GUIDE - V2.0 117

advisable to do this in order to keep data integrity. There are other Hibernate features that allows the
developer to handle sessions in a much efficient way such as automatic optimistic concurrency

Long Term Persistence Security Issues

Long-term persistence is a model that enables beans to be saved in XML format.(Java Tutorial,
2013). For this purpose, a programmer can use XMLEncoder class to pass through output files for
textual representation of Serializable objects.In the example provided in the Java Tutorial, the
programmer can invoke and create an instance of javax.swing.JButton such as this

<object class="javax.swing.JButton">

 <void method="setText">

 <string>Cancel</string>

 </void>

 </object>

The vulnerability occurs when instead of passing acquitted XML code, the attacker sends dangerous
Payloads. This vulnerability was shown by Dinis Cruz, Alvaro Muñoz and Abraham Kang in DefCon
Conference 2013 “Resting on Your Laurels will get you Pwned: Effectively Code Reviewing REST
Applications to avoid getting powned”

As explained by Dinis Cruz (2013) in his blog "there are two key scenarios where this ‘feature’
becomes a spectacular vulnerability:

• Server-side backend system that process attacker-controlled XML files using XMLDecoder

• REST APIs that uses XMLDecoder to create strongly type objects from the HTTP Request data

And the 2nd case is exactly what happens with Restlet REST API , which wraps XMLDecode in its
org.restlet.representation.ObjectRepresentation<T> feature/class."(Cruz, 2013)

An Example of an attack which can be fond in Github from many examples created by Cruz , creates
an item

<?xml version="1.0" encoding="UTF-8"?>

<java>

<object class="firstResource.Item">

<string>a aName</string>

<string>a Description</string>

OWASP CODE REVIEW GUIDE - V2.0 118

</object>

</java>

Recommendations

It's clear that proper understanding of certain features and Java methods is essential to avoid certain
vulnerabilities associated with the use of Persistence in frameworks, ORM'S and specific Java classes

References

NHibernate, 2013 "Transactions and concurrency control" available at
http://docs.jboss.org/hibernate/orm/4.1/devguide/en-US/html/ch02.html#session-per-operation
accessed on 4rd October 2013

Oracle, 2013 "Java Tutorials" available at
http://docs.oracle.com/javase/tutorial/javabeans/advanced/longpersistence.html Accessed on 3rd
October 2013

Dinis Cruz, 2013 "Using XMLDecoder to execute server-side Java Code on an Restlet application (i.e.
Remote Command Execution)" available at

http://blog.diniscruz.com/2013/08/using-xmldecoder-to-execute-server-side.html Accessed on 3rd
October 2013

https://github.com/o2platform/DefCon_RESTing/blob/master/Demos/_O2_Scripts/XmlEncoder%20-
%20Restlet/exploits/1%20-%20create%20item%20%28Simple%29.xml

4.2.3 PHP

It is pretty easy to remove all persistent XSS attacks from PHP, just remove all instances of output
functions (such as echo and print) with their safe counterparts from OWASP PHP Security Core
Library, and then whenever you need HTML elements to be outputted, used the appropriate functions
or PHP tags. There's a scanner in PHP Security Project that scans for this and can replace it
effectively as well.

4.2.4 Ruby (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 119

4.3 Reflected - The Anti Pattern (Needs Content)

Lorem Ipsum

4.3.1 .NET

The classes in the System.Reflection namespace and with System.Type, enable us to obtain
information about loaded assemblies and the types defined within them, such as classes, interfaces,
and value types. Reflection can be used to create type instances at run time, and to invoke and
access them.

Depending on the .Net framework version, the use of Reflection could represent a major security risk.

The risk with using Reflection is that the original application code could be replaced by malicious
code. The use of .NET framework 4 and on offers a higher level of protection since only trusted code
can use reflection to access security-critical members. Furthermore, only trusted code can use
reflection to access nonpublic members that would not be directly accessible to compiled code.
Finally, code that uses reflection to access a safe-critical member must have whatever permissions
the safe-critical member demands, just as with compiled code.

For other .NET framework versions beneath version 4, there are important recommendations to
follow.

Recommendations

- Avoid writing public APIs that take MethodInfo parameters

Avoid it especially for highly trusted code. Such APIs might be more vulnerable to malicious code. For
example, consider a public API in highly trusted code that takes a MethodInfo parameter. Assume that
the public API indirectly calls the Invoke method on the supplied parameter. If the public API does not
perform the necessary permission checks, the call to the Invoke method will always succeed, because
the security system determines that the caller is highly trusted. Even if malicious code does not have
the permission to directly invoke the method, it can still do so indirectly by calling the public API.

- Using ReflectionPermission class

To discover information about nonpublic members, callers must have the ReflectionPermission that
represents the ability to obtain type information. Without this permission, code cannot use reflection to

OWASP CODE REVIEW GUIDE - V2.0 120

obtain information about nonpublic members (even of its own class) through the Get methods on
Type, Assembly, and Module.

To use reflection to invoke methods or access fields that are inaccessible according to the common
type system accessibility rules, the code must be granted the ReflectionPermission for member
access.

- Security policy deny ReflectionPermission to code that originates from the Internet

Because ReflectionPermission can provide access to non-public types and members,it is recommend
that you do not grant ReflectionPermission to Internet code, except with the Reflection Permission
Flag.RestrictedMemberAccess flag. RestrictedMemberAccess allows access to non-public members,
with the restriction that the grant set of the non-public members must be equal to, or a subset of, the
grant set of the code that accesses the non-public members.

4.3.2 Java

Reflection Security Issues

Java reflection is a mechanism used by Java programs given them the ability to change the runtime
actions of the application running within the Java Virtual Machine (JVM). It makes it easier for
developers to write programs because it helps gather information to implement proper analysis by the
software itself (Schildt, 2011), however it compromises the systems because malware can easily
bypass the security around the JVM.

Two security vulnerabilities found regarding the use of Java Reflection are CVE-2012-4681 and CVE-
2012-5076. Both of them are related to Java Applets and another common factor is the use of Java
reflection.

What to look in the code

In order to avoid this security issues, make sure that

• Java Runtime Environment (JRE) is higher that Java SE 7 Update 6 version

• Correct implementation of classes such as com.sun.beans.finder.ClassFinder.findClass

• Avoid Private structure using AccessibleObject.setAccessible because it breaks the encapsulation

• Avoid Use of sun.misc.Unsafe because it provides direct access to memory

• Verify correct Implementation of java.lang.reflect.ReflectPermission following best practices as
described in Oracle Documents, September 2011

OWASP CODE REVIEW GUIDE - V2.0 121

References

Schildt Hebert, 2011 ‘Java: The complete Reference, 8th Edition ‘ McGraw-Hill

Common Vulnerabilities and Exposure, 2012 ‘CVE-2012-4681’, available at (http://cve.mitre.org/cgi-
bin/cvename.cgi?name=2012-4681) last viewed on October 3rd, 2013

Oracle Documents, 2011 “Permissions in the Java 2 SDK’ available at
http://docs.oracle.com/javase/1.4.2/docs/guide/security/permissions.html#ReflectPermission, last
viewed on October 3rd, 2013

4.3.3 PHP

To mitigate reflected XSS attacks fully, a PHP code should never output variables using echo, print
and other output generating functions. If the output needs to be complex (for example a HTML list of
variables) the HTML part should be outside PHP tags, and the rest should be inside and using safe
output functions (available in OWASP PHP Security Project Core Library). For example:

 foreach ($list as $item)

 {

 ?>

 <?php phpsec\exho($item);?>

 <?php

 }

Or

 foreach ($list as $item)

 {

 phpsec\printf("%s\n",$item);

 }

OWASP CODE REVIEW GUIDE - V2.0 122

4.3.4 Ruby (Needs Content)

Lorem Ipsum

4.4 Stored - The Anti Pattern (Needs Content)

Lorem Ipsum

4.4.1 .NET (Needs Content)

Lorem Ipsum

4.4.2 Java

Bad Session Stores

As described in the research paper written by V.Benjamin Livshits(2005), Bad session stores occurs
when objects stored in attributes of javax.servlet.http.HttpSession are not subclasses of
java.io.Serializable.

As further described by Livshits, it causes issues because HttpSessions objects could be written out
to disk especially when all objects stored are handled as attributes that must be serialized, if not done
properly this will cause exceptions or data corruption.

What to look for in the code

Parameters of HttpSession.set Attribute

Control if javax.servlet.httpSession is a subclass of java.io.Serializable

References

V. Benjamin Livshits, "Findings Security Errors in Java Applications Using Lightweight Static Analysis"
2005 available at (http://research.microsoft.com/en-us/um/people/livshits/papers/pdf/acsac04v.pdf)
Last Viewed October 3rd 2013

OWASP CODE REVIEW GUIDE - V2.0 123

4.4.3 PHP (Needs Content)

Lorem Ipsum

4.4.4 Ruby (Needs Content)

Lorem Ipsum

4.5 DOM XSS

CRV2 DOMXSS

XSS stands for Cross-site scripting. XSS is a common vulnerability found in web sites. Cross-site
scripting accounts for 60 to 80% of all security vulnerabilities. This section od the Code Review Guide
is focused DOM-based XSS vulnerabilities instead of the more traditionally cross-site scripting. The
difference between the two is that traditional XSS occur in server-side code response for preparing
HTML response to be served client-sided and DOM-XSS vulnerabilities occur in the content pessing
on the client side typically done with client-side JavaScript.

DOM-XSS is mitigation is hampered by a lack of standardization of browsers and a large attack
surface.

Reducing the threat:

The most common way to reduce is with encoding/escaping of string input. The code reviewer talk
with development staff to see if any frameworks were used to help eliminated common XSS
vulnerabilities.

• OWASP ESAPI (Java)

• ValidateRequest (ASP.NET)

• Anti-XSS library (ASP.NET)

• AntiSamy (Java)

• strip_tags, sanitize (Ruby on Rails)

• Django template escaping (Python Django)

• Coverity Security Library (Java)

• xss validator (Node.js)

• HTML Purifier

OWASP CODE REVIEW GUIDE - V2.0 124

• Google Gaja

As with standard XSS the code reviewer should always pay attention to the following bullet points….

• How the programmer is validating input data. Not validating data is the root of all evil.

• Making sure data is escaped when the script writes out the page.

• Code Reviewer should review methods that make it hard to escape data and require an
understanding of each browsers JavaScript engine. The code reviewer should red flag code that uses
the following. These methods can be used securely but are prone to vulnerabilities. Best practice is
not to use them.

• Element’s .innerHTML() and .outerHTML() methods.

• Using user data in jQuery's element creation.

• jQuery’s append.

• Using user data in a string passed to eval, setTimeout, an object's event handler, or javascript: url
targets.

• Using user data in strings that generate CSS.

Microsoft ASPX .Net

• On ASPX .Net pages code review should check to make sure web config file does not turn off page
validation. <pages validateRequest="false" />

• .Net framework 4.0 does not allow page validation to be turned off. Hence if the programmer wants
to turn of page validation the developer will need to regress back to 2.0 validation mode. <httpRuntime
requestValidationMode="2.0" />

• Code reviewer needs to make sure page validation is never turned off on anywhere and if it is
understand why and the risks it opens the organization to. <%@ Page Language=”C#”
ValidationRequest=”false”

OWASP Resources:

OWASP CODE REVIEW GUIDE - V2.0 125

OWASP DOM BASED XSS [1]

OWASP DOM BASED Cheat Sheet
[www.owasp.org/index.php/DOM_based_XSS_Prevention_Cheat_Sheet]

4.6 JQuery Mistakes (Needs Content)

Lorem Ipsum

4.7 Reviewing code for SQL Injection (Needs Content)

Lorem Ipsum

4.7.1 PHP

Introduction

An SQL injection Attack consists of injecting sql query portions in the back-end database system via
the client interface in the web application. The consequence of a successful exploitation of an SQL
injection varies from just reading data to modifying data or executing system commands. SQL
Injection in PHP remains the number one attack vector, and also the number on reason for DATA
COMPROMISES

Data Validation and prepared statements

It is as simple as this the absence of data validation and prepared statements or stored procedures
will increase the possibility that your code contain SQL injections. If your application gives the users
the possibility to change parameters and those parameters are not verified and inserted in an
unprepared statement than your code contain an SQL Injection.

Example 1 :

OWASP CODE REVIEW GUIDE - V2.0 126

<?php

$pass=$_GET["pass"];

$con = mysql_connect('localhost', 'owasp', 'abc123');

mysql_select_db("owasp_php", $con);

$sql="SELECT card FROM users WHERE password = '".$pass."'";

$result = mysql_query($sql);

?>

Suspicious Validation

The most common ways to prevent SQL Injection in PHP are using functions such as addslashes()
and mysql_real_escape_string() but those function can always cause SQL Injections in some cases.

addslashes :

addslashes() will only work if the query string is wrapped in quotes.A string such as the following
would still be vulnerable to an SQL injection

<?php

$id = addslashes($_GET['id']);

$query = 'SELECT title FROM books WHERE id = ' . $id;

?>

mysql_real_escape_string():

mysql_real_escape_string() is a little bit more powerful than addslashes() as it calls MySQL's library
function mysql_real_escape_string, which prepends backslashes to the following characters: \x00, \n,
\r, \, ', " and \x1a. As with addslashes(), mysql_real_escape_string() will only work if the query string is
wrapped in quotes. A string such as the following would still be vulnerable to an SQL injection:

<?php

OWASP CODE REVIEW GUIDE - V2.0 127

$bid = mysql_real_escape_string($_GET['id']);

$query = 'SELECT title FROM books WHERE id = ' . $bid;

?>

Canonicalization

Canonicalization is the process by which various equivalent forms of a name can be resolved to a
single standard name, or the "canonical" name.

The most popular encodings are UTF-8, UTF-16, and so on (which are described in detail in RFC
2279). A single character, such as a period/full-stop (.), may be represented in many different ways:
ASCII 2E, Unicode C0 AE, and many others.

With the myriad ways of encoding user input, a web application's filters can be easily circumvented if
they're not carefully built.

Bad Example

public static void main(String[] args) {

 File x = new File("/cmd/" + args[1]);

 String absPath = x.getAbsolutePath();

}

Good Example

public static void main(String[] args) throws IOException {

 File x = new File("/cmd/" + args[1]);

 String canonicalPath = x.getCanonicalPath();

}

OWASP CODE REVIEW GUIDE - V2.0 128

References

See Reviewing code for Data Validation (in this guide) Reviewing code for Data Validation

See the OWASP ESAPI Project

The OWASP ESAPI project provides a reference implementation of a security API which can assist in
providing security controls to an application.

4.7.2 Java

Java SQL Injections

SQL injections occur when input to a web application is not controlled or sanitized before executing to
the back-end database The attacker tries to exploit this vulnerability by passing SQL commands in
her/his input and therefore will create a undesired response from the database such as providing
information that bypasses the authorization and authentication programmed in the web application

An example of a vulnerable java code (Livshits and Lam, 2005)

 HttpServletRequest request = ...;

 String userName = request.getParameter("name");

 Connection con = ...

 String query = "SELECT * FROM Users " + " WHERE name = '" + userName + "'";

 con.execute(query);

The input parameter “name” is passed to the String query without any proper validation or verification.
The query ‘SELECT* FROM users where name" is equal to the string ‘username’ can be easily
misused to bypass something different that just the ‘name’. For example, the attacker can attempt to
pass instead

" OR 1=1.

In this way accessing all user records and not only the one entitled to the specific user

OWASP CODE REVIEW GUIDE - V2.0 129

More of SQL Injection Vulnerabilities

See the OWASP article on SQL Injection Vulnerabilities.
http://www.owasp.org/index.php/SQL_Injection See the OWASP article on Blind_SQL_Injection
Vulnerabilities. http://www.owasp.org/index.php/Blind_SQL_Injection

How to Avoid SQL Injection Vulnerabilities

See the OWASP Development Guide article on how to Avoid SQL Injection Vulnerabilities.
http://www.owasp.org/index.php/Guide_to_SQL_Injection

How to Test for SQL Injection Vulnerabilities

See the OWASP Testing Guide article on how to Test for SQL Injection Vulnerabilities.
http://www.owasp.org/index.php/Testing_for_SQL_Injection

References

Livshits and Lam, 2005 "Finding Security Vulnerabilities in Java Applications with Static Analysis"
available at
https://www.usenix.org/legacy/event/sec05/tech/full_papers/livshits/livshits_html/#sec:sqlinjexample
Accessed on 3rd October, 2013

4.7.3 .NET (Needs Content)

Lorem Ipsum

4.7.4 HQL (Needs Content)

Lorem Ipsum

4.8 The Anti Pattern

Introduction

In software engineering, a design pattern is a reusable solution to a common occurring problem that
can be generalized to be used a numerous contexts of software design.

OWASP CODE REVIEW GUIDE - V2.0 130

Anti-patterns are commonly used patterns used in software engineering but are ineffective,
counterproductive, and may result in software vulnerabilities.

The Code Review Guide will focus on anti-design patterns that help create in-secure
code/applications.

Information Disclosure Through Exception:

Error information for a hacker is like a bone to a dog; “Something good to chew on“. Without
controlling what error information is shown to a user the application may release information such as
platform target code is running on, database being used, computer language, etc. The significance of
each piece of information allows the hacker to quickly narrow what tools he uses and what
vulnerabilities he might try to exploit.

- .Net

What is the flaw?

} catch (exception e) {YourLogger.Log(e);}

This exception was not handled. The exception was log but the program is allowed to continue
executing. This is contrary to good secure design. When exceptions occur the code needs to handled
the exception not just log it. Programs need to fail and fail fast and securely. If the program is not
allow to fail because of business rules it needs to know how to handled it's state to be able to recover
in a secure manner.

} catch (exception e) { YourLogger.Log(e); throw e; }

is incorrect.

} catch (exception e) { YourLogger.Log(e); throw new Exception("Your exception description");

OWASP CODE REVIEW GUIDE - V2.0 131

is incorrect.

} catch (exception e) { YourLogger.Log(e); throw new Exception("Your exception description ",e);

Throw new Exception could be valid if you want to hide the original error, perhaps a security related
issue.

Secure Design Recommendation:

At minimum exception handling should have...

} catch (Exception ex) {YourLogger.Log(ex); throw;}

Review Criteria

Static analysis tools like Cat.Net or FxCop are good at finding information leakage from exceptions.
Code reviewer needs to understand how exceptions and unhanded exceptions are handled by the
program.

Need link here on what information is valid to log

4.8.1 PHP (Needs Content)

OWASP CODE REVIEW GUIDE - V2.0 132

Lorem Ipsum

4.8.2 Java (Needs Content)

Lorem Ipsum

4.8.3 .NET (Needs Content)

Lorem Ipsum

4.8.4 Ruby (Needs Content)

Lorem Ipsum

4.8.5 Cold Fusion

Lorem Ipsum

4.9 Reviewing code for CSRF Issues

Having CSRF-proof forms and actions is a complex task, and very prone to human-error. The most
effective means of mitigating it is incorporating it into a widget library, for example OWASP PHP
Security Widget library, which automatically uses CSRF protection.

CSRF Protection for GET and COOKIE elements is hard and not recommended, therefore all
operations that change the state of the application in someway should be implemented using HTTP
Post (or other HTTP state changing requests).

Generally, CSRF protection is achieved by generating cryptographically secure, required parameters
into HTML forms, and checking them back when they are submitted. If they are submitted and valid,
they should get expired.

4.10 Transactional logic / Non idempotent functions / State Changing Functions (Needs
Content)

OWASP CODE REVIEW GUIDE - V2.0 133

Lorem Ipsum

4.11 Reviewing code for poor logic /Business logic/Complex authorization (Needs
Content)

Lorem Ipsum

4.12 Reviewing Secure Communications (Needs Content)

Lorem Ipsum

4.12.1 .NET Config

ASP.NET Configurations

Sensitive data passes across networks. This data might include passwords, credit card numbers,
social security numbers, you name it. To protect against disclosure of this information from
unwelcome users, it is essential to protect the data in transit from unwanted alteration.

Since web requests through physical tiers of an application crosses different communication
channels, it must be considered how the application must be secure for each of these channels. Most
of the security configurations in ASP.NET occurs on different files found in the application such as the
web.config file or in the IIS server such as the policy files. The following information highlights the
most important aspects to secure communications in ASP.NET applications

IIS 7 Configurations

In IIS 7 there is a new configuration system which affects the hierarchy level and how one file can
inherit from another. The following figure resumes how this work and the location of each file (Aguilar,
2006)

- Filtering Requests and URL Rewriting

Request Filtering was introduced in IIS7 and it has replaced the functionality UrlScan add-on for IIS
6.0. This built-in security feature allows to filter undesired URL request but it is also possible to
configure different kinds of filtering. To begin with, it is important to understand how the IIS pipeline
works when a request is done. The following diagram shows the order in these modules

OWASP CODE REVIEW GUIDE - V2.0 134

(Yakushev, 2008)

Request filtering can be setup through the IIS interface or on the web.config file. Example:

<configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <denyUrlSequences>

 <add sequence=".." />

 <add sequence=":" />

 </denyUrlSequences>

 <fileExtensions allowUnlisted="false" />

 <requestLimits maxUrl="2048" maxQueryString="1024" />

 <verbs allowUnlisted="false" />

 </requestFiltering>

OWASP CODE REVIEW GUIDE - V2.0 135

 </security>

 </system.webServer>

</configuration>

(Yakushev, 2008) This can also be done through the application code , for example:

using System;

using System.Text;

using Microsoft.Web.Administration;

internal static class Sample

{

 private static void Main()

 {

 using (ServerManager serverManager = new ServerManager())

 {

 Configuration config = serverManager.GetWebConfiguration("Default Web Site");

 ConfigurationSection requestFilteringSection = config.GetSection("system.webServer/security

 /requestFiltering");

 ConfigurationElementCollection denyUrlSequencesCollection =

 requestFilteringSection.GetCollection("denyUrlSequences");

 ConfigurationElement addElement = denyUrlSequencesCollection.CreateElement("add");

 addElement["sequence"] = @"..";

 denyUrlSequencesCollection.Add(addElement);

 ConfigurationElement addElement1 = denyUrlSequencesCollection.CreateElement("add");

 addElement1["sequence"] = @":";

 denyUrlSequencesCollection.Add(addElement1);

 ConfigurationElement addElement2 = denyUrlSequencesCollection.CreateElement("add");

OWASP CODE REVIEW GUIDE - V2.0 136

 addElement2["sequence"] = @"\";

 denyUrlSequencesCollection.Add(addElement2);

 serverManager.CommitChanges();

 }

 }

}

(Yakushev, 2008)

- Filtering Double –Encoded Requests

This attack technique consists of encoding user request parameters twice in hexadecimal format in
order to bypass security controls or cause unexpected behavior from the application. It's possible
because the webserver accepts and processes client requests in many encoded forms.

By using double encoding it’s possible to bypass security filters that only decode user input once. The
second decoding process is executed by the backend platform or modules that properly handle
encoded data, but don't have the corresponding security checks in place.

Attackers can inject double encoding in pathnames or query strings to bypass the authentication
schema and security filters in use by the web application.

There are some common characters sets that are used in Web applications attacks. For example,
Path Traversal attacks use “../” (dot-dot-slash) , while XSS attacks use “<” and “>” characters. These
characters give a hexadecimal representation that differs from normal data.

For example, “../” (dot-dot-slash) characters represent %2E%2E%2f in hexadecimal representation.
When the % symbol is encoded again, its representation in hexadecimal code is %25. The result from
the double encoding process ”../”(dot-dot-slash) would be %252E%252E%252F:

The hexadecimal encoding of “../” represents "%2E%2E%2f"

 Then encoding the “%” represents "%25"

OWASP CODE REVIEW GUIDE - V2.0 137

Double encoding of “../” represents "%252E%252E%252F"

If you do not want IIS to allow doubled-encoded requests to be served, use the following (IIS
Team,2007) :

<configuration>

 <system.webServer>

 <security>

 <requestFiltering

 allowDoubleEscaping="false">

 </requestFiltering>

 </security>

 </system.webServer>

</configuration>

- Filter High Bit Characters

This allows or rejects all requests to IIS that contain non-ASCII characters . When this occurs error
code 404.12. is displayed to the user . The UrlScan(IIS6 add-on) equivalent is
AllowHighBitCharacters.

<configuration>

 <system.webServer>

 <security>

 <requestFiltering

 allowHighBitCharacters="true">

 </requestFiltering>

 </security>

 </system.webServer>

</configuration>

OWASP CODE REVIEW GUIDE - V2.0 138

- Filter Based on File Extensions

Using this filter you can allow IIS to a request based on file extensions, the error code logged is 404.7.
The AllowExtensions and DenyExtensions options are the UrlScan equivalents.

<configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <fileExtensions allowUnlisted="true" >

 <add fileExtension=".asp" allowed="false"/>

 </fileExtensions>

 </requestFiltering>

 </security>

 </system.webServer>

 </configuration>

- Filter Based on Request Limits

When IIS rejects a request based on request limits, the error code logged is: • 404.13 if the content
is too long. • 404.14 if the URL is too large. • 404.15 if the query string is too long. This can be
used to limit a long query string or too much content sent to an application which you cannot change
the source code to fix the issue.

<configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <requestLimits

 maxAllowedContentLength="30000000"

 maxUrl="260"

OWASP CODE REVIEW GUIDE - V2.0 139

 maxQueryString="25"

 />

 </requestFiltering>

 </security>

 </system.webServer>

 </configuration>

- Filter by Verbs

When IIS reject a request based on this feature, the error code logged is 404.6. This corresponds to
the UseAllowVerbs, AllowVerbs, and DenyVerbs options in UrlScan. In case you want the application
to use only certain type of verb, it is necessary to firt set the allowUnlisted to ‘false’ and then set the
verbs that you would like to allow(see example)

 <configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <verbs allowUnlisted="false">

 <add verb="GET" allowed="true" />

 </verbs>

 </requestFiltering>

 </security>

 </system.webServer>

</configuration>

- Filter Based on URL Sequences

This feature defines a list of sequences that IIS reject when it is part of a request. When IIS reject a
request for this feature, the error code logged is 404.5.This corresponds to the DenyUrlSequences
feature in UrlScan. This is a very powerful feature. This avoids a given character sequence from ever
being attended by IIS:

OWASP CODE REVIEW GUIDE - V2.0 140

 <configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <denyUrlSequences>

 <add sequence=".."/>

 </denyUrlSequences>

 </requestFiltering>

 </security>

 </system.webServer>

 </configuration>

- Filter Out Hidden Segments

In case you want IIS to serve content in binary directory but not the bin, you can apply this
configuration.

<configuration>

 <system.webServer>

 <security>

 <requestFiltering>

 <hiddenSegments>

 <add segment="BIN"/>

 </hiddenSegments>

 </requestFiltering>

 </security>

 </system.webServer>

 </configuration>

OWASP CODE REVIEW GUIDE - V2.0 141

Password protection and sensitive information

The web.config files might include sensitive information in the connection strings such as database
passwords, mail server user names among others.

Sections that are required to be encrypted are:

<appSettings>. This section contains custom application settings.

<connectionStrings>. This section contains connection strings.

<identity>. This section can contain impersonation credentials.

<sessionState>. This section contains the connection string for the out-of-process session state
provider.

Passwords and user names contained in a <connectionstring> section should be encrypted. ASP.NET
allows you to encrypt this information by using the functionality aspnet_regiis. This utility is found in
the installed .NET framework under the folder

%windows%\Microsoft.NET\Framework\v2.0.50727

You can specify the section you need to encrypt by using the command:

aspnet_regiis -pef sectiontobeencryoted .

Encrypting sections in Web.Config file

Even though encrypting sections is possible, not all sections can be encrypted, specifically, sections
that are read before user code is run. The following sections cannot be encrypted:

OWASP CODE REVIEW GUIDE - V2.0 142

*<processModel>

*<runtime>

*<mscorlib>

*<startup>

*<system.runtime.remoting>

*<configProtectedData>

*<satelliteassemblies>

*<cryptographySettings>

*<cryptoNameMapping>

*<cryptoClasses>

Machine-Level RSA key container or User-Level Key Containers

Encrypting a single file has its disadvantages when this file is moved to another servers. In this case,
the user of an RSA key container is strongly advice. The RSAProtectedConfigurationProvider
supports machine-level and user-level key containers for key storage.

RSA machine key containers are stored in the following folder:

\Documents and Settings\All Users\Application Data\Microsoft\Crypto\RSA\MachineKey

- User Key Container

When the application that needs to be protected is in a shared hosting environment and protection of
sensitive data cannot be accessible to other applications, the user key container is strongly
recommended. In this case each application should have a separate identity. RSA user-level key
containers are stored in the following folder:

\Documents and Settings\{UserName}\Application Data\Microsoft\Crypto\RSA

IIS configurations

OWASP CODE REVIEW GUIDE - V2.0 143

Depending on the version of IIS that must be configured, it is important to revise some of its settings,
which can comprise security in the server.

- Trust level

The trust level is a set of Code Access Security permissions granted to an application within a hosting
environment. These are defined using policy files. Depending on the trust level that must be
configured, it is possible to grant FULL, HIGH, MEDIUM, LOW or MINIMAL level. The ASP.NET host
does not apply any additional policy to applications that are running at the full-trust level.

Example:

<system.web>

 <securityPolicy>

 <trustLevel name="Full" policyFile="internal"/>

 </securityPolicy>

</system.web>

- Lock Trust Levels

In the .NET framework web.config file is possible to lock applications from changing their trust level
This file is found at:

 C:\Windows\Microsoft.NET\Framework\{version}\CONFIG

The following example shows how to lock 2 different application configuration trust levels (MSDN,
2013)

<configuration>

 <location path="application1" allowOverride="false">

 <system.web>

 <trust level="High" />

 </system.web>

OWASP CODE REVIEW GUIDE - V2.0 144

 </location>

 <location path="application2" allowOverride="false">

 <system.web>

 <trust level="Medium" />

 </system.web>

 </location>

</configuration>

References

Yakushev Ruslan , 2008 "IIS 7.0 Request Filtering and URL Rewriting " available at
http://www.iis.net/learn/extensions/url-rewrite-module/iis-request-filtering-and-url-rewriting (Last
accessed on 14 July, 2013)

OWASP, 2009 "Double Encoding" available at https://www.owasp.org/index.php/Double_Encoding
(Last accessed on 14 July, 2013)

IIS Team, 2007 "Use Request Filtering " available at http://www.iis.net/learn/manage/configuring-
security/use-request-filtering (Last accessed on 14 July, 2013)

Aguilar Carlos ,2006 "The new Configuration System in IIS 7" available at
http://blogs.msdn.com/b/carlosag/archive/2006/04/25/iis7configurationsystem.aspx (Last accessed on
14 July, 2013)

MSDN, 2013 . How to: Lock ASP.NET Configuration Settings available at
http://msdn.microsoft.com/en-us/library/ms178693.aspx (Last accessed on 14 July, 2013)

4.12.2 Spring Config (Needs Content)

Lorem Ipsum

4.12.3 HTTP Headers (Needs Content)

OWASP CODE REVIEW GUIDE - V2.0 145

Lorem Ipsum

4.13 Tech-Stack Pitfalls (Needs Content)

Lorem Ipsum

4.14 Framework Specific Issues (Needs Content)

Lorem Ipsum

4.14.1 Spring

Spring Mass assignment

The mass assignment problem relates to the universal web framework pattern of automatic binding
request parameters into model objects. See also MVC/.NET section previously <link here>

Model objects are an object-oriented representation of user input. They provide methods to get, set
etc associated parameters from user input. The following frameworks provide a mechanism for
binding request parameters into request bound objects based on matching request parameter names
to object attribute names (based on matching public getter and setter methods).

1. .NET MVC --> Controller method Parameters

2. Struts 1 --> ActionForms

3. Struts 2 --> Action Attributes

4. spring mvc --> Command Object

5. Ruby Rails & Grails --> bound request parameters to objects

- Anti-Pattern

Example Code

 public class User{ <-- object to place request data

 public long id;

 public String fname;

OWASP CODE REVIEW GUIDE - V2.0 146

 public String lname;

 public boolean isAdmin;

 }

 <form action”/updateUser” method=”post” > <-- intened use

 <input name=”user.fname” />

 <input name=”user.lname” />

 </form>

The attacker may post a request such as

 <form action”/updateUser” method=”post” >

 <input name=”user.fname” value="Eoin" />

 <input name=”user.lname” value = "OWASP" />

 <input name=”user.isAdmin” = "True" /><-- injection

 </form>

This shall update the user Object isAdmin boolean even though the developer did not intend to do so.

What to look for

When reviewing ORM code such as applications using the frameworks above it is important to veify
they they are protected against mass binding attacks. It is suggested to look for the following...

1 Rails: In Ruby on Rails, attr_accessible allows you to specify which attributes of a model can be
altered via mass-assignment (most notably by update_attributes(attrs) and new(attrs)). Any attribute
names you pass as parameters will be alterable via mass-assignment, and all others won’t be.

Check config/application.rb for

OWASP CODE REVIEW GUIDE - V2.0 147

config.active_record.whitelist_attributes = true

And also at the top of each model object

 attr_accessible :fname, :lname

2 .NET MVC

Bind(include = "name") should be used to define which attributes can be updated.

[Bind(Include = "fname")]

 public class Enquiry

 {

 public string fname { get; set; }

 public boolean isAdmin{ get; set; }

 }

3 Grails: See http://blog.adamcreeger.com/2012/03/grails-rails-github-and-mass-assignment.html

4 Spring MVC: Use DataBinder.setAllowedFields()
http://static.springsource.org/spring/docs/current/javadoc-

OWASP CODE REVIEW GUIDE - V2.0 148

api/org/springframework/validation/DataBinder.html

4.14.2 Structs (Needs Content)

Lorem Ipsum

4.14.3 Drupal (Needs Content)

Lorem Ipsum

4.14.4 Ruby on Rails (Needs Content)

Lorem Ipsum

4.14.5 Django (Needs Content)

Lorem Ipsum

4.14.6 .NET Security / MVC

ASP.NET Security in MVC

Binding issues in MVC .NET

- A.K.A Over-Posting A.K.A Mass assignments

In MVC framework, mass assignments are a mechanism that allows us to update our models with
data coming in a request in HTTP form fields. As the data that needs to be updated comes in a
collection of form fields, a user could send a request and modify other fields in the model that may not
be in the form and the developer didn’t intend to be updated.

Depending on the models you create, there might be sensitive data that you would not like to be
modified. The vulnerability is exploited when a malicious user modifys a model’s fields, which are not
exposed to the user via the view, and the malicious user to change hidden model values adds
additional model parameters.

 public class user

OWASP CODE REVIEW GUIDE - V2.0 149

 {

 public int ID { get; set; } <- exposed via view

 public string Name { get; set; } <- exposed via view

 public bool isAdmin{ get; set; } <-hidden from view

 }

Corresponding view (HTML)

 ID: <%= Html.TextBox("ID") %>

 Name: <%= Html.TextBox("Name") %>

 <-- no isAdmin here!

The corresponding HTML for this model contain 2 fields: ID and Name. If an attacker adds the
isAdmin parameter to the form and submits they can change the model object above. So a malicious
attacker may change isAdmin=true

Recommendations:

-1 Use a model which does not have values the user should not edit.

-2 Use the bind method and whitelist attributes which can be updated.

-3 Use the controller.UpdateModel method to exclude certain attribute updates.

Anti-XSS

Traditional ASP.NET applications do not suffer from XSS attacks, contrary to MVC ASP.NET
applications. When MVC web apps are exposed to malicious XSS code, they will not throw an error
like the following one:

To avoid this vulnerability, make sure that use use the following code snippet:

OWASP CODE REVIEW GUIDE - V2.0 150

<%server.HtmlEncode(stringValue)%>

The HTMLEncode method applies HTML encoding to a specified string. This is useful as a quick
method of encoding form data and other client request data before using it in your Web application.
Encoding data converts potentially unsafe characters to their HTML-encoded equivalent.(MSDN,2013)

- Razor Syntax MVC3

An option to for XSS protection is the use of Razor syntax for ASP.NET MVC3 applications use the
following code for this purpose:

@message

- MVC4 anti XSS feature

in ASP.NET MVC4 It is possible to override the standard HTML encoder by using the XSS encoder
For this, download the code, compile it and add the library as a reference to the application.

In the web.config, add the following line in the <system.web> section:

<httpRuntime encoderType=

 "Microsoft.Security.Application.AntiXssEncoder, AntiXssLibrary"/>

- Sanitize object before saving to a database

The Anti XSS library contains a Sanitize object that can be called to clean the HTML before is stored
in a database in case the web application is using a WYSIWYG editor

example:

OWASP CODE REVIEW GUIDE - V2.0 151

 using Microsoft.Security.Application;

 ...

 ...

 string wysiwygData = "before <script>alert('bip ')</script> after ";

 string cleanData = Sanitizer.GetSafeHtmlFragment(wysiwygData);

Protection against SQL injections

The best solution to avoid this OWASP #1 in the top ten list of security vulnerabilities is to use
Parameterized queries .Equivalent to this solution, the use of Stored procedures is also a form of
parameterized queries, however the way you implement them could still be prone to vulnerabilities

- Parameter collections

Parameter collections such as SqlParameterCollection provide type checking and length validation. If
you use a parameters collection, input is treated as a literal value, and SQL Server does not treat it as
executable code, and therefore the payload can not be injected. Using a parameters collection lets
you enforce type and length checks. Values outside of the range trigger an exception. Make sure you
handle the exception correctly. Example of the SqlParameterCollection:

using System.Data;

using System.Data.SqlClient;

using (SqlConnection conn = new SqlConnection(connectionString))

{

 DataSet dataObj = new DataSet();

 SqlDataAdapter sqlAdapter = new SqlDataAdapter("StoredProc", conn);

 sqlAdapter.SelectCommand.CommandType = CommandType.StoredProcedure;

 //specify param type

 sqlAdapter.SelectCommand.Parameters.Add("@usrId", SqlDbType.VarChar, 15);

 sqlAdapter.SelectCommand.Parameters["@usrId "].Value = UID.Text; // Add data from user

 sqlAdapter.Fill(dataObj); // populate and execute proc

OWASP CODE REVIEW GUIDE - V2.0 152

}

- Stored procedures don’t always protect against SQL injection

Even though Stored procedures are a form of Parametarized queries, they do not offer total
protectioon agains SQL injections. The following code for example demonstrates this issue:

CREATE PROCEDURE dbo.RunAnyQuery

@parameter NVARCHAR(50)

AS

EXEC sp_executesql @parameter

GO

The above procedure shall execute any SQL you pass to it because is using unfiltered content from
the end user. The directive sp_executesql is a system stored procedure in Microsoft® SQL Server™

Lets pass it.

DROP TABLE ORDERS;

Guess what happens? So we must be careful of not falling into the “We’re secure, we are using stored
procedures” trap!

- Use an ORM(Object Relational Mapper)

ORM’s are a real blessing regarding protection against SQL injection. By default, the use of ORM will
automatically send all SQL request as parameterized queries, however, it’s important to keep in mind
that this form of security can be easily bypassed if the developer uses unparameterized HQL or Entity
SQL queries dynamically with string concatenations

Request Validation feature against XSS attacks

OWASP CODE REVIEW GUIDE - V2.0 153

The ASP .NET framework contains a validator framework, which has made input validation easier and
less error prone than in the past. This feature was added in the ASP.NET version 1.1, in addition this
feature is enabled by default. Once a malformed request containing any HTML tags in send, ASP.NET
will simply display an error as shown in the following figure

The validation solution for .NET also has client and server side functionality akin to Struts (J2EE).
What is a validator? According to the Microsoft (MSDN) definition it is as follows:

"A validator is a control that checks one input control for a specific type of error condition and displays
a description of that problem."

The main point to take out of this from a code review perspective is that one validator does one type
of function. If we need to do a number of different checks on our input we need to use more than one
validator. The .NET solution contains a number of controls out of the box:

• RequiredFieldValidator – Makes the associated input control a required field.

• CompareValidator – Compares the value entered by the user into an input control with the value
entered into another input control or a constant value.

• RangeValidator – Checks if the value of an input control is within a defined range of values.

• RegularExpressionValidator – Checks user input against a regular expression.

- Disadvantages

Unfortunately, this feature can also create issues when legitimate requests are sent by users who
need to submit data containing certain kind of characters such as brackets.

Another disadvantage is that this does not avoid any attacks originated from other application or if
stored in the database, neither will offer any protection when input is injected in HTML attributes.

- Use Microsft's Anti-XSS library

Unfortunately, HtmlEncode or validation feature is not enough to deal with XSS, especially if the user
input needs to be added to JavaScript code, tag attributes, XML or URL. In this case a good option is
the Anti-XSS library

MVC’s CSFR anti-forgery system

OWASP CODE REVIEW GUIDE - V2.0 154

This is one handy feature found in .NET which contra rest the #8 owasp top 10 security issue.

- Use Anti-forgery Helpers

There are 2 methods which a developer can use to avoid CSFR attacks, these are
Html.AntiForgeryToken() and the filter [ValidateAntiForgeryToken]. To use these features, call the
AntiForgeryToken method from within your form, and add the ValidateAntiForgeryTokenAttribute to
the action method you want to protect. A combination between the Html.AntiForgeryToken() and

Ajax.ActionLink is a recommended way to go in order to make sure that no attacker can send a false
deletion request

$.ajaxPrefilter(

 function (options, localOptions, jqXHR) {

 if (options.type !== "GET") {

 var token = GetAntiForgeryToken();

 if (token !== null) {

 if (options.data.indexOf("X-Requested-With") === -1) {

 options.data = "X-Requested-With=XMLHttpRequest" + (options.data === "") ? "" : "&" +
options.data;

 }

OWASP CODE REVIEW GUIDE - V2.0 155

 options.data = options.data + "&" + token.name + '=' + token.value;

 }

 }

 }

);

- Limitations

• Users must
accept cookies
otherwise the

[ValidateAntiForgeryToken] will deny their form’s posts

• Works only with POST request

• Can be bypassed if the application has XSS vulnerabilities since it will be possible to read
_RequestVerificationToken value

References

MSDN, 2013 - Server.HTMLEncode Method available at http://msdn.microsoft.com/en-
us/library/ms525347%28v=vs.90%29.aspx (last viewed: 2nd July, 2013)

OWASP CODE REVIEW GUIDE - V2.0 156

MSDN, 2013 HtmlHelper.AntiForgeryToken Method available at http://msdn.microsoft.com/en-
us/library/dd470175%28v=vs.108%29.aspx (last viewed: 2nd July, 2013)

MSDN, 2013 Anti-Cross Site Scripting Library available at http://msdn.microsoft.com/en-
us/security/aa973814.aspx (last viewed: 2nd July, 2013)

4.14.7 Security in ASP .NET applications

ASP.NET Security

Securing web applications in ASP.NET requires an integration of configurations between the .NET
framework and IIS. ASP.NET applications contains a web.config file where you can define many
access and privileges for example, but they alone are not sufficient to protect the resources of your
application. IIS plays a major role in protecting the website’s assets contained in it too. It is important
to understand the interaction between these components in order to implement proper securi

Integrating Authentication with IIS

Enable and configure the necessary type of authentication based on the security level required by
your application. ASP.NET membership and ASP.NET login controls implicitly work with forms
authentication.

The authentication methods used in IIS 7 are the following:

• Anonymous

• ASP.NET impersonation

• Basic

• Client certificate mapping,

• Digest

• Forms

• Windows Integrated Security (NTLM or Kerberos)

OWASP CODE REVIEW GUIDE - V2.0 157

ASP.NET configuration works only for its resources. Keep in mind that if you need to configure access
to resources of files contained in your application such as .txt, .gif, .jpg, these are done through the IIS
permissions. For example, even though the ASP.NET resources in a directory might be forbidden by a
Web.config file, users can still seethe files located in that directory if directory browsing is turned on
and no other restrictions are in place.

Reference

http://msdn.microsoft.com/en-us/library/bwd43d0x%28v=vs.85%29.aspx

4.14.7.1 Strongly Named Assemblies

Overview Strongly Named assemblies

During the build process either QA or Developers are going to publish the code into executable
formats. Usually this consists of an exe or and one or several DLL’s. During the build/publish process
a decision needs to be made to sign or not sign the code. Signing your code is called creating “strong
names” by Microsoft. If you create a project using Visual Studio and use Microsofts “Run code
analysis” most likely your will encounter a Microsoft design error if the code is not strong named;
“Warning 1 CA2210 : Microsoft.Design : Sign 'xxx.exe' with a strong name key.”

Code review needs to be aware if strong naming is being used, benefits and what threat vectors
strong naming helps prevent or understand the reasons for not using strong naming.

A strong name is a method to sign an assembly’s identity using its text name, version number, culture
information, a public key and a digital signature.(Solis, 2012)

OWASP CODE REVIEW GUIDE - V2.0 158

• Strong naming guarantees a unique name for that assembly.

• Strong names protect the version lineage of an assembly. A strong name can ensure that no one
can produce a subsequent version of your assembly. Users can be sure that a version of the
assembly they are loading comes from the same publisher that created the version the application
was built with.

The above two point are very important if you are going to use Global Assembly Cache (GAC).

• Strong names provide a strong integrity check and prevent spoofing. Passing the .NET Framework
security checks guarantees that the contents of the assembly have not been changed since it was
built. Note, however, that strong names in and of themselves do not imply a level of trust like that
provided, for example, by a digital signature and supporting certificate. If you use the GAC assemblies
remember the assemblies are not verified each time they load since the GAC by design is a locked-
down, admin-only store.

What strong names can’t prevent is a malicious user from stripping the strong name signature
entirely, modifying the assembly, or re-signing it with the malicious user’s key.

The code reviewer needs to understand how the strong name private key will be kept secure and
managed. This is crucible if you decide strong name signatures are a good fit for your organization.

If principal of least privilege is used so code is not or less susceptible to be access by the hacker and
the GAC is not being used strong names provides less benefits or no benefits at all.

How to use Strong Naming

- Signing tools

In order to create a Strongly name assembly there is a set of tools and steps that you need to follow

- Using Visual Studio

In order to use Visual Studio to create a Strongly Named Assembly, it is necessary to have a copy of
the public/private key pair file. Its is also possible to create this pair key in Visual Studio

OWASP CODE REVIEW GUIDE - V2.0 159

In Visual Studio 2005, the C#, Visual Basic, and Visual J# integrated development environments
(IDEs) allow you to generate key pairs and sign assemblies without the need to create a key pair
using Sn.exe(Strong Name Tool). These IDEs have a Signing tab in the Project Designer. . The use of
the AssemblyKeyFileAttribute to identify key file pairs has been made obsolete in Visual Studio 2005.

The following figure illustrates the process done by the compiler:

Using Strong Name tool

The Sign Tool is a command-line tool that digitally signs files, verifies signatures in files, or time
stamps files. The Sign Tool is not supported on Microsoft Windows NT, Windows Me, Windows 98, or
Windows 95. In case you aren't using the "Visual Studio Command Prompt" (Start >> Microsoft Visual
Studio 2010 >> Visual Studio Tools >> Visual Studio Command Prompt (2010)) you can locate sn.exe
at %ProgramFiles%\Microsoft SDKs\Windows\v7.0A\bin\sn.exe

The following command creates a new, random key pair and stores it in keyPair.snk.

sn -k keyPair.snk

The following command stores the key in keyPair.snk in the container MyContainer in the strong
name CSP.

sn -i keyPair.snk MyContainer

The following command extracts the public key from keyPair.snk and stores it in publicKey.snk.

sn -p keyPair.snk publicKey.snk

The following command displays the public key and the token for the public key contained in
publicKey.snk.

sn -tp publicKey.snk

The following command verifies the assembly MyAsm.dll.

sn -v MyAsm.dll

OWASP CODE REVIEW GUIDE - V2.0 160

The following command deletes MyContainer from the default CSP.

sn -d MyContainer

- Using the Assembly Linker(AI.exe)

This tool is automatically installed with Visual Studio and with the Windows SDK. To run the tool, we
recommend that you use the Visual Studio Command Prompt or the Windows SDK Command Prompt
(CMD Shell). These utilities enable you to run the tool easily, without navigating to the installation
folder. For more information, see Visual Studio and Windows SDK Command Prompts.

If you have Visual Studio installed on your computer: On the taskbar, click Start, click All Programs,
click Visual Studio, click Visual Studio Tools, and then click Visual Studio Command Prompt. -or- If
you have the Windows SDK installed on your computer: On the taskbar, click Start, click All Programs,
click the folder for the Windows SDK, and then click Command Prompt (or CMD Shell).

At the command prompt, type the following:

al sources options

- Remarks

All Visual Studio compilers produce assemblies. However, if you have one or more modules
(metadata without a manifest), you can use Al.exe to create an assembly with the manifest in a
separate file. To install assemblies in the cache, remove assemblies from the cache, or list the
contents of the cache, use the Global Assembly Cache Tool (Gacutil.exe).

The following command creates an executable file t2a.exe with an assembly from the t2.netmodule
module. The entry point is the Main method in MyClass.

al t2.netmodule /target:exe /out:t2a.exe /main:MyClass.Main

Use Assembly attributes

OWASP CODE REVIEW GUIDE - V2.0 161

You can insert the strong name information in the code directly. For this, dependingon wherethe key
file is located you can use AssemblyKeyFileAttribute or AssemblyKeyNameAttribute

Use Compiler options :use /keyfile or /delaysign

Safeguarding the key pair from developers is necessary to maintain and guarantee the integrity of the
assemblies. The public key is should be accessible, but access to the private key is restricted to only
a few individuals. When developing assemblies with strong names, each assembly that references the
strong-named target assembly contains the token of the public key used to give the target assembly a
strong name. This requires that the public key be available during the development process. You can
use delayed or partial signing at build time to reserve space in the portable executable (PE) file for the
strong name signature, but defer the actual signing until some later stage (typically just before
shipping the assembly). You can use /keyfile or /delaysign in C# and VB.NET

References

http://msdn.microsoft.com/en-us/library/wd40t7ad(v=vs.80).aspx

http://msdn.microsoft.com/en-us/library/c405shex(v=vs.110).aspx

http://msdn.microsoft.com/en-us/library/k5b5tt23(v=vs.80).aspx

http://msdn.microsoft.com/en-us/library/t07a3dye(v=vs.80).aspx

4.14.7.1.1 Round Tripping

Round Tripping

Round Tripping is a revese engineering technique that allow us to decompile an assembly from a
certain application. Ildasm.exe can be used for this purpose, and ILAsm is used to recompiled the
assembly. The MSIL Disassembler(Ildasm.exe) is a companion tool to the MSIL Assembler
(Ilasm.exe). Ildasm.exe takes a portable executable (PE) file that contains Microsoft intermediate
language (MSIL) code and creates a text file suitable as input to Ilasm.exe. This tool is automatically
installed with Visual Studio and with the Windows SDK.

The importance of Obfuscation

OWASP CODE REVIEW GUIDE - V2.0 162

As mentioned before , Round Tripping is indeed a technique used to reverse engineer assemblies.
Therefore, if you want to avoid your assemblies being reversed engineered or even worse, that the
code is victim of malicious manipulation using the Ildasm and Ilasm tools, then its is advisable to apply
it. There are different kinds of products that can be used for this purpose such as DeepSea, Crypto or
Dotfuscator.

4.14.7.1.2 How to prevent Round tripping

The importance of Obfuscation

As mentioned before , Round Tripping is indeed a technique used to reverse engineer assemblies.
Therefore, if you want to avoid your assemblies being reversed engineered or even worse, that the
code is victim of malicious manipulation using the ildasm and Ilasm tools, then its is advisable to apply
it. There are different kinds of products that can be used for this purpose such as DeepSea, Crypto or
Dotfuscator

Using Obfuscation

The most effective technique used to avoid reverse engineering and tampering of assemblies is the
use of Obfuscation. Visual Studio contains a version of Dotfuscator. This program is accessible by
choosing on the VS menu, Tools: Dotfuscator(Community Edition menu command). Note: This tools
are not available in Express versions

To obfuscate your assemblies :

• Build the project in VS Studio

 •Tools—> Dotfuscator Community Edition

• A screen prompts asking for which project type, choose 'Creat New Project' and click OK

• On the Input tab of the Dotfuscator interface, click 'Browse and Add assembly to list'

Browse for the compiled application

4.14.7.2 Setting the right Configurations

Introduction

OWASP CODE REVIEW GUIDE - V2.0 163

Securing resources in ASP.NET applications is a combination of configuration settings in the
Web.config file but also, its important to remember that the IIS configurations play also a big part on
this. It's an integrated approach which provides a total framework of security. The following highlights
the most important aspects of ASP.NET configuration settings within the web.config file. For a total
overview see chapter ASP.NET security

(https://www.owasp.org/index.php/CRV2_FrameworkSpecIssuesASPNet)

Secure Configuration Values

Sensitive Information saved in config files should be encrypted. Encryption keys stored in the
machineKey element for example or connection strings with username and passwords to login to
database.

Lock ASP.NET Configuration settings

Type of validation Control to use Description

Required entry RequiredFieldValidator Ensures that the user does not skip an entry.

Comparison to a
value

CompareValidator Compares a user's entry against a constant value,
against the value of another control (using a
comparison operator such as less than, equal, or greater
than), or for a specific data type.

Range checking RangeValidator Checks that a user's entry is between specified lower
and upper boundaries. You can check ranges within
pairs of numbers, alphabetic characters, and dates.

Pattern matching RegularExpressionValidator Checks that the entry matches a pattern defined by a
regular expression. This type of validation enables you
to check for predictable sequences of characters, such
as those in e-mail addresses, telephone numbers, postal
codes, and so on.

User-defined CustomValidator Checks the user's entry using validation logic that you
write yourself. This type of validation enables you to
check for values derived at run time.

OWASP CODE REVIEW GUIDE - V2.0 164

You can lock configuration settings in ASP.NET configuration files (Web.config files) by adding an
allowOverride attribute to a location element

Configure directories using Location Settings

Through the <location> element you can establish settings for specific folders and files. The Path
attribute is used to specify the file or subdirectory. This is done in the Web.config file example:

<location path="." >

 <section1 .../>

 <section2 ... />

 </location>

 <location path="Default Web Site" >

 <section1 … />

 <section2 … />

 </location

 <location path="Default Web Site/MyApplication/Admin/xyz.html" >

 <section1 ... />

 <section2 ... />

 </location>

Configure exceptions for Error Code handling

Showing and handling the correct error code when a user sends a bad request or invalid parameters
is an important configuration subject. Logging these errors are also an excellent help when analyzing
potential attacks to the application.

It is possible to configure these errors in the code or in the Web.Config file

The HttpException method Describes an exception that occurred during the processing of HTTP
requests. For example:

OWASP CODE REVIEW GUIDE - V2.0 165

if (string.IsNullOrEmpty(Request["id"]))

 throw new HttpException(400, "Bad request");

or in the Web.config file:

<configuration>

 <system.web>

 <customErrors mode="On" defaultRedirect="ErrorPage.html"

 redirectMode="ResponseRewrite">

 <error statusCode="400" redirect="BadRequest.html" />

 <error statusCode="404" redirect="FileNotFound.html" />

 </customErrors>

 </system.web>

</configuration>

Input validation

Anything coming from external sources can be consider as input in a web application. Not only the
user inserting data through a web form, but also data retrieved from a web service or database, also
headers sent from the browsers fall under this concept. A way of defining when input is safe can be
done through outlining a trust boundary.

Defining what is known as trust boundary can help us to visualize all possible untrusted inputs. One of
those are user input.ASP.NET has different types of validations depending on the level of control to be
applied. By default, web pages code is validated against malicious users. The following is a list types
of validations used (MSDN, 2013):

References

MSDN, 2013 "Securing ASP.NET Configurations" available at http://msdn.microsoft.com/en-
us/library/ms178699%28v=vs.100%29.aspx (Last Viewed, 25th July 2013)

OWASP CODE REVIEW GUIDE - V2.0 166

4.14.7.3 Authentication Options

.NET Authentication Controls

In the .NET, there are Authentication tags in the configuration file. The <authentication> element
configures the authentication mode that your applications use.

<authentication>

The appropriate authentication mode depends on how your application or Web service has been
designed. The default Machine.config setting applies a secure Windows authentication default as
shown below.

authentication Attributes:mode="[Windows|Forms|Passport|None]"

<authentication mode="Windows" />

Forms Authentication Guidelines

To use Forms authentication, set mode=“Forms” on the <authentication> element. Next, configure
Forms authentication using the child <forms> element. The following fragment shows a secure

<forms> authentication element configuration:

<authentication mode="Forms">

 <forms loginUrl="Restricted\login.aspx" Login page in an SSL protected folder

 protection="All" Privacy and integrity

 requireSSL="true" Prevents cookie being sent over http

 timeout="10" Limited session lifetime

 name="AppNameCookie" Unique per-application name

 path="/FormsAuth" and path

 slidingExpiration="true" > Sliding session lifetime

 </forms>

</authentication>

Use the following recommendations to improve Forms authentication security:

OWASP CODE REVIEW GUIDE - V2.0 167

• Partition your Web site.

• Set protection=“All”.

• Use small cookie time-out values.

• Consider using a fixed expiration period.

• Use SSL with Forms authentication.

• If you do not use SSL, set slidingExpiration = “false”.

• Do not use the <credentials> element on production servers.

• Configure the <machineKey> element.

• Use unique cookie names and paths.

Classic ASP

For classic ASP pages, authentication is usually performed manually by including the user information
in session variables after validation against a DB, so you can look for something like:

Session ("UserId") = UserName

Session ("Roles") = UserRoles

4.14.7.4 Code Review for Managed Code - .Net 1.0 and up

Code Review Manage Code

.NET Managed code is less vulnerable to common vulnerabilities found in unmanaged code such as
Buffer Overflows and memory corruption however there could be issues in the code that can affect
performance and security. The following is a summary of the recommended practices to look for
during the code review. Also, it is worth mentioning some tools that can make the work easier on this
part and they can help you understand and pin point flaws in your code

Code Access Security

OWASP CODE REVIEW GUIDE - V2.0 168

This supports the execution of semi-trusted code, preventing several forms of security threats. The
following is a summary of possible vulnerabilities due to improper use of Code Access security:

(MSDN, 2013)

- Declarative security

Use declarative security instead of imperative whenever possible. Example of declarative
syntax(MSDN[2], 2013):

[MyPermission(SecurityAction.Demand, Unrestricted = true)]

 public class MyClass

 {

 public MyClass()

 {

 //The constructor is protected by the security call.

 }

 public void MyMethod()

 {

 //This method is protected by the security call.

 }

 public void YourMethod()

 {

 //This method is protected by the security call.

 }

}

Unmanaged Code

Even though C# is a strong type language, it is possible to use unmanaged code calls by using the
‘unsafe’ code. “Check that any class that uses an unmanaged resource, such as a database

OWASP CODE REVIEW GUIDE - V2.0 169

connection across method calls, implements the IDisposable interface. If the semantics of the object
are such that a Close method is more logical than a Dispose method, provide a Close method in
addition to Dispose”.

Exception handling

Manage code should use exception handling for security purposes among other reasons. Make sure
that you follow these recommendations:

• Avoid exception handling in loops, use try/catch block if it is necessary.

• Identify code that swallows exceptions

• Use exceptions handling for unexpected conditions and not just to control the flow in the application

Tools

- FxCop

FxCop is an analysis tool that analyses binary assemblies, not source code. The tool has a
predefined set of rules and it is possible to configure and extend them. Some of the available rules
regarding security are(CodePlex, 2010):

EnableEventValidationShouldBeTrue

Verifies if the EnableEventValidation directive is disabled on a certain page

ValidateRequestShouldBeEnabled

Verifies if the ValidateRequest directive is disabled on a certain page.

ViewStateEncryptionModeShouldBeAlways

Verifies if the ViewStateEncryptionMode directive is not set to Never on a certain page.

EnableViewStateMacShouldBeTrue

Verifies if the EnableViewStateMac directive is not set to false on a certain page.

OWASP CODE REVIEW GUIDE - V2.0 170

EnableViewStateShouldBeTrue

Verifies if the EnableViewState directive is not set to false on a certain page.

ViewStateUserKeyShouldBeUsed

Verifies if the Page.ViewStateUserKey is being used in the application to prevent CSRF.

DebugCompilationMustBeDisabled

Verifies that debug compilation is turned off. This eliminates potential performance and

security issues related to debug code enabled and additional extensive error messages being

returned.

CustomErrorPageShouldBeSpecified

Verifies that the CustomErrors section is configured to have a default URL for redirecting

uses in case of error.

FormAuthenticationShouldNotContainFormAuthenticationCredentials

Verifies that no credentials are specified under the form authentication configuration.

EnableCrossAppRedirectsShouldBeTrue

Verifies that system.web.authentication.forms enableCrossAppRedirects is set to true. The

settings indicate if the user should be redirected to another application url after the

authentication process. If the setting is false, the authentication process will not

allow redirection to another application or host. This helps prevent an attacker to force the

user to be redirected to another site during the authentication process. This attack is

commonly called Open redirect and is used mostly during phishing attacks.

FormAuthenticationProtectionShouldBeAll

Verifies that the protection attribute on the system.web.authentication.forms protection is

OWASP CODE REVIEW GUIDE - V2.0 171

set to All which specifies that the application use both data validation and encryption to \

help protect the authentication cookie.

FormAuthenticationRequireSSLShouldBeTrue

Verifies that the requireSSL attribute on the system.web.authentication.forms configuration

element is set to True which forces the authentication cookie to specify the secure attribute.

This directs the browser to only provide the cookie over SSL.

FormAuthenticationSlidingExpirationShouldBeFalse

Verifies that system.web.authentication.forms slidingExpiration is set to false when the site

is being served over HTTP. This will force the authentication cookie to have a fixed timeout

value instead of being refreshed by each request. Since the cookie will traverse over clear

text network and could potentially be intercepted, having a fixed timeout value on the cookie

will limit the amount of time the cookie can be replayed. If the cookie is being sent only

over HTTPS, it is less likely to be intercepted and having the slidingExpiration setting to

True will cause the timeout to be refreshed after each request which gives a better user

experience.

HttpCookiesHttpOnlyCookiesShouldBeTrue

Verifies that the system.web.httpCookies httpOnlyCookies configuration setting is set to True

which forces all cookies to be sent with the HttpOnly attribute.

HttpCookiesRequireSSLShouldBeTrue

Verifies that the system.web.httpCookies requireSSL configuration is set to True which forces

all cookies to be sent with the secure attribute. This indicates the browser to only provide

the cookie over SSL.

TraceShouldBeDisabled

OWASP CODE REVIEW GUIDE - V2.0 172

Verifies that the system.web.trace enabled setting is set to false which disables tracing. It

is recommended to disable tracing on production servers to make sure that an attacker cannot

gain information from the trace about your application. Trace information can help an attacker

probe and compromise your application.

AnonymousAccessIsEnabled

Looks in the web.config file to see if the authorization section allows anonymous access.

RoleManagerCookieProtectionShouldBeAll

Verifies that the system.web.rolemanager cookieProtection is set to All which enforces the

cookie to be both encrypted and validated by the server.

RoleManagerCookieRequireSSLShouldBeTrue

Verifies that the system.web.rolemanager cookieRequireSSL attribute is set to True which

forces the role manager cookie to specify the secure attribute. This directs the browser to

only provide the cookie over SSL.

RoleManagerCookieSlidingExpirationShouldBeTrue

Verifies that the system.web.rolemanager cookieSlidingExpiration is set to false when the site

is being served over HTTP. This will force the authentication cookie to have a fixed timeout

value instead of being refreshed by each request. Since the cookie will traverse over clear

text network and could potentially be intercepted, having a fixed timeout value on the cookie

will limit the amount of time the cookie can be replayed. If the cookie is being sent only

over HTTPS, it is less likely to be intercepted and having the slidingExpiration setting to

True will cause the timeout to be refreshed after each request which gives a better user

experience.

PagesEnableViewStateMacShouldBeTrue

Verifies that the viewstate mac is enabled.

OWASP CODE REVIEW GUIDE - V2.0 173

PagesEnableEventValidationMustBeTrue

Verifies that event validation is enabled.

HttpRuntimeEnableHeaderCheckingShouldBeTrue

Verifies that the system.web.httpRuntime enableHeaderChecking attribute is set to true. The

setting indicates whether ASP.NET should check the request header for potential injection

attacks. If an attack is detected, ASP.NET responds with an error. This forces ASP.NET to

apply the ValidateRequest protection to headers sent by the client. If an attack is detected

the application throws HttpRequestValidationException.

PagesValidateRequestShouldBeEnabled

Verify that validateRequest is enabled.

PagesViewStateEncryptionModeShouldBeAlways

Verifies that the viewstate encryption mode is not configured to never encrypt.

CustomErrorsModeShouldBeOn

Verifies that the system.web.customErrors mode is set to On or RemoteOnly. This disable

detailed error message returned by ASP.NET to remote users.

MarkVerbHandlersWithValidateAntiforgeryToken

Verifies that ValidateAntiforgeryTokenAttribute is used to protect against potential CSRF

attacks against ASP.NET MVC applications.

- OWASP O2 platform(VisualStudio C# REPL - O2 Platform (v5.1))

The O2 platform represents a new paradigm for how to perform, document and distribute Web
Application security reviews. O2 is designed to Automate Application Security Knowledge and
Workflows and to Allow non-security experts to access and consume Security Knowledge. We

OWASP CODE REVIEW GUIDE - V2.0 174

strongly recommend it to .NET developers since this tool helps you identify current security issues in
the framework.(Cruz, 2013)

O2 Platform is also available as a VisualStudio Extension which you can download from VisualStudio
Gallery (see VisualStudio C# REPL - O2 Platform) or directly using VisualStudio's Extension Manager:
http://visualstudiogallery.msdn.microsoft.com/295fa0f6-37d1-49a3-b51d-ea4741905dc2

References

MSDN 2013 "Code Access Security" available at http://msdn.microsoft.com/en-
us/library/33tceax8.aspx (Last viewed 25th July, 2013)

MSDN[2], 2013, "Declarative Security" available at http://msdn.microsoft.com/en-
us/library/kaacwy28.aspx (Last viewed 25th July, 2013)

CodePlex, 2010 "Fxcop ASP.NET Security Rules" Available at
http://fxcopaspnetsecurity.codeplex.com/ (Last viewed 25th July, 2013)

Cruz, D. 2013 OWASP O2 Platform, available at
https://www.owasp.org/index.php/OWASP_O2_Platform (Last viewed 25th July, 2013)

4.14.7.5 Using OWASP Top 10 as your guideline

Using OWASP TOP 10 as your guideline

The OWASP TOP 10 (https://www.owasp.org/index.php/Top_10_2013-Top_10)is a detailed list of the
highest security risks web application faces. It help us identify the most critical security threats facing
organizations. Performing a Code review efficiently requires using a model or framework that help us
identify these issues quickly. Consequently, OWASP TOP 10 is one of these guides that provides us
with the necessary information to implement proper Code Review.

Applying OWASP TOP 10 to ASP.NET code review

The following table contains OWASP TOP 10 - 2013 guideline and how you can apply this during your
code review

OWASP CODE REVIEW GUIDE - V2.0 175

OWASP TOP 10 risk Description What to look for in the code

A1 Injection Injection flaws, such as SQL, OS, and
LDAP injection occur when untrusted
data is sent to an interpreter as part of a
command or query. The attacker’s
hostile data can trick the interpreter into
executing unintended commands or
accessing data without proper
authorization.

● SQL queries are parameterized and that any input
used in a SQL query is validated.

● Look for implementation of Parameter collections

● If using Stored procedures that GRANT proper
permissions and avoids using unfiltered content
from user

● If using LDAP services , check that clear text
passwords and authentication is not used in the code

A2 Broken Authentication
and Session Management

Application functions related to
authentication and session management
are often not implemented correctly,
allowing attackers to compromise
passwords, keys, or session tokens, or
to exploit other implementation flaws to
assume other users’ identities.

● No use of encryption to save passwords

● Clear-text credentials in web.config files

● Clear connectionstrings without encryption

● Proper implementation of <Authentication> en
<Authorization> property in web.config files

● Never use "none" for the <protection> attribute
within <Forms> property in web.config file

● Form element Encryption property: ASP.NET
encrypts the cookie, but is not validate it. This may
leave your application open to attack.

● Form element Validation: ASP.NET validates the
cookie, but does not encrypt it. This can uncover
information to an attacker.

● Look for failure to limit database access and
inadequate separation of privileges

● Connectionstrings without setting a password such
as

Server=.\SQLExpress;AttachDbFilename=|DataDir
ectory|database.mdf;Trusted_Connection=Yes;

A3 Cross-Site Scripting
(XSS)

XSS flaws occur whenever an
application takes untrusted data and
sends it to a web browser without
proper validation or escaping. XSS
allows attackers to execute scripts in the
victim’s browser which can hijack user
sessions, deface web sites, or redirect

● Check for implementations of RequestValidator
method

● proper escape of characters

● Implementation of Microsoft Anti-XSS library

● If using MVC, make sure you implement

OWASP CODE REVIEW GUIDE - V2.0 176

the user to malicious sites HtmlEncode method

A4 Insecure Direct Object
References

A direct object reference occurs when a
developer exposes a reference to an
internal implementation object, such as
a file, directory, or database key.
Without an access control check or
other protection, attackers can
manipulate these references to access
unauthorized data.

● Filtering Requests and URL rewriting in IIS
configurations

● Check configuration of Trust levels and Code
Access security permission

● Check Authorization and Authentication settings

A5-Security
Misconfiguration

Security misconfiguration can happen
at any level of an application stack,
including the platform, web server,
application server, database,
framework, and custom code.
Developers and system administrators
need to work together to ensure that the
entire stack is configured properly.
Automated scanners are useful for
detecting missing patches,
misconfigurations, use of default
accounts, unnecessary services, etc.

IIS configurations:

● Proper authorization and authentication
configuration in web.config,Machine config ,
ApplicationHost.config

SQL (server) code:

● GRANT permissions for executing store procedures

● Privilege of application SQL account to authenticate
into database

Protect assemblies:

● Implementation of Obfuscation for assemblies

● Prevention of Round tripping

● Always check the MD5 hashes of the .NET
Framework assemblies to prevent the possibility of
rootkits in the framework. . Checking the MD5
hashes will prevent using altered assemblies on a
server or client machine. See File:Presentation -
.NET Framework Rootkits - Backdoors Inside Your
Framework.ppt

A6-Sensitive Data Exposure The most common flaw is simply not
encrypting sensitive data. When crypto
is employed, weak key generation and
management, and weak algorithm usage
is common, particularly weak password
hashing techniques. Browser
weaknesses are very common and easy
to detect, but hard to exploit on a large
scale. External attackers have difficulty
detecting server side flaws due to
limited access and they are also usually
hard to exploit.

● Encryption of sensitive data in config files

● Salting passwords

● Proper implementation of Secure Encryption
algorithms

● Look for hard-coded secrets in code by looking for
variable names such as "key", "password", "pwd",
"secret", "hash", and "salt"

OWASP CODE REVIEW GUIDE - V2.0 177

A7-Missing Function Level
Access Control

Applications do not always protect
application functions properly.
Sometimes, function level protection is
managed via configuration, and the
system is misconfigured. Sometimes,
developers must include the proper
code checks, and they forget. Detecting
such flaws is easy. The hardest part is
identifying which pages (URLs) or
functions exist to attack.

● Proper configuration of Machine level/User level
RSA key container

● Proper Trust Levels configurations

● Use of Strong named assemblies

● Use of Assembly Attributes

● Proper configuration of folder/ CRUD access
permissions of web content files

● Search for the use of asserts, link demands, and
allowPartiallyTrustedCallersAttribute (APTCA).

A8-Cross-Site Request
Forgery (CSRF)

A CSRF attack forces a logged-on
victim’s browser to send a forged
HTTP request, including the victim’s
session cookie and any other
automatically included authentication
information, to a vulnerable web
application. This allows the attacker to
force the victim’s browser to generate
requests the vulnerable application
thinks are legitimate requests from the
victim.

● Use of Anti-forgery Helpers,
Html.AntiForgeryToken() and the filter
[ValidateAntiForgeryToken]

● Implementation of Log Out functionality

A9-Using Components with
Known Vulnerabilities

Components, such as libraries,
frameworks, and other software
modules, almost always run with full
privileges. If a vulnerable component is
exploited, such an attack can facilitate
serious data loss or server takeover.
Applications using components with
known vulnerabilities may undermine
application defenses and enable a range
of possible attacks and impacts.

● Check version of .NET framework

● Check for found vulnerabilities in the Framework
used on the application

● If using components such as .NETNuke or NuGEt
libraries check for vulnerabilities in these.

A10-Unvalidated Redirects
and Forwards

Web applications frequently redirect
and forward users to other pages and
websites, and use untrusted data to
determine the destination pages.
Without proper validation, attackers can
redirect victims to phishing or malware
sites, or use forwards to access
unauthorized pages.

● Simply avoid using redirects and forwards

● MVC1 and 2 are vulnerable for
redirections,therefore proper implementation of
validation in returnUrl parameters is essential

● If user input can’t be avoided, ensure that the
supplied value is valid, appropriate for the
application, and is authorized for the user.

OWASP CODE REVIEW GUIDE - V2.0 178

4.14.7.6 Code review for Unsafe Code (C#)

C# Unsafe Code

Even though C# has a strong memory management infrastructure, there will be times when is
necessary to direct access memory

• Dealing with existing structures on disk

• Advanced COM or Platform Invoke scenarios that involve structures with pointers in them

• Performance-critical code (Microsoft, 2009)

Microsoft strongly discourages the use of the unsafe code when this is not necessary. It is clear that
even when using unsafe code might improve performance in the program, the risks might overcome
the benefits. Definitely, this is no area for inexperienced programmers.

Unsafe is used by declaring the “unsafe” keyword in the program code. For example:

class UnsafeTest {

 // Unsafe method: takes pointer to int:

 unsafe static void SquarePtrParam(int* p)

 {

 *p *= *p;

 }

 unsafe static void Main()

 {

 int i = 5;

 // Unsafe method: uses address-of operator (&):

 SquarePtrParam(&i);

OWASP CODE REVIEW GUIDE - V2.0 179

 Console.WriteLine(i);

 }

}

// Output: 25

Risks of using Unsafe Code

Major risk involves

• Buffer overflows

• Unverifiable code

• Pointer errors

References

Microsoft, 2009 , Unsafe Code , available athttp://msdn.microsoft.com/en-
us/library/aa288474%28v=VS.71%29.aspx (accessed on 01-07-2013)

OWASP CODE REVIEW GUIDE - V2.0 180

4.14.8 PHP Specific Issues (Needs Content)

Lorem Ipsum

4.14.9 Classic ASP

Unlike Java and .NET, classic ASP pages do not have structured error handling in try-catch blocks.
Instead they have a specific object called "err". This make error handling in a classic ASP pages hard
to do and prone to design errors on error handlers, causing race conditions and information leakage.
Also, as ASP uses VBScript (a subtract of Visual Basic), sentences like "On Error GoTo label" are not
available.

Vulnerable Patterns for Error Handling

- Page_Error

Page_Error is page level handling which is run on the server side. Below is an example but the error
information is a little too informative and hence bad practice.

The text in the example above has a number of issues: Firstly, it redisplay the HTTP request to the
user in the form of Request.Url.ToString() Assuming there has been no data validation prior to this
point, we are vulnerable to cross site mscripting attacks!! Secondly the error message and stack trace
is displayed to the user using Server.GetLastError().ToString() which divulges internal information
regarding the application.

4.14.10 C# (Needs Content)

Lorem Ipsum

4.14.11 C/C++ (Needs Content)

Lorem Ipsum

4.14.12 Objective C (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 181

4.14.13 Java (Needs Content)

Secure configurations in Web.xml

The Web.xml file is the main configuration document responsible for securing configurations in Java
Applications. The following section information is based on the article written by Frank Kim(2010)
which describes important configuration necessary to protect them.

Configure Custom Error pages

All errors generated by the application, such as 404, 500 etc, must be configured in order to redirect
the user to a proper Error page instead of allowing him to see the errors generated by the application.
This can serve as a starting point to an attacker to reverse engineer the application and create a
specific attack using this information

<error-page>

<error-code>505</error-code>

<location>/error/error.html</location>

</error-page>

Protect data in transit

In order to secure sensitive data, is essential to secure the communication channel and sessions
using SSL. Once this has been configured in the server, doesn’t mean that it will be automatically be
setup in the web application the developer is trying to secure. For this purpose, it is essential to add in
the web.xml file the following configuration(Kim, 2010) :

<security-constraint>

...

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

OWASP CODE REVIEW GUIDE - V2.0 182

</security-constraint>

Configuring proper Authentication and Authorization to directories

Failure to configure proper authentication and authorization of directories, will allow anonymous users
to see unprotected files of the web application. Therefore, consider always to set-up proper access
controls in the following sections. The following code, for example, makes sure that the ‘Accountant’
role, is the only one able to access directory “accounting”

<security-constraint>

<web-resource-collection>

<web-resource-name>accounting</web-resource-name>

<url-pattern>/accounting/*</url-pattern>

…

</web-resource-collection>

<auth-constraint>

<role-name>accountant</role-name>

</auth-constraint>

</security-constraint>

Configure http methods

Allow only the necessary http methods to execute in the application, such as the case of GET and
POST requests. If the methods are not overtly listed are by default allowed. This will allow an attacker
to bypass the web.xml configuration. By removing <http-method> elements from the web.xml and this
will offer the proper security.

Use Secure Flag

Make sure that the cookie is created using the seucre flag, otherwise exposes the session cookie to
hijacking.

<session-config>

<cookie-config>

OWASP CODE REVIEW GUIDE - V2.0 183

<secure>true</secure>

</cookie-config>

</session-config>

Setting a time out session

Undefined time out sessions allows hackers to execute CRSF attacks and hijacking the session make
sure that <session-timeout> property is set to a time (in minutes)

References

Fran Kim, 2010 "Seven Security (Mis)Configurations in Java web.xml Files" available at
http://software-security.sans.org/blog/2010/08/11/security-misconfigurations-java-webxml-files/
accessed on 4rd October 2013

4.14.14 Android (Needs Content)

Lorem Ipsum

4.14.15 Coldfusion (Needs Content)

Lorem Ipsum

4.14.16 CodeIgniter (Needs Content)

Lorem Ipsum

OWASP CODE REVIEW GUIDE - V2.0 184

5 Security code review for Agile development
Some definitions about Agile

The Agile name is an umbrella for quite a lot of practices that range from programming, to testing, to
project management and everything in between. There are many flavors of agile, perhaps as many as
practitioners. It is like an heterogeneous reference framework and you are free to use what you want.

Agile has some key practices that could affect the way the code is reviewed. First, when the review is
done and then, the code itself.

Agile Development is well suited for code review, as two of its practices are "pair programming" and
"peer review". AD incorporates code review in their self, in what traditionally was seem as another
phase.

- Life Cycle

Agile blurs the difference between developing and testing, and so does with code review. It is not an
external activity. Agile tries to keep the code testing and review as near as possible to the
development phase, there is no such thing as the develop, test, code review cycle.

It is a common practice to define short development cycles. At the end of each one, all the code must
be production quality code. It can be incomplete, but it must add some value. That affects the review
process as it must be continuous.

- Pair Programming

This technique is quite controversial, but when it is adopted it has the benefits of making better code,
as there is one programmer supervising cooperatively the other one's work. If both programmers
know this guide, they will apply it continuously.

- Peer Review

This one is enforced by the usage of tools like Jenkins that ask another user for a code review before
committing to the versioning system.

The role of testers...

- Clean Code and "Smells"

OWASP CODE REVIEW GUIDE - V2.0 185

The agile community is very committed to code quality...

The Agile Ecosystem

 bdd--+

 | |

 tdd---+ |

 | | |

 +----+--> pair programming --------+--> peer review -----> continuous integration

 | (collective ownership) |

 +--> individual programming ---+

Code Reviewing an Agile Project

If you are going to review an Agile Team project code, the best thing that you can do is give this guide
to that Team as early as possible and most of your work will be done for you. Or better yet, integrate
to the Team.

Code review must be done at least at the end of every user story and be very fast in order to not
introduce delays and detect any error as soon as possible. It's better to do that in every commit to the
code repository. That is the reason that peer review is the preferred method for agile code review.
Nevertheless, as security review requires some extra specialization, perhaps the best way is to
integrate the security code reviewer with the Team.

Tests

Agile projects tend to use a lot of automated testing, in order to review an Agile Project, you will have
to extend the review to the tests.

Some guide taken from ...

• Are there enough tests?

• Is the code covered by the tests? Code coverage measure main value is to find unused code.

• Are there the trivial tests? They are as needed as any other test.

OWASP CODE REVIEW GUIDE - V2.0 186

• Are there commented out tests? Commented out tests means that some one made a test that the
code could not pass or take a long time to run.

• Are boundary conditions tested? These are the tests around maximum and minimum values or near a
change in a condition.

• Are bugs exhaustively tested? That is, is an off-by-one bug is found, are there boundary tests for that
condition?

• Are the test automatic? If the tests require manual intervention, they will not be run.

• Do the tests conform to F.I.R.S.T.?

 Fast: a slow test is a candidate for removal, as it slows down the "make test, implement, test,
refactor" cycle.

 Independent: one test can not depend on the execution of another one, the order should not matter.

 Repeatable: one test should give always the same result in any environment if nothing has changed
in the code.

 Self-validating: the result of a test should be Pass or Fail, nothing else. There should not be any
manual intervention needed.

 Timely: the test should be written before the code. That can not be detected with code review, but
you can always see the logs of the versioning system.

Other Agile Resources

- The role of testing

It is so fundamental, that the xDD pervades Agile, test first, test earlier

- Continuous integration

it triggers the tests and often static code analysis too. It makes integration problems arise very
quickly.

- The role of automatic static code analysis in the Agile Methodologies

OWASP CODE REVIEW GUIDE - V2.0 187

TBD

- The XDD

There are many agile practices related to what drives the development of a project, what they have in
common is that they could generate testing code. As a security practicioner, there are two aspects of
interest. One, sometimes useful is called "test coverage" and it is automatically calculated. 100% code
coverage does not mean a good coverage neither a 60% a bad one. It is very difficult to measure the
second aspect, the quality of the test. There is possitive testing, that aims at the added value of every
piece of software and negative testing, related to bugs and security.

- Test Driven Development

TDD is the practice of making the test before coding, it is the extremme application of the "test early"
principle. The idea is that the code always will be tested as the test predates the code itself. A very
important side effect is that it forces to simplify the code to make it testeable. It could be very low level
with very isolated components, called "unit testing" and high level, when it tests clusters of interrelated
components, called "functional testing".

To read more about code coverage: [1]

- Behavior Driven Development

This practice builds upon TDD, providing an interface to non-specialists users, shaping the tests
around full blown scenarios. As TDD, it generates testing code.

- Domain Driven Design

This practice consist of... It does not generate code itself, but the architecture. It is very popular
among the Agile people, so it is very important to be familiar with. Perhaps the most useful concept is
"ubiquitous language".

- Refactoring

Refactoring is the art of changing the code with out changing its behavior. In order to refactor, there
must exists a rich battery of tests.

OWASP CODE REVIEW GUIDE - V2.0 188

The problem with refactoring is that thanks to the heavy testing, you can trust that the interface does
not change, but behind it, the code can be very volatile. You have to review the code continously,
another argument for peer review and automatic static analysis.

References and sources

Clean Code: A handbook for Agile Software Craftsmanship - Robert C. Martin

http://groups.yahoo.com/group/foro-agiles/

http://martinfowler.com/articles/continuousIntegration.html

http://martinfowler.com/bliki/TestCoverage.html

not used http://refactoring.com/

not used http://dddcommunity.org/

6 Code Review Tools
Overview

As discussed in Code Review Guide there are many reasons to automate the process of code
reviews within the organization SDLC practices. We won't review all those reasons here again but we
would like to share with the reader a list of the tools both commercial and open source. OWASP is
vendor natural for that reason the vendors themselves supply the text below unless otherwise stated.
OWASP does not endorse commercial or open source tools outside of OWASP own projects.

Commercial Code Review Tools

- Crucible by Atlassian Software

https://www.atlassian.com/software/crucible/overview

- Begin Atlassian supplied description of their Code Review tool

Crucible is Atlassian’s on-premises code review solution for enterprise teams. Crucible makes it easy
to review code changes, make comments and record outcomes thoroughly and efficiently. It
encourages developers to carry out more code reviews – improving code quality and fostering
collaboration. It is code review made easy for Subversion, CVS, Perforce and other systems.

OWASP CODE REVIEW GUIDE - V2.0 189

The flexible code review process allows you to configure your reviews based on workflows or
participants. Whether used to perform ad-hoc reviews or in a formal process, Crucible removes the
administrative overhead and enables distributive teams to work together. As reviews are inherently
iterative, Crucible’s fully threaded comments let teams discuss code regardless of time and location
and provide comments directly on specific source lines and files.

When using Crucible, individuals can create reviews directly from the command line, build quick
reviews with cut-and-paste snippets and perform one-click reviews from changesets or issues. These
reviews can be carried out before check-ins, ensuring the quality of code going into production. As
files are always kept up-to-date, developers do not have to worry they are reviewing code that is
outdated. With the added bonus of notifications & reminders, audit trails, and reports, Crucible is here
to help you produce the best source code possible.

End Atlassian supplied description of their Code Review tool

Open Source Code Review Tools

http://www.reviewboard.org

5867357813049

ISBN 978-1-304-58673-5
90000

The Code Review Guide Book was first published in 2008 with the idea of having code

reviews and testing in one volume.

This version of the Code Review Guide Book was started in April of 2013 wiith a small

group of volunteers committeed to updating the information contained in the guide book.

2013 Edition

© 2013 OWASP Foundation

This document is released under the Creatvive Commons ATtribution-­ShareAlike 3.0

license. For any reuse or distribution, you must make clear to others the license terms of

this work.

Cover photo: Black wasp. http://www.morguefile.com/archive/display/604130

OWASP Foundation

Code Review Guide Book
v. 2.0 ALPHA

