

	 	

	

	

CIS	Oracle	Cloud	Infrastructure	Container	
Engine	for	Kubernetes	(OKE)	Benchmark	
	 v1.0	-	11-12-2020																																																											

	

1	|	P a g e 	
	

Terms	of	Use	
Please see the below link for our current terms of use:
https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/	

	 	

2	|	P a g e 	
	

Table	of	Contents	

Terms	of	Use	...	1

Overview	..	6

Intended	Audience	..	6

Consensus	Guidance	...	6

Typographical	Conventions	..	7

Assessment	Status	...	7

Profile	Definitions	..	8

Acknowledgements	...	9

Recommendations	...	10

1	Control	Plane	Components	...	10

2	Control	Plane	Configuration	...	11

2.1	Authentication	and	Authorization	..	12

2.1.1	Client	certificate	authentication	should	not	be	used	for	users	(Manual)	12

2.1.2	Ensure	OKE	service	level	admins	are	created	to	manage	OKE	(Manual)	14

2.2	Authentication	and	Authorization	..	17

2.2.1	Client	certificate	authentication	should	not	be	used	for	users	(Manual)	17

2.2.2	Ensure	OKE	service	level	admins	are	created	to	manage	OKE	(Manual)	19

2.3	Logging	..	22

2.3.1	Ensure	access	to	OCI	Audit	service	Log	for	OKE	(Automated)	22

1.1.1 Using	Oracle	Cloud	Infrastructure	Console	...	22

2.3.2	Ensure	that	the	audit	policy	covers	key	security	concerns	(Manual)	24

3	Worker	Nodes	...	25

3.1	Worker	Node	Configuration	Files	..	26

3.1.1	Ensure	that	the	kubeconfig	file	permissions	are	set	to	644	or	more	
restrictive	(Manual)	..	26

3.1.2	Ensure	that	the	proxy	kubeconfig	file	ownership	is	set	to	root:root	(Manual)
	..	28

3.1.3	Ensure	that	the	kubelet	configuration	file	has	permissions	set	to	644	or	
more	restrictive	(Manual)	..	30

3	|	P a g e 	
	

3.1.4	Ensure	that	the	kubelet	configuration	file	ownership	is	set	to	root:root	
(Manual)	...	32

3.2	Kubelet	..	34

3.2.1	Ensure	that	the	--anonymous-auth	argument	is	set	to	false	(Automated)	34

3.2.2	Ensure	that	the	--authorization-mode	argument	is	not	set	to	AlwaysAllow	
(Automated)	...	37

3.2.3	Ensure	that	the	--client-ca-file	argument	is	set	as	appropriate	(Automated)
	..	40

3.2.4	Ensure	that	the	--read-only-port	argument	is	set	to	0	(Manual)	43

3.2.5	Ensure	that	the	--streaming-connection-idle-timeout	argument	is	not	set	to	
0	(Manual)	...	45

3.2.6	Ensure	that	the	--protect-kernel-defaults	argument	is	set	to	true	(Manual)	48

3.2.7	Ensure	that	the	--make-iptables-util-chains	argument	is	set	to	true	
(Automated)	...	51

3.2.8	Ensure	that	the	--hostname-override	argument	is	not	set	(Manual)	54

3.2.9	Ensure	that	the	--event-qps	argument	is	set	to	0	or	a	level	which	ensures	
appropriate	event	capture	(Automated)	...	56

3.2.10	Ensure	that	the	--tls-cert-file	and	--tls-private-key-file	arguments	are	set	as	
appropriate	(Automated)	...	59

3.2.11	Ensure	that	the	--rotate-certificates	argument	is	not	set	to	false	
(Automated)	...	62

3.2.12	Ensure	that	the	--rotate-server-certificates	argument	is	set	to	true	
(Manual)	...	65

4	Policies	...	68

4.1	RBAC	and	Service	Accounts	...	69

4.1.1	Ensure	that	the	cluster-admin	role	is	only	used	where	required	(Manual)	..	69

4.1.2	Minimize	access	to	secrets	(Manual)	..	71

4.1.3	Minimize	wildcard	use	in	Roles	and	ClusterRoles	(Manual)	73

4.1.4	Minimize	access	to	create	pods	(Manual)	..	74

4.1.5	Ensure	that	default	service	accounts	are	not	actively	used.	(Manual)	76

4.1.6	Ensure	that	Service	Account	Tokens	are	only	mounted	where	necessary	
(Manual)	...	78

4.2	Pod	Security	Policies	...	80

4	|	P a g e 	
	

4.2.1	Minimize	the	admission	of	privileged	containers	(Manual)	80

4.2.2	Minimize	the	admission	of	containers	wishing	to	share	the	host	process	ID	
namespace	(Automated)	...	83

4.2.3	Minimize	the	admission	of	containers	wishing	to	share	the	host	IPC	
namespace	(Automated)	...	85

4.2.4	Minimize	the	admission	of	containers	wishing	to	share	the	host	network	
namespace	(Automated)	...	87

4.2.5	Minimize	the	admission	of	containers	with	allowPrivilegeEscalation	
(Automated)	...	89

4.2.6	Minimize	the	admission	of	root	containers	(Automated)	91

4.2.7	Minimize	the	admission	of	containers	with	the	NET_RAW	capability	
(Manual)	...	93

4.2.8	Minimize	the	admission	of	containers	with	added	capabilities	(Automated)
	..	95

4.2.9	Minimize	the	admission	of	containers	with	capabilities	assigned	(Manual)	97

4.3	CNI	Plugin	..	99

4.3.1	Ensure	latest	CNI	version	is	used	(Manual)	..	99

4.3.2	Ensure	that	all	Namespaces	have	Network	Policies	defined	(Manual)	101

4.4	Secrets	Management	..	103

4.4.1	Prefer	using	secrets	as	files	over	secrets	as	environment	variables	(Manual)
	...	103

4.4.2	Consider	external	secret	storage	(Manual)	..	105

4.5	Extensible	Admission	Control	..	107

4.6	General	Policies	..	108

4.6.1	Create	administrative	boundaries	between	resources	using	namespaces	
(Manual)	..	108

4.6.2	Apply	Security	Context	to	Your	Pods	and	Containers	(Manual)	110

4.6.3	The	default	namespace	should	not	be	used	(Manual)	...	113

5	Managed	services	...	115

5.1	Image	Registry	and	Image	Scanning	...	116

5.1.1	Oracle	Cloud	Security	Penetration	and	Vulnerability	Testing	(Manual)	116

5.1.2	Minimize	user	access	control	to	Container	Engine	for	Kubernetes	(Manual)
	...	118

5	|	P a g e 	
	

5.1.3	Minimize	cluster	access	to	read-only	(Manual)	..	120

5.1.4	Minimize	Container	Registries	to	only	those	approved	(Manual)	122

5.2	Identity	and	Access	Management	(IAM)	...	123

5.2.1	Prefer	using	dedicated	Service	Accounts	(Manual)	..	123

5.3	Cloud	Key	Management	Service	(Cloud	KMS)	..	125

5.3.1	Encrypting	Kubernetes	Secrets	at	Rest	in	Etcd	(Manual)	125

5.4	Cluster	Networking	..	128

5.4.1	Restrict	Access	to	the	Control	Plane	Endpoint	(Manual)	128

5.4.2	Ensure	clusters	are	created	with	Private	Endpoint	Enabled	and	Public	
Access	Disabled	(Manual)	..	130

5.4.3	Ensure	clusters	are	created	with	Private	Nodes	(Manual)	132

5.4.4	Ensure	Network	Policy	is	Enabled	and	set	as	appropriate	(Manual)	133

5.4.5	Encrypt	traffic	to	HTTPS	load	balancers	with	TLS	certificates	(Manual)	135

5.5	Authentication	and	Authorization	...	136

5.5.1	Access	Control	and	Container	Engine	for	Kubernetes	(Manual)	136

Appendix:	Summary	Table	...	139

	

	

	 	

6	|	P a g e 	
	

Overview	
This	document	provides	prescriptive	guidance	for	running	Oracle	Kubernetes	Engine	
(OKE)	v1.15	following	recommended	security	controls.	This	benchmark	only	includes	
controls	which	can	be	modified	by	an	end	user	of	OKE.	For	information	on	OKE's	
performance	against	the	Kubernetes	CIS	benchmarks,	for	items	which	cannot	be	audited	or	
modified,	see	the	OKE	documentation	at	https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	
To	obtain	the	latest	version	of	this	guide,	please	visit	www.cisecurity.org.	If	you	have	
questions,	comments,	or	have	identified	ways	to	improve	this	guide,	please	write	us	at	
support@cisecurity.org.	

	

Intended Audience

This	document	is	intended	for	cluster	administrators,	security	specialists,	auditors,	and	any	
personnel	who	plan	to	develop,	deploy,	assess,	or	secure	solutions	that	incorporate	Oracle	
Kubernetes	Engine	(OKE).	

	

Consensus Guidance

This	benchmark	was	created	using	a	consensus	review	process	comprised	of	subject	
matter	experts.	Consensus	participants	provide	perspective	from	a	diverse	set	of	
backgrounds	including	consulting,	software	development,	audit	and	compliance,	security	
research,	operations,	government,	and	legal.		

Each	CIS	benchmark	undergoes	two	phases	of	consensus	review.	The	first	phase	occurs	
during	initial	benchmark	development.	During	this	phase,	subject	matter	experts	convene	
to	discuss,	create,	and	test	working	drafts	of	the	benchmark.	This	discussion	occurs	until	
consensus	has	been	reached	on	benchmark	recommendations.	The	second	phase	begins	
after	the	benchmark	has	been	published.	During	this	phase,	all	feedback	provided	by	the	
Internet	community	is	reviewed	by	the	consensus	team	for	incorporation	in	the	
benchmark.	If	you	are	interested	in	participating	in	the	consensus	process,	please	visit	
https://workbench.cisecurity.org/.	

	 	

7	|	P a g e 	
	

Typographical Conventions

The	following	typographical	conventions	are	used	throughout	this	guide:	

Convention	 Meaning	

Stylized Monospace font Used	for	blocks	of	code,	command,	and	script	examples.	
Text	should	be	interpreted	exactly	as	presented.	

Monospace font Used	for	inline	code,	commands,	or	examples.	Text	should	
be	interpreted	exactly	as	presented.		

<italic	font	in	brackets>	 Italic	texts	set	in	angle	brackets	denote	a	variable	
requiring	substitution	for	a	real	value.	

Italic	font	 Used	to	denote	the	title	of	a	book,	article,	or	other	
publication.	

Note	 Additional	information	or	caveats	

	

Assessment Status

An	assessment	status	is	included	for	every	recommendation.	The	assessment	status	
indicates	whether	the	given	recommendation	can	be	automated	or	requires	manual	steps	
to	implement.	Both	statuses	are	equally	important	and	are	determined	and	supported	as	
defined	below:		

Automated	

Represents	recommendations	for	which	assessment	of	a	technical	control	can	be	fully	
automated	and	validated	to	a	pass/fail	state.	Recommendations	will	include	the	necessary	
information	to	implement	automation.	

Manual	

Represents	recommendations	for	which	assessment	of	a	technical	control	cannot	be	fully	
automated	and	requires	all	or	some	manual	steps	to	validate	that	the	configured	state	is	set	
as	expected.	The	expected	state	can	vary	depending	on	the	environment.	

	

	 	

8	|	P a g e 	
	

Profile Definitions

The	following	configuration	profiles	are	defined	by	this	Benchmark:	

• Level	1	

• Level	2	

	

	 	

9	|	P a g e 	
	

	

Acknowledgements

This benchmark exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the entire
consensus team with special recognition to the following individuals who contributed greatly to
the creation of this guide:

	
Editor/s	
Gilson	Melo,	Randall	Mowen	

Contributor/s	
Randall	Mowen		
Mark	Larinde		
Logan	Kleier		
Adao	Oliveira	Junior	
Sherwood	Zern		
Josh	Hammer		
	
	

	

	 	

10	|	P a g e 	
	

Recommendations	
1 Control Plane Components

Security	is	a	shared	responsibility	between	Oracle	and	the	OKE	customer.	Under	the	Oracle	
Cloud	Infrastructure	Shared	Security	Model	

Security	of	the	cloud	–	Oracle	is	responsible	for	protecting	the	infrastructure	that	runs	
Oracle	services	in	the	Oracle	Cloud.	For	OKE,	Oracle	is	responsible	for	the	Kubernetes	
control	plane,	which	includes	the	control	plane	nodes	and	etcd	database.	Third-party	
auditors	regularly	test	and	verify	the	effectiveness	of	our	security	as	part	of	the	Oracle	
compliance	programs.	

Security	in	the	cloud	–	Your	responsibility	includes	the	following	areas:	

• The	security	configuration	of	the	data	plane,	including	the	configuration	of	the	
security	groups	that	allow	traffic	to	pass	from	the	Oracle	OKE	control	plane	into	the	
customer	Virtual	Cloud	Network	(VCN)	

• The	configuration	of	the	worker	nodes	and	the	containers	themselves	
• The	worker	node	guest	operating	system	(including	updates	and	security	patches)	

o OKE	follows	the	shared	responsibility	model	for	CVEs	and	security	patches	
on	managed	node	groups.	Because	managed	nodes	run	the	OKE-optimized	
OPIs,	OKE	is	responsible	for	building	patched	versions	of	these	OPIs	when	
bugs	or	issues	are	reported	and	we	are	able	to	publish	a	fix.	Customers	are	
responsible	for	deploying	these	patched	OPI	versions	to	your	managed	node	
groups.	

• Other	associated	application	software:	
o Setting	up	and	managing	network	controls,	such	as	firewall	rules	
o Managing	platform-level	identity	and	access	management,	either	with	or	in	

addition	to	IAM	
• The	sensitivity	of	your	data,	your	company’s	requirements,	and	applicable	laws	and	

regulations	

Oracle	is	responsible	for	securing	the	control	plane,	though	you	might	be	able	to	configure	
certain	options	based	on	your	requirements.	Section	2	of	this	Benchmark	addresses	these	
configurations.	

	

	

	

11	|	P a g e 	
	

2 Control Plane Configuration

This	section	contains	recommendations	for	Oracle	OKE	control	plane	configuration.	
Customers	are	able	to	configure	logging	for	control	plane	in	Oracle	OKE.	

12	|	P a g e 	
	

2.1 Authentication and Authorization

2.1.1 Client certificate authentication should not be used for users
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Kubernetes	provides	the	option	to	use	client	certificates	for	user	authentication.	However	
as	there	is	no	way	to	revoke	these	certificates	when	a	user	leaves	an	organization	or	loses	
their	credential,	they	are	not	suitable	for	this	purpose.	

It	is	not	possible	to	fully	disable	client	certificate	use	within	a	cluster	as	it	is	used	for	
component	to	component	authentication.	

Rationale:	

With	any	authentication	mechanism	the	ability	to	revoke	credentials	if	they	are	
compromised	or	no	longer	required,	is	a	key	control.	Kubernetes	client	certificate	
authentication	does	not	allow	for	this	due	to	a	lack	of	support	for	certificate	revocation.	

Impact:	

External	mechanisms	for	authentication	generally	require	additional	software	to	be	
deployed.	

Audit:	

Review	user	access	to	the	cluster	and	ensure	that	users	are	not	making	use	of	Kubernetes	
client	certificate	authentication.	
You	can	verify	the	availability	of	client	certificates	in	your	OKE	cluster.	

Remediation:	

Alternative	mechanisms	provided	by	Kubernetes	such	as	the	use	of	OIDC	should	be	
implemented	in	place	of	client	certificates.	
You	can	remediate	the	availability	of	client	certificates	in	your	OKE	cluster.	

Default	Value:	

See	the	OKE	documentation	for	the	default	value.	

13	|	P a g e 	
	

References:	

1. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks	

Additional	Information:	

The	lack	of	certificate	revocation	was	flagged	up	as	a	high	risk	issue	in	the	recent	
Kubernetes	security	audit.	Without	this	feature,	client	certificate	authentication	is	not	
suitable	for	end	users.	

CIS	Controls:	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

14	|	P a g e 	
	

2.1.2 Ensure OKE service level admins are created to manage OKE
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

OKE	integrates	with	Oracle	Cloud	Infrastructure	IAM	for	authentication	and	authorization,	
for	all	interfaces	(the	Console,	SDK	or	CLI,	and	REST	API).	To	create,	update,	and	delete	
clusters	and	node	pools,	users	must	be	in	groups	and	those	group	must	have	the	necessary	
access.	Certain	cluster	operations	created	by	Container	Engine	for	Kubernetes	may	require	
additional	permissions	granted	via	a	Kubernetes	RBAC	role	or	cluster	role.	One	example	is	
the	installing	the	metrics	server	which	requires	additional	K8s	permissions.	

The	following	required	policy	statements	to	enable	users	to	use	Container	Engine	for	
Kubernetes	to	create,	update,	and	delete	clusters	and	node	pools:	

 Allow group <group-name> to manage instance-family in <compartment-name>

 Allow group <group-name> to use subnets in <compartment-name>

 Allow group <group-name> to read virtual-network-family in <compartment-
name>

 Allow group <group-name> to use vnics in <compartment-name>

 Allow group <group-name> to inspect compartments in <compartment-name>

 Allow group <group-name> to manage cluster-family in <compartment-name>

Rationale:	

Creating	OKE	level	administrators	helps	in	tightly	controlling	access	to	Oracle	Cloud	
Infrastructure	(OCI)	services	to	implement	the	least-privileged	security	principle.	

Audit:	

1. In	the	Console,	open	the	navigation	menu.	Under	Governance	and	Administration,	go	
to	Identity	and	click	Groups.	A	list	of	the	groups	in	the	compartment	you're	viewing	
is	displayed.	

2. Select	the	tenancy's	root	compartment	or	an	individual	compartment	containing	
cluster-related	resources	from	the	list	on	the	left.	

3. Open	the	policy	associated	OKE	Administrators	
4. Ensure	it	contains	the	below	statements:	

15	|	P a g e 	
	

 Allow group <group-name> to manage instance-family in <compartment-name>
 Allow group <group-name> to use subnets in <compartment-name>
 Allow group <group-name> to read virtual-network-family in <compartment-
name>
 Allow group <group-name> to use vnics in <compartment-name>
 Allow group <group-name> to inspect compartments in <compartment-name>
 Allow group <group-name> to manage cluster-family in <compartment-name>

Remediation:

1. In	the	Console,	open	the	navigation	menu.	Go	to	Identity	and	click	Groups.	
2. Click	Create	Group	
3. Enter	the	following:	

• Name:	A	name	for	the	group	(for	example,	acme-dev-team-oke-group)	that	is	unique	
within	the	tenancy.	

• Description:	A	friendly	description.	You	can	change	this	later	if	you	want	to.	Avoid	
entering	confidential	information.	

	

4. Open	the	navigation	menu.	Go	to	Identity	and	click	Policies.	A	list	of	the	policies	in	
the	compartment	you're	viewing	is	displayed.	

5. Select	the	tenancy's	root	compartment	or	an	individual	compartment	containing	
cluster-related	resources	from	the	list	on	the	left.	

6. Click	Create	Policy.	
7. Enter	the	following:	

• Name:	A	name	for	the	policy	(for	example,	acme-dev-team-oke-required-policy)	that	
is	unique	within	the	compartment.	If	you	are	creating	the	policy	in	the	tenancy's	
root	compartment,	the	name	must	be	unique	across	all	policies	in	your	tenancy.	You	
cannot	change	this	later.	Avoid	entering	confidential	information.	

• Description:	A	friendly	description.	You	can	change	this	later	if	you	want	to.	Avoid	
entering	confidential	information.	

• Statement:	The	following	required	policy	statements	to	enable	users	to	use	
Container	Engine	for	Kubernetes	to	create,	update,	and	delete	clusters	and	node	
pools:	

 Allow group <group-name> to manage instance-family in <compartment-name>
 Allow group <group-name> to use subnets in <compartment-name>
 Allow group <group-name> to read virtual-network-family in <compartment-
name>
 Allow group <group-name> to use vnics in <compartment-name>
 Allow group <group-name> to inspect compartments in <compartment-name>
 Allow group <group-name> to manage cluster-family in <compartment-name>

16	|	P a g e 	
	

8. Click	Create	

17	|	P a g e 	
	

2.2 Authentication and Authorization

2.2.1 Client certificate authentication should not be used for users
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Kubernetes	provides	the	option	to	use	client	certificates	for	user	authentication.	However	
as	there	is	no	way	to	revoke	these	certificates	when	a	user	leaves	an	organization	or	loses	
their	credential,	they	are	not	suitable	for	this	purpose.	

It	is	not	possible	to	fully	disable	client	certificate	use	within	a	cluster	as	it	is	used	for	
component	to	component	authentication.	

Rationale:	

With	any	authentication	mechanism	the	ability	to	revoke	credentials	if	they	are	
compromised	or	no	longer	required,	is	a	key	control.	Kubernetes	client	certificate	
authentication	does	not	allow	for	this	due	to	a	lack	of	support	for	certificate	revocation.	

Impact:	

External	mechanisms	for	authentication	generally	require	additional	software	to	be	
deployed.	

Audit:	

Review	user	access	to	the	cluster	and	ensure	that	users	are	not	making	use	of	Kubernetes	
client	certificate	authentication.	
You	can	verify	the	availability	of	client	certificates	in	your	OKE	cluster.	

Remediation:	

Alternative	mechanisms	provided	by	Kubernetes	such	as	the	use	of	OIDC	should	be	
implemented	in	place	of	client	certificates.	
You	can	remediate	the	availability	of	client	certificates	in	your	OKE	cluster.	

Default	Value:	

See	the	OKE	documentation	for	the	default	value.	

18	|	P a g e 	
	

References:	

1. https://cloud.google.com/kubernetes-engine/docs/concepts/cis-benchmarks	

Additional	Information:	

The	lack	of	certificate	revocation	was	flagged	up	as	a	high	risk	issue	in	the	recent	
Kubernetes	security	audit.	Without	this	feature,	client	certificate	authentication	is	not	
suitable	for	end	users.	

CIS	Controls:	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

19	|	P a g e 	
	

2.2.2 Ensure OKE service level admins are created to manage OKE
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

OKE	integrates	with	Oracle	Cloud	Infrastructure	IAM	for	authentication	and	authorization,	
for	all	interfaces	(the	Console,	SDK	or	CLI,	and	REST	API).	To	create,	update,	and	delete	
clusters	and	node	pools,	users	must	be	in	groups	and	those	group	must	have	the	necessary	
access.	Certain	cluster	operations	created	by	Container	Engine	for	Kubernetes	may	require	
additional	permissions	granted	via	a	Kubernetes	RBAC	role	or	cluster	role.	One	example	is	
the	installing	the	metrics	server	which	requires	additional	K8s	permissions.	

The	following	required	policy	statements	to	enable	users	to	use	Container	Engine	for	
Kubernetes	to	create,	update,	and	delete	clusters	and	node	pools:	

 Allow group <group-name> to manage instance-family in <compartment-name>

 Allow group <group-name> to use subnets in <compartment-name>

 Allow group <group-name> to read virtual-network-family in <compartment-
name>

 Allow group <group-name> to use vnics in <compartment-name>

 Allow group <group-name> to inspect compartments in <compartment-name>

 Allow group <group-name> to manage cluster-family in <compartment-name>

Rationale:	

Creating	OKE	level	administrators	helps	in	tightly	controlling	access	to	Oracle	Cloud	
Infrastructure	(OCI)	services	to	implement	the	least-privileged	security	principle.	

Audit:	

1. In	the	Console,	open	the	navigation	menu.	Under	Governance	and	Administration,	go	
to	Identity	and	click	Groups.	A	list	of	the	groups	in	the	compartment	you're	viewing	
is	displayed.	

2. Select	the	tenancy's	root	compartment	or	an	individual	compartment	containing	
cluster-related	resources	from	the	list	on	the	left.	

3. Open	the	policy	associated	OKE	Administrators	
4. Ensure	it	contains	the	below	statements:	

20	|	P a g e 	
	

 Allow group <group-name> to manage instance-family in <compartment-name>
 Allow group <group-name> to use subnets in <compartment-name>
 Allow group <group-name> to read virtual-network-family in <compartment-
name>
 Allow group <group-name> to use vnics in <compartment-name>
 Allow group <group-name> to inspect compartments in <compartment-name>
 Allow group <group-name> to manage cluster-family in <compartment-name>

Remediation:

1. In	the	Console,	open	the	navigation	menu.	Go	to	Identity	and	click	Groups.	
2. Click	Create	Group	
3. Enter	the	following:	

• Name:	A	name	for	the	group	(for	example,	acme-dev-team-oke-group)	that	is	unique	
within	the	tenancy.	

• Description:	A	friendly	description.	You	can	change	this	later	if	you	want	to.	Avoid	
entering	confidential	information.	

	

4. Open	the	navigation	menu.	Go	to	Identity	and	click	Policies.	A	list	of	the	policies	in	
the	compartment	you're	viewing	is	displayed.	

5. Select	the	tenancy's	root	compartment	or	an	individual	compartment	containing	
cluster-related	resources	from	the	list	on	the	left.	

6. Click	Create	Policy.	
7. Enter	the	following:	

• Name:	A	name	for	the	policy	(for	example,	acme-dev-team-oke-required-policy)	that	
is	unique	within	the	compartment.	If	you	are	creating	the	policy	in	the	tenancy's	
root	compartment,	the	name	must	be	unique	across	all	policies	in	your	tenancy.	You	
cannot	change	this	later.	Avoid	entering	confidential	information.	

• Description:	A	friendly	description.	You	can	change	this	later	if	you	want	to.	Avoid	
entering	confidential	information.	

• Statement:	The	following	required	policy	statements	to	enable	users	to	use	
Container	Engine	for	Kubernetes	to	create,	update,	and	delete	clusters	and	node	
pools:	

 Allow group <group-name> to manage instance-family in <compartment-name>
 Allow group <group-name> to use subnets in <compartment-name>
 Allow group <group-name> to read virtual-network-family in <compartment-
name>
 Allow group <group-name> to use vnics in <compartment-name>
 Allow group <group-name> to inspect compartments in <compartment-name>
 Allow group <group-name> to manage cluster-family in <compartment-name>

21	|	P a g e 	
	

8. Click	Create	

22	|	P a g e 	
	

2.3 Logging

2.3.1 Ensure access to OCI Audit service Log for OKE (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

The	audit	logs	are	part	of	the	OKE	managed	Kubernetes	control	plane	logs	managed	by	
OKE.	OKE	integrates	with	Oracle	Cloud	Infrastructure	Audit	Service.	

All	operations	performed	by	the	Kubernetes	API	server	are	visible	as	log	events	on	the	
Oracle	Cloud	Infrastructure	Audit	service.	

Rationale:	

Logging	is	a	crucial	detective	control	for	all	systems	to	detect	potential	unauthorized	
access.	

Impact:	

The	Control	plane	audit	logs	are	managed	by	OKE.	OKE	Control	plane	logs	are	written	to	
the	Oracle	Cloud	Infrastructure	Audit	Service.	The	Oracle	Cloud	Infrastructure	Audit	
service	automatically	records	calls	to	all	supported	Oracle	Cloud	Infrastructure	public	
application	programming	interface	(API)	endpoints	as	log	events.	

Audit:	

1.1.1 Using	Oracle	Cloud	Infrastructure	Console	
	
To	monitor	and	manage	operations	performed	by	Container	Engine	for	Kubernetes	on	a	
particular	cluster:	

1. In	the	Console,	open	the	navigation	menu.	Under	Solutions	and	Platform,	go	to	
Developer	Services	and	click	Kubernetes	Clusters.	

2. Choose	a	Compartment	you	have	permission	to	work	in.	
3. On	the	Cluster	List	page,	click	the	cluster's	name	for	which	you	want	to	monitor	and	

manage	operations.	
4. The	Cluster	page	shows	information	about	the	cluster.	
5. Display	the	Work	Requests	tab,	showing	the	recent	operations	performed	on	the	

cluster.	

23	|	P a g e 	
	

To	view	operations	performed	by	Container	Engine	for	Kubernetes	and	the	Kubernetes	API	
server	as	log	events	in	the	Oracle	Cloud	Infrastructure	Audit	service:	

1. In	the	Console,	open	the	navigation	menu.	Under	Governance	and	Administration,	
go	to	Governance	and	click	Audit.	

2. Choose	a	Compartment	you	have	permission	to	work	in.	
3. Search	and	filter	to	show	the	operations	you're	interested	in:	

• To	view	operations	performed	by	Container	Engine	for	Kubernetes,	enter	
ClustersAPI	in	the	Keywords	field	and	click	Search.	

• To	view	operations	performed	by	the	Kubernetes	API	server,	enter	OKE API Server
Admin Access	in	the	Keywords	field	and	click	Search.	

Remediation:	

No	remediation	is	necessary	for	this	control.	

Default	Value:	

By	default,	Kubernetes	API	server	logs	and	Container	Engine	for	Kubernetes	audit	events	
are	sent	to	the	Oracle	Cloud	Infrastructure	Audit	service.	By	default,	the	Audit	Log	retention	
period	is	90	days.	

References:	

1. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Tasks/contengmonitoringoke.htm	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/Audit/Tasks/viewinglogevents.htm#Viewing_Audit_Log_Events	
4. https://docs.cloud.oracle.com/en-

us/iaas/Content/Audit/Tasks/settingretentionperiod.htm	

24	|	P a g e 	
	

2.3.2 Ensure that the audit policy covers key security concerns (Manual)

Profile	Applicability:	

•		Level	1	

•		Level	2	

Description:	

Ensure	that	the	audit	policy	created	for	the	cluster	covers	key	security	concerns.	

Rationale:	

Security	audit	logs	should	cover	access	and	modification	of	key	resources	in	the	cluster	to	
enable	them	to	form	a	significant	part	of	a	security	environment.	

Impact:	

Increasing	audit	logging	will	consume	resources	on	the	nodes	or	other	log	destination.	

Audit:	

This	control	cannot	be	audited	in	OKE.	

Remediation:	

This	control	cannot	be	modified	in	OKE.	

Default	Value:	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://github.com/k8scop/k8s-security-
dashboard/blob/master/configs/kubernetes/adv-audit.yaml	

2. https://kubernetes.io/docs/tasks/debug-application-cluster/audit/#audit-policy	

25	|	P a g e 	
	

3 Worker Nodes

This	section	consists	of	security	recommendations	for	the	components	that	run	on	OKE	
worker	nodes.	

26	|	P a g e 	
	

3.1 Worker Node Configuration Files

This	section	covers	recommendations	for	configuration	files	on	the	Oracle	OKE	worker	
nodes.	

3.1.1 Ensure that the kubeconfig file permissions are set to 644 or more
restrictive (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

If	kubelet	is	running,	and	if	it	is	using	a	file-based	kubeconfig	file,	ensure	that	the	proxy	
kubeconfig	file	has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kubelet	kubeconfig	file	controls	various	parameters	of	the	kubelet	service	in	the	
worker	node.	You	should	restrict	its	file	permissions	to	maintain	the	integrity	of	the	file.	
The	file	should	be	writable	by	only	the	administrators	on	the	system.	

It	is	possible	to	run	kubelet	with	the	kubeconfig	parameters	configured	as	a	Kubernetes	
ConfigMap	instead	of	a	file.	In	this	case,	there	is	no	proxy	kubeconfig	file.	

Impact:	

None.	

Audit:	

SSH	to	the	worker	nodes	
To	check	to	see	if	the	Kubelet	Service	is	running:	

sudo systemctl status kubelet

The	output	should	return	Active: active (running) since..	
Run	the	following	command	on	each	node	to	find	the	appropriate	kubeconfig	file:

ps -ef | grep kubelet

The	output	of	the	above	command	should	return	something	similar	to	--kubeconfig
/etc/kubernetes/kubelet.conf	and	--bootstrap-kubeconfig

27	|	P a g e 	
	

/etc/kubernetes/bootstrap-kubelet.conf	which	is	the	location	of	the	kubeconfig	files.	
Run	this	command	to	obtain	the	kubeconfig	file	permissions:

stat -c %a /etc/kubernetes/kubelet.conf
stat -c %a /etc/kubernetes/bootstrap-kubelet.conf

The	output	of	the	above	command	gives	you	the	kubeconfig	file's	permissions.	
Verify	that	if	a	file	is	specified	and	it	exists,	the	permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chmod 644 <kubeconfig file>

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kube-proxy/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

28	|	P a g e 	
	

3.1.2 Ensure that the proxy kubeconfig file ownership is set to root:root
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

If	kubelet	is	running,	ensure	that	the	file	ownership	of	its	kubeconfig	file	is	set	to	
root:root.	

Rationale:	

The	kubeconfig	file	for	kubelet	controls	various	parameters	for	the	kubelet	service	in	the	
worker	node.	You	should	set	its	file	ownership	to	maintain	the	integrity	of	the	file.	The	file	
should	be	owned	by	root:root.	

Impact:	

None	

Audit:	

SSH	to	the	worker	nodes	
To	check	to	see	if	the	Kubelet	Service	is	running:	

sudo systemctl status kubelet

The	output	should	return	Active: active (running) since..	
Run	the	following	command	on	each	node	to	find	the	appropriate	kubeconfig	file:

ps -ef | grep kubelet

The	output	of	the	above	command	should	return	something	similar	to	--kubeconfig
/etc/kubernetes/kubelet.conf	and	--bootstrap-kubeconfig
/etc/kubernetes/bootstrap-kubelet.conf	which	is	the	location	of	the	kubeconfig	files.	
Run	this	command	to	obtain	the	kubeconfig	file	ownership:

stat -c %U:%G etc/kubernetes/kubelet.conf
stat -c %U:%G etc/kubernetes/bootstrap-kubelet.conf

The	output	of	the	above	command	gives	you	the	kubeconfig	file's	ownership.	Verify	that	the	
ownership	is	set	to	root:root.

29	|	P a g e 	
	

Remediation:	

Run	the	below	command	(based	on	the	file	location	on	your	system)	on	the	each	worker	
node.	For	example,	

chown root:root <kubeconfig file>

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kube-proxy/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

30	|	P a g e 	
	

3.1.3 Ensure that the kubelet configuration file has permissions set to
644 or more restrictive (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Ensure	that	if	the	kubelet	refers	to	a	configuration	file	with	the	--config	argument,	that	file	
has	permissions	of	644	or	more	restrictive.	

Rationale:	

The	kubelet	reads	various	parameters,	including	security	settings,	from	a	config	file	
specified	by	the	--config	argument.	If	this	file	is	specified	you	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None.	

Audit:	

First,	SSH	to	the	relevant	worker	node:	
To	check	to	see	if	the	Kubelet	Service	is	running:	

sudo systemctl status kubelet

The	output	should	return	Active: active (running) since..	
Run	the	following	command	on	each	node	to	find	the	appropriate	kubeconfig	file:

ps -ef | grep kubelet

The	output	of	the	above	command	should	return	something	similar	to	--kubeconfig
/etc/kubernetes/kubelet.conf	and	--bootstrap-kubeconfig
/etc/kubernetes/bootstrap-kubelet.conf	which	is	the	location	of	the	kubeconfig	files.	
Run	this	command	to	obtain	the	kubeconfig	file	ownership:

stat -c %a etc/kubernetes/kubelet.conf
stat -c %a etc/kubernetes/bootstrap-kubelet.conf

31	|	P a g e 	
	

The	output	of	the	above	command	is	the	Kubelet	config	file's	permissions.	Verify	that	the	
permissions	are	644	or	more	restrictive.

Remediation:	

Run	the	following	command	(using	the	config	file	location	identied	in	the	Audit	step)	

chmod 644 /var/lib/kubelet/config.yaml

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

32	|	P a g e 	
	

3.1.4 Ensure that the kubelet configuration file ownership is set to
root:root (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Ensure	that	if	the	kubelet	refers	to	a	configuration	file	with	the	--config	argument,	that	file	
is	owned	by	root:root.	

Rationale:	

The	kubelet	reads	various	parameters,	including	security	settings,	from	a	config	file	
specified	by	the	--config	argument.	If	this	file	is	specified	you	should	restrict	its	file	
permissions	to	maintain	the	integrity	of	the	file.	The	file	should	be	writable	by	only	the	
administrators	on	the	system.	

Impact:	

None.	

Audit:	

First,	SSH	to	the	relevant	worker	node:	
To	check	to	see	if	the	Kubelet	Service	is	running:	

sudo systemctl status kubelet

The	output	should	return	Active: active (running) since..	
Run	the	following	command	on	each	node	to	find	the	appropriate	kubeconfig	file:

ps -ef | grep kubelet

The	output	of	the	above	command	should	return	something	similar	to	--kubeconfig
/etc/kubernetes/kubelet.conf	and	--bootstrap-kubeconfig
/etc/kubernetes/bootstrap-kubelet.conf	which	is	the	location	of	the	kubeconfig	files.	
Run	this	command	to	obtain	the	kubeconfig	file	ownership:

stat -c %U:%G etc/kubernetes/kubelet.conf
stat -c %U:%G etc/kubernetes/bootstrap-kubelet.conf

33	|	P a g e 	
	

The	output	of	the	above	command	is	the	Kubelet	config	file's	ownership.	Verify	that	the	
ownership	is	set	to	root:root

Remediation:	

Run	the	following	command	(using	the	config	file	location	identied	in	the	Audit	step)	

chown root:root /etc/kubernetes/kubelet.conf

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/tasks/administer-cluster/kubelet-config-file/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

34	|	P a g e 	
	

3.2 Kubelet

This	section	contains	recommendations	for	kubelet	configuration.	

Kubelet	settings	may	be	configured	using	arguments	on	the	running	kubelet	executable,	or	
they	may	be	taken	from	a	Kubelet	config	file.	If	both	are	specified,	the	executable	argument	
takes	precedence.	

To	find	the	Kubelet	config	file,	run	the	following	command:	

ps -ef | grep kubelet | grep config

If	the	--kubeconfig	argument	is	present,	this	gives	the	location	of	the	Kubelet	config	file.	
This	config	file	could	be	in	JSON	or	YAML	format	depending	on	your	distribution.	

3.2.1 Ensure that the --anonymous-auth argument is set to false
(Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Disable	anonymous	requests	to	the	Kubelet	server.	

Rationale:	

When	enabled,	requests	that	are	not	rejected	by	other	configured	authentication	methods	
are	treated	as	anonymous	requests.	These	requests	are	then	served	by	the	Kubelet	server.	
You	should	rely	on	authentication	to	authorize	access	and	disallow	anonymous	requests.	

Impact:	

Anonymous	requests	will	be	rejected.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	authentication:
anonymous: enabled	set	to	false.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

35	|	P a g e 	
	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--anonymous-auth=false.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	authentication...
"anonymous":{"enabled":false}	by	extracting	the	live	configuration	from	the	nodes	
running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--anonymous-auth=false

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"authentication.*anonymous":{"enabled":false}"	by	extracting	the	live	configuration	
from	the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

36	|	P a g e 	
	

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-

authentication	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

Version	7	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

37	|	P a g e 	
	

3.2.2 Ensure that the --authorization-mode argument is not set to
AlwaysAllow (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	allow	all	requests.	Enable	explicit	authorization.	

Rationale:	

Kubelets,	by	default,	allow	all	authenticated	requests	(even	anonymous	ones)	without	
needing	explicit	authorization	checks	from	the	apiserver.	You	should	restrict	this	behavior	
and	only	allow	explicitly	authorized	requests.	

Impact:	

Unauthorized	requests	will	be	denied.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--authentication-
mode.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--authentication-mode=Webhook.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	authentication...
"webhook":{"enabled":true}	by	extracting	the	live	configuration	from	the	nodes	running	
kubelet.	

38	|	P a g e 	
	

Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--authorization-mode=Webhook

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"authentication.*webhook":{"enabled":true}"	by	extracting	the	live	configuration	from	
the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

39	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/admin/kubelet-authentication-authorization/#kubelet-

authentication	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

Version	7	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

40	|	P a g e 	
	

3.2.3 Ensure that the --client-ca-file argument is set as appropriate
(Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Enable	Kubelet	authentication	using	certificates.	

Rationale:	

The	connections	from	the	apiserver	to	the	kubelet	are	used	for	fetching	logs	for	pods,	
attaching	(through	kubectl)	to	running	pods,	and	using	the	kubelet’s	port-forwarding	
functionality.	These	connections	terminate	at	the	kubelet’s	HTTPS	endpoint.	By	default,	the	
apiserver	does	not	verify	the	kubelet’s	serving	certificate,	which	makes	the	connection	
subject	to	man-in-the-middle	attacks,	and	unsafe	to	run	over	untrusted	and/or	public	
networks.	Enabling	Kubelet	certificate	authentication	ensures	that	the	apiserver	could	
authenticate	the	Kubelet	before	submitting	any	requests.	

Impact:	

You	require	TLS	to	be	configured	on	apiserver	as	well	as	kubelets.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--client-ca-file	set	
to	the	location	of	the	client	certificate	authority	file.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

41	|	P a g e 	
	

Verify	that	the	--client-ca-file	argument	exists	and	is	set	to	the	location	of	the	client	
certificate	authority	file.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	authentication..
x509":("clientCAFile":"/etc/kubernetes/ca.crt	by	extracting	the	live	configuration	
from	the	nodes	running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--client-ca-file=/etc/kubernetes/ca.crt \

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"authentication.*x509":("clientCAFile":"/etc/kubernetes/pki/ca.crt"	by	
extracting	the	live	configuration	from	the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

42	|	P a g e 	
	

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-

authentication-authorization/	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

43	|	P a g e 	
	

3.2.4 Ensure that the --read-only-port argument is set to 0 (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Disable	the	read-only	port.	

Rationale:	

The	Kubelet	process	provides	a	read-only	API	in	addition	to	the	main	Kubelet	API.	
Unauthenticated	access	is	provided	to	this	read-only	API	which	could	possibly	retrieve	
potentially	sensitive	information	about	the	cluster.	

Impact:	

Removal	of	the	read-only	port	will	require	that	any	service	which	made	use	of	it	will	need	
to	be	re-configured	to	use	the	main	Kubelet	API.	

Audit:	

If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--read-only-port=0.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	service	config	
file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--read-only-port	argument	exists	and	is	set	to	0.	
If	the	--read-only-port	argument	is	not	present,	check	that	there	is	a	Kubelet	config	file	
specified	by	--config.	Check	that	if	there	is	a	readOnlyPort	entry	in	the	file,	it	is	set	to	0.

Remediation:	

44	|	P a g e 	
	

If	modifying	the	Kubelet	config	file,	edit	the	kubelet.service	file	
/etc/sytemd/system/kubelet.service	and	set	the	below	parameter	

--read-only-port=0

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	

CIS	Controls:	

Version	6	

	 9.1	Limit	Open	Ports,	Protocols,	and	Services	
	 Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

45	|	P a g e 	
	

3.2.5 Ensure that the --streaming-connection-idle-timeout argument is
not set to 0 (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	disable	timeouts	on	streaming	connections.	

Rationale:	

Setting	idle	timeouts	ensures	that	you	are	protected	against	Denial-of-Service	attacks,	
inactive	connections	and	running	out	of	ephemeral	ports.	

Note:	By	default,	--streaming-connection-idle-timeout	is	set	to	4	hours	which	might	be	
too	high	for	your	environment.	Setting	this	as	appropriate	would	additionally	ensure	that	
such	streaming	connections	are	timed	out	after	serving	legitimate	use	cases.	

Impact:	

Long-lived	connections	could	be	interrupted.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--streaming-
connection-idle-timeout	is	not	set	to	0.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--streaming-connection-idle-timeout	argument	is	not	set	to	0.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	

46	|	P a g e 	
	

"streamingConnectionIdleTimeout":"4h0m0s"	by	extracting	the	live	configuration	from	
the	nodes	running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--streaming-connection-idle-timeout

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"streamingConnectionIdleTimeout":	by	extracting	the	live	configuration	from	the	nodes	
running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

47	|	P a g e 	
	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/pull/18552	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

Version	7	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

48	|	P a g e 	
	

3.2.6 Ensure that the --protect-kernel-defaults argument is set to true
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Protect	tuned	kernel	parameters	from	overriding	kubelet	default	kernel	parameter	values.	

Rationale:	

Kernel	parameters	are	usually	tuned	and	hardened	by	the	system	administrators	before	
putting	the	systems	into	production.	These	parameters	protect	the	kernel	and	the	system.	
Your	kubelet	kernel	defaults	that	rely	on	such	parameters	should	be	appropriately	set	to	
match	the	desired	secured	system	state.	Ignoring	this	could	potentially	lead	to	running	
pods	with	undesired	kernel	behavior.	

Impact:	

You	would	have	to	re-tune	kernel	parameters	to	match	kubelet	parameters.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--protect-kernel-
defaults	is	set	to	true.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--protect-kernel-defaults=true.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	

49	|	P a g e 	
	

"protectKernelDefaults"	by	extracting	the	live	configuration	from	the	nodes	running	
kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--protect-kernel-defaults=true

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"protectKernelDefaults":	by	extracting	the	live	configuration	from	the	nodes	running	
kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

50	|	P a g e 	
	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

51	|	P a g e 	
	

3.2.7 Ensure that the --make-iptables-util-chains argument is set to true
(Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Allow	Kubelet	to	manage	iptables.	

Rationale:	

Kubelets	can	automatically	manage	the	required	changes	to	iptables	based	on	how	you	
choose	your	networking	options	for	the	pods.	It	is	recommended	to	let	kubelets	manage	
the	changes	to	iptables.	This	ensures	that	the	iptables	configuration	remains	in	sync	with	
pods	networking	configuration.	Manually	configuring	iptables	with	dynamic	pod	network	
configuration	changes	might	hamper	the	communication	between	pods/containers	and	to	
the	outside	world.	You	might	have	iptables	rules	too	restrictive	or	too	open.	

Impact:	

Kubelet	would	manage	the	iptables	on	the	system	and	keep	it	in	sync.	If	you	are	using	any	
other	iptables	management	solution,	then	there	might	be	some	conflicts.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--make-iptables-
util-chains	set	to	true.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

52	|	P a g e 	
	

Verify	that	the	--make-iptables-util-chains=true.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	authentication...
"makeIPTablesUtilChains":true	by	extracting	the	live	configuration	from	the	nodes	
running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--make-iptables-util-chains:true

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	
"makeIPTablesUtilChains": true	by	extracting	the	live	configuration	from	the	nodes	
running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

53	|	P a g e 	
	

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

Version	7	

	 9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	 Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

54	|	P a g e 	
	

3.2.8 Ensure that the --hostname-override argument is not set (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	override	node	hostnames.	

Rationale:	

Overriding	hostnames	could	potentially	break	TLS	setup	between	the	kubelet	and	the	
apiserver.	Additionally,	with	overridden	hostnames,	it	becomes	increasingly	difficult	to	
associate	logs	with	a	particular	node	and	process	them	for	security	analytics.	Hence,	you	
should	setup	your	kubelet	nodes	with	resolvable	FQDNs	and	avoid	overriding	the	
hostnames	with	IPs.	

Impact:	

Some	cloud	providers	may	require	this	flag	to	ensure	that	hostname	matches	names	issued	
by	the	cloud	provider.	In	these	environments,	this	recommendation	should	not	apply.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--hostname-override	
exists	and	is	set	to	the	Cluster	Node	Name.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	--hostname-override	exists	and	is	set	to	the	Cluster	Node	Name.

Remediation:	

55	|	P a g e 	
	

Remediation	Method	1:	
If	modifying	the	Kubelet	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet-.service	and	set	the	below	parameter	

--hostname-override=NODE NAME (where NODE NAME is the internal IP ex.
10.0.10.4, as assigned my OKE on build)

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/issues/22063	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	

Version	7	

	 5	Secure	Configuration	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations	and	Servers	
	 Secure	Configuration	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations	and	Servers	

56	|	P a g e 	
	

3.2.9 Ensure that the --event-qps argument is set to 0 or a level which
ensures appropriate event capture (Automated)

Profile	Applicability:	

•		Level	2	

Description:	

Security	relevant	information	should	be	captured.	The	--event-qps	flag	on	the	Kubelet	can	
be	used	to	limit	the	rate	at	which	events	are	gathered.	Setting	this	too	low	could	result	in	
relevant	events	not	being	logged,	however	the	unlimited	setting	of	0	could	result	in	a	denial	
of	service	on	the	kubelet.	

Rationale:	

It	is	important	to	capture	all	events	and	not	restrict	event	creation.	Events	are	an	important	
source	of	security	information	and	analytics	that	ensure	that	your	environment	is	
consistently	monitored	using	the	event	data.	

Impact:	

Setting	this	parameter	to	0	could	result	in	a	denial	of	service	condition	due	to	excessive	
events	being	created.	The	cluster's	event	processing	and	storage	systems	should	be	scaled	
to	handle	expected	event	loads.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--event-qps	set	to	0	or	
a	value	equal	to	or	greater	than	0.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

57	|	P a g e 	
	

Verify	that	the	--event-qps=0.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	"eventRecordQPS": 0	
by	extracting	the	live	configuration	from	the	nodes	running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--event-qps=0

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	"eventRecordQPS"	by	
extracting	the	live	configuration	from	the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

58	|	P a g e 	
	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. https://github.com/kubernetes/kubernetes/blob/master/pkg/kubelet/apis/kubel

etconfig/v1beta1/types.go	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 6	Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring,	and	Analysis	of	Audit	Logs	

Version	7	

	 6	Maintenance,	Monitoring	and	Analysis	of	Audit	Logs	
	 Maintenance,	Monitoring	and	Analysis	of	Audit	Logs	

59	|	P a g e 	
	

3.2.10 Ensure that the --tls-cert-file and --tls-private-key-file arguments
are set as appropriate (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Setup	TLS	connection	on	the	Kubelets.	

Rationale:	

Kubelet	communication	contains	sensitive	parameters	that	should	remain	encrypted	in	
transit.	Configure	the	Kubelets	to	serve	only	HTTPS	traffic.	

Impact:	

TLS	and	client	certificate	authentication	must	be	configured	for	your	Kubernetes	cluster	
deployment.	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	tls-cert-file	set	to	
correct pem file	and	tls-private-key-file	is	set	to	correct key file	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

Verify	that	the	tls-cert-file=/var/lib/kubelet/pki/tls.pem.	
Verify	that	the	tls-private-key-file=/var/lib/kubelet/pki/tls.key.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	tlsCertFile	and	
tlsPrivateKeyFile	are	set	by	extracting	the	live	configuration	from	the	nodes	running	

60	|	P a g e 	
	

kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

Verify that the `tls-cert-file=/var/lib/kubelet/pki/tls.pem`.
Verify that the `tls-private-key-file=/var/lib/kubelet/pki/tls.key`.

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	tlsCertFile	and	
tlsPrivateKeyFile	are	set	by	extracting	the	live	configuration	from	the	nodes	running	
kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

61	|	P a g e 	
	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://kubernetes.io/docs/admin/kubelet/	
2. http://rootsquash.com/2016/05/10/securing-the-kubernetes-api/	
3. https://github.com/kelseyhightower/docker-kubernetes-tls-guide	
4. https://jvns.ca/blog/2017/08/05/how-kubernetes-certificates-work/	
5. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

62	|	P a g e 	
	

3.2.11 Ensure that the --rotate-certificates argument is not set to false
(Automated)

Profile	Applicability:	

•		Level	2	

Description:	

Enable	kubelet	client	certificate	rotation.	

Rationale:	

The	--rotate-certificates	setting	causes	the	kubelet	to	rotate	its	client	certificates	by	
creating	new	CSRs	as	its	existing	credentials	expire.	This	automated	periodic	rotation	
ensures	that	the	there	is	no	downtime	due	to	expired	certificates	and	thus	addressing	
availability	in	the	CIA	security	triad.	

Note:	This	recommendation	only	applies	if	you	let	kubelets	get	their	certificates	from	the	
API	server.	In	case	your	kubelet	certificates	come	from	an	outside	authority/tool	(e.g.	
Vault)	then	you	need	to	take	care	of	rotation	yourself.	

Note:	This	feature	also	require	the	RotateKubeletClientCertificate	feature	gate	to	be	
enabled	(which	is	the	default	since	Kubernetes	v1.7)	

Impact:	

None	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--rotate-
certificates	set	to	true.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

63	|	P a g e 	
	

sudo more etc/systemd/system/kublet.service

Verify	that	the	--rotate-certificates	is	present.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	rotateCertificates	
by	extracting	the	live	configuration	from	the	nodes	running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

Verify that the `--rotate-certificates` is present.

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	rotateCertificates	
by	extracting	the	live	configuration	from	the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

64	|	P a g e 	
	

Default	Value:

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://github.com/kubernetes/kubernetes/pull/41912	
2. https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet-tls-

bootstrapping/#kubelet-configuration	
3. https://kubernetes.io/docs/imported/release/notes/	
4. https://kubernetes.io/docs/reference/command-line-tools-reference/feature-

gates/	
5. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

65	|	P a g e 	
	

3.2.12 Ensure that the --rotate-server-certificates argument is set to
true (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Enable	kubelet	server	certificate	rotation.	

Rationale:	

--rotate-server-certificates	causes	the	kubelet	to	both	request	a	serving	certificate	
after	bootstrapping	its	client	credentials	and	rotate	the	certificate	as	its	existing	credentials	
expire.	This	automated	periodic	rotation	ensures	that	the	there	are	no	downtimes	due	to	
expired	certificates	and	thus	addressing	availability	in	the	CIA	security	triad.	

Note:	This	recommendation	only	applies	if	you	let	kubelets	get	their	certificates	from	the	
API	server.	In	case	your	kubelet	certificates	come	from	an	outside	authority/tool	(e.g.	
Vault)	then	you	need	to	take	care	of	rotation	yourself.	

Impact:	

None	

Audit:	

Audit	Method	1:	
If	using	a	Kubelet	configuration	file,	check	that	there	is	an	entry	for	--rotate-server-
certificates	is	set	to	true.	
First,	SSH	to	the	relevant	node:	
Run	the	following	command	on	each	node	to	find	the	appropriate	Kubelet	config	file:	

find / -name kubelet.service

The	output	of	the	above	command	should	return	the	file	and	location	
/etc/systemd/system/kublet.service	which	is	the	location	of	the	Kubelet	service	config	
file.	
Open	the	Kubelet	service	config	file:

sudo more etc/systemd/system/kublet.service

66	|	P a g e 	
	

Verify	that	the	--rotate-server-certificates=true.	
Audit	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	--rotate-server-
certificates	by	extracting	the	live	configuration	from	the	nodes	running	kubelet.	
Set	the	local	proxy	port	and	the	following	variables	and	provide	proxy	port	number	and	
node	name;	
HOSTNAME_PORT="localhost-and-port-number"	
NODE_NAME="The-Name-Of-Node-To-Extract-Configuration" from the output of
"kubectl get nodes"

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

Remediation:

Remediation	Method	1:	
If	modifying	the	Kubelet	service	config	file,	edit	the	kubelet.service	file	
/etc/systemd/system/kubelet.service	and	set	the	below	parameter	

--rotate-server-certificates=true

Remediation	Method	2:	
If	using	the	api	configz	endpoint	consider	searching	for	the	status	of	--rotate-server-
certificates	by	extracting	the	live	configuration	from	the	nodes	running	kubelet.	
**See	detailed	step-by-step	configmap	procedures	in	Reconfigure	a	Node's	Kubelet	in	a	Live	
Cluster,	and	then	rerun	the	curl	statement	from	audit	process	to	check	for	kubelet	
configuration	changes

kubectl proxy --port=8001 &

export HOSTNAME_PORT=localhost:8001 (example host and port number)
export NODE_NAME=10.0.10.4 (example node name from "kubectl get nodes")

curl -sSL "http://${HOSTNAME_PORT}/api/v1/nodes/${NODE_NAME}/proxy/configz"

For	all	remediations:	
Based	on	your	system,	restart	the	kubelet	service	and	check	status

systemctl daemon-reload
systemctl restart kubelet.service
systemctl status kubelet -l

Default	Value:

67	|	P a g e 	
	

See	the	OKE	documentation	for	the	default	value.	

References:	

1. https://github.com/kubernetes/kubernetes/pull/45059	
2. https://kubernetes.io/docs/admin/kubelet-tls-bootstrapping/#kubelet-

configuration	
3. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
	 All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

68	|	P a g e 	
	

4 Policies

This	section	contains	recommendations	for	various	Kubernetes	policies	which	are	
important	to	the	security	of	Oracle	OKE	customer	environment.	

69	|	P a g e 	
	

4.1 RBAC and Service Accounts

4.1.1 Ensure that the cluster-admin role is only used where required
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

The	RBAC	role	cluster-admin	provides	wide-ranging	powers	over	the	environment	and	
should	be	used	only	where	and	when	needed.	

Rationale:	

Kubernetes	provides	a	set	of	default	roles	where	RBAC	is	used.	Some	of	these	roles	such	as	
cluster-admin	provide	wide-ranging	privileges	which	should	only	be	applied	where	
absolutely	necessary.	Roles	such	as	cluster-admin	allow	super-user	access	to	perform	any	
action	on	any	resource.	When	used	in	a	ClusterRoleBinding,	it	gives	full	control	over	
every	resource	in	the	cluster	and	in	all	namespaces.	When	used	in	a	RoleBinding,	it	gives	
full	control	over	every	resource	in	the	rolebinding's	namespace,	including	the	namespace	
itself.	

Impact:	

Care	should	be	taken	before	removing	any	clusterrolebindings	from	the	environment	to	
ensure	they	were	not	required	for	operation	of	the	cluster.	Specifically,	modifications	
should	not	be	made	to	clusterrolebindings	with	the	system:	prefix	as	they	are	required	
for	the	operation	of	system	components.	

Audit:	

Obtain	a	list	of	the	principals	who	have	access	to	the	cluster-admin	role	by	reviewing	the	
clusterrolebinding	output	for	each	role	binding	that	has	access	to	the	cluster-admin	
role.	
kubectl	get	clusterrolebindings	-o=custom-
columns=NAME:.metadata.name,ROLE:.roleRef.name,SUBJECT:.subjects[*].name	
Review	each	principal	listed	and	ensure	that	cluster-admin	privilege	is	required	for	it.	

Remediation:	

70	|	P a g e 	
	

Identify	all	clusterrolebindings	to	the	cluster-admin	role.	Check	if	they	are	used	and	if	they	
need	this	role	or	if	they	could	use	a	role	with	fewer	privileges.	
Where	possible,	first	bind	users	to	a	lower	privileged	role	and	then	remove	the	
clusterrolebinding	to	the	cluster-admin	role	:	

kubectl delete clusterrolebinding [name]

Default	Value:

By	default	a	single	clusterrolebinding	called	cluster-admin	is	provided	with	the	
system:masters	group	as	its	principal.	

References:	

1. https://kubernetes.io/docs/admin/authorization/rbac/#user-facing-roles	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

71	|	P a g e 	
	

4.1.2 Minimize access to secrets (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

The	Kubernetes	API	stores	secrets,	which	may	be	service	account	tokens	for	the	
Kubernetes	API	or	credentials	used	by	workloads	in	the	cluster.	Access	to	these	secrets	
should	be	restricted	to	the	smallest	possible	group	of	users	to	reduce	the	risk	of	privilege	
escalation.	

Rationale:	

Inappropriate	access	to	secrets	stored	within	the	Kubernetes	cluster	can	allow	for	an	
attacker	to	gain	additional	access	to	the	Kubernetes	cluster	or	external	resources	whose	
credentials	are	stored	as	secrets.	

Impact:	

Care	should	be	taken	not	to	remove	access	to	secrets	to	system	components	which	require	
this	for	their	operation	

Audit:	

Review	the	users	who	have	get,	list	or	watch	access	to	secrets	objects	in	the	Kubernetes	
API.	

Remediation:	

Where	possible,	remove	get,	list	and	watch	access	to	secret	objects	in	the	cluster.	

Default	Value:	

By	default,	the	following	list	of	principals	have	get	privileges	on	secret	objects	

CLUSTERROLEBINDING SUBJECT
TYPE SA-NAMESPACE

cluster-admin system:masters
Group

system:controller:clusterrole-aggregation-controller clusterrole-
aggregation-controller ServiceAccount kube-system

72	|	P a g e 	
	

system:controller:expand-controller expand-controller
ServiceAccount kube-system

system:controller:generic-garbage-collector generic-garbage-
collector ServiceAccount kube-system

system:controller:namespace-controller namespace-controller
ServiceAccount kube-system

system:controller:persistent-volume-binder persistent-volume-
binder ServiceAccount kube-system

system:kube-controller-manager system:kube-controller-
manager User

References:	

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

73	|	P a g e 	
	

4.1.3 Minimize wildcard use in Roles and ClusterRoles (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Kubernetes	Roles	and	ClusterRoles	provide	access	to	resources	based	on	sets	of	objects	and	
actions	that	can	be	taken	on	those	objects.	It	is	possible	to	set	either	of	these	to	be	the	
wildcard	"*"	which	matches	all	items.	

Use	of	wildcards	is	not	optimal	from	a	security	perspective	as	it	may	allow	for	inadvertent	
access	to	be	granted	when	new	resources	are	added	to	the	Kubernetes	API	either	as	CRDs	
or	in	later	versions	of	the	product.	

Rationale:	

The	principle	of	least	privilege	recommends	that	users	are	provided	only	the	access	
required	for	their	role	and	nothing	more.	The	use	of	wildcard	rights	grants	is	likely	to	
provide	excessive	rights	to	the	Kubernetes	API.	

Audit:	

Retrieve	the	roles	defined	across	each	namespaces	in	the	cluster	and	review	for	wildcards	

kubectl get roles --all-namespaces -o yaml

Retrieve	the	cluster	roles	defined	in	the	cluster	and	review	for	wildcards

kubectl get clusterroles -o yaml

Remediation:

Where	possible	replace	any	use	of	wildcards	in	clusterroles	and	roles	with	specific	objects	
or	actions.	

CIS	Controls:	

Version	7	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

74	|	P a g e 	
	

4.1.4 Minimize access to create pods (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

The	ability	to	create	pods	in	a	namespace	can	provide	a	number	of	opportunities	for	
privilege	escalation,	such	as	assigning	privileged	service	accounts	to	these	pods	or	
mounting	hostPaths	with	access	to	sensitive	data	(unless	Pod	Security	Policies	are	
implemented	to	restrict	this	access)	

As	such,	access	to	create	new	pods	should	be	restricted	to	the	smallest	possible	group	of	
users.	

Rationale:	

The	ability	to	create	pods	in	a	cluster	opens	up	possibilities	for	privilege	escalation	and	
should	be	restricted,	where	possible.	

Impact:	

Care	should	be	taken	not	to	remove	access	to	pods	to	system	components	which	require	
this	for	their	operation	

Audit:	

Review	the	users	who	have	create	access	to	pod	objects	in	the	Kubernetes	API.	

Remediation:	

Where	possible,	remove	create	access	to	pod	objects	in	the	cluster.	

Default	Value:	

By	default,	the	following	list	of	principals	have	create	privileges	on	pod	objects	

CLUSTERROLEBINDING SUBJECT
TYPE SA-NAMESPACE

cluster-admin system:masters
Group

system:controller:clusterrole-aggregation-controller clusterrole-
aggregation-controller ServiceAccount kube-system

75	|	P a g e 	
	

system:controller:daemon-set-controller daemon-set-controller
ServiceAccount kube-system

system:controller:job-controller job-controller
ServiceAccount kube-system

system:controller:persistent-volume-binder persistent-volume-
binder ServiceAccount kube-system

system:controller:replicaset-controller replicaset-controller
ServiceAccount kube-system

system:controller:replication-controller replication-controller
ServiceAccount kube-system

system:controller:statefulset-controller statefulset-controller
ServiceAccount kube-system

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

76	|	P a g e 	
	

4.1.5 Ensure that default service accounts are not actively used.
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

The	default	service	account	should	not	be	used	to	ensure	that	rights	granted	to	
applications	can	be	more	easily	audited	and	reviewed.	

Rationale:	

Kubernetes	provides	a	default	service	account	which	is	used	by	cluster	workloads	where	
no	specific	service	account	is	assigned	to	the	pod.	

Where	access	to	the	Kubernetes	API	from	a	pod	is	required,	a	specific	service	account	
should	be	created	for	that	pod,	and	rights	granted	to	that	service	account.	

The	default	service	account	should	be	configured	such	that	it	does	not	provide	a	service	
account	token	and	does	not	have	any	explicit	rights	assignments.	

Impact:	

All	workloads	which	require	access	to	the	Kubernetes	API	will	require	an	explicit	service	
account	to	be	created.	

Audit:	

For	each	namespace	in	the	cluster,	review	the	rights	assigned	to	the	default	service	account	
and	ensure	that	it	has	no	roles	or	cluster	roles	bound	to	it	apart	from	the	defaults.	
Additionally	ensure	that	the	automountServiceAccountToken: false	setting	is	in	place	for	
each	default	service	account.	

Remediation:	

Create	explicit	service	accounts	wherever	a	Kubernetes	workload	requires	specific	access	
to	the	Kubernetes	API	server.	
Modify	the	configuration	of	each	default	service	account	to	include	this	value	

automountServiceAccountToken: false

77	|	P a g e 	
	

Automatic	remediation	for	the	default	account:	
kubectl patch serviceaccount default -p $'automountServiceAccountToken:
false'

Default	Value:	

By	default	the	default	service	account	allows	for	its	service	account	token	to	be	mounted	
in	pods	in	its	namespace.	

References:	

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/	

2. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	
account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

78	|	P a g e 	
	

4.1.6 Ensure that Service Account Tokens are only mounted where
necessary (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Service	accounts	tokens	should	not	be	mounted	in	pods	except	where	the	workload	
running	in	the	pod	explicitly	needs	to	communicate	with	the	API	server	

Rationale:	

Mounting	service	account	tokens	inside	pods	can	provide	an	avenue	for	privilege	escalation	
attacks	where	an	attacker	is	able	to	compromise	a	single	pod	in	the	cluster.	

Avoiding	mounting	these	tokens	removes	this	attack	avenue.	

Impact:	

Pods	mounted	without	service	account	tokens	will	not	be	able	to	communicate	with	the	API	
server,	except	where	the	resource	is	available	to	unauthenticated	principals.	

Audit:	

Review	pod	and	service	account	objects	in	the	cluster	and	ensure	that	the	option	below	is	
set,	unless	the	resource	explicitly	requires	this	access.	

automountServiceAccountToken: false

Remediation:

Modify	the	definition	of	pods	and	service	accounts	which	do	not	need	to	mount	service	
account	tokens	to	disable	it.	

Default	Value:	

By	default,	all	pods	get	a	service	account	token	mounted	in	them.	

References:	

1. https://kubernetes.io/docs/tasks/configure-pod-container/configure-service-
account/	

79	|	P a g e 	
	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

80	|	P a g e 	
	

4.2 Pod Security Policies

A	Pod	Security	Policy	(PSP)	is	a	cluster-level	resource	that	controls	security	settings	for	
pods.	Your	cluster	may	have	multiple	PSPs.	You	can	query	PSPs	with	the	following	
command:	

kubectl get psp

PodSecurityPolicies	are	used	in	conjunction	with	the	PodSecurityPolicy	admission	
controller	plugin.	

4.2.1 Minimize the admission of privileged containers (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	securityContext.privileged	flag	
set	to	true.	

Rationale:	

Privileged	containers	have	access	to	all	Linux	Kernel	capabilities	and	devices.	A	container	
running	with	full	privileges	can	do	almost	everything	that	the	host	can	do.	This	flag	exists	
to	allow	special	use-cases,	like	manipulating	the	network	stack	and	accessing	devices.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
privileged	containers.	

If	you	need	to	run	privileged	containers,	this	should	be	defined	in	a	separate	PSP	and	you	
should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	and	
users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.containers[].securityContext.privileged: true	will	not	be	
permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

81	|	P a g e 	
	

kubectl get psp

For	each	PSP,	check	whether	privileged	is	enabled:

kubectl get psp -o json

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true.	
kubectl get psp <name> -o=jsonpath='{.spec.privileged}'

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.privileged	field	is	omitted	or	set	to	the	correct	value.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

Before	enabling	the	PodSecurityPolicy	admission	controller	of	an	existing	cluster	it	is	
strongly	recommended	you	first	verify	the	cluster's	pod	security	policies	in	a	development	
or	test	environment.	That	way,	you	can	be	sure	the	pod	security	policies	work	as	you	
expect	and	correctly	allow	(or	refuse)	pods	to	start	on	the	cluster.	It	is	recommended	to	
follow	the	outlined	procedure:	

1. Create	the	kubernetes	cluster,	but	do	not	enable	the	PodSecurityPolicy	admission	
controller	unless	you	have	verified	your	deployed	cluster's	pod	security	policies	in	a	
development	or	test	environment.	

2. Deploy	the	pod	security	policies	to	the	cluster.	
3. Access	the	console	and	edit	the	Kubernetes	cluster	policy	from	disabled	to	enabled.	

It	is	very	important	to	note	that	when	you	enable	a	cluster's	PodSecurityPolicy	admission	
controller,	no	application	pods	can	start	on	the	cluster	unless	suitable	pod	security	policies	
exist,	along	with	roles	(or	clusterroles)	and	rolebindings	(or	clusterrolebindings)	to	
associate	pods	with	policies.	You	will	not	be	able	to	run	application	pods	on	a	cluster	with	
an	enabled	PodSecurityPolicy	admission	controller	unless	these	prerequisites	are	met.	We	
strongly	recommend	you	use	PodSecurityPolicy	admission	controllers	as	follows:	

• After	you	have	created	a	new	cluster,	and	tested	your	pod	security	polices,	enable	
the	Pod	Security	Admission	Controller.	

• Immediately	after	creating	a	new	cluster,	create	roles	(or	clusterroles)	and	
rolebindings	(or	clusterrolebindings).	

References:	

82	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

83	|	P a g e 	
	

4.2.2 Minimize the admission of containers wishing to share the host
process ID namespace (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostPID	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	PID	namespace	can	inspect	processes	running	outside	the	
container.	If	the	container	also	has	access	to	ptrace	capabilities	this	can	be	used	to	escalate	
privileges	outside	of	the	container.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	PID	namespace.	

If	you	need	to	run	containers	which	require	hostPID,	this	should	be	defined	in	a	separate	
PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	
accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostPID: true	will	not	be	permitted	unless	they	are	run	under	a	
specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	privileged	is	enabled:

kubectl get psp <name> -o=jsonpath='{.spec.hostPID}'

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true.

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostPID	field	is	omitted	or	set	to	the	correct	value.	

84	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

85	|	P a g e 	
	

4.2.3 Minimize the admission of containers wishing to share the host
IPC namespace (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostIPC	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	IPC	namespace	can	use	IPC	to	interact	with	processes	
outside	the	container.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	IPC	namespace.	

If	you	have	a	requirement	to	containers	which	require	hostIPC,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostIPC: true	will	not	be	permitted	unless	they	are	run	under	a	
specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	privileged	is	enabled:

kubectl get psp <name> -o=jsonpath='{.spec.hostIPC}'

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true.

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostIPC	field	is	omitted	or	set	to	the	correct	value.	

86	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

87	|	P a g e 	
	

4.2.4 Minimize the admission of containers wishing to share the host
network namespace (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	hostNetwork	flag	set	to	true.	

Rationale:	

A	container	running	in	the	host's	network	namespace	could	access	the	local	loopback	
device,	and	could	access	network	traffic	to	and	from	other	pods.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	share	the	host	network	namespace.	

If	you	have	need	to	run	containers	which	require	hostNetwork,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	defined	with	spec.hostNetwork: true	will	not	be	permitted	unless	they	are	run	
under	a	specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	privileged	is	enabled:

kubectl get psp <name> -o=jsonpath='{.spec.hostNetwork}'

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true.

Remediation:	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.hostNetwork	field	is	omitted	or	set	to	the	correct	value.	

88	|	P a g e 	
	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

89	|	P a g e 	
	

4.2.5 Minimize the admission of containers with
allowPrivilegeEscalation (Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	to	be	run	with	the	allowPrivilegeEscalation	flag	set	
to	true.	

Rationale:	

A	container	running	with	the	allowPrivilegeEscalation	flag	set	to	true	may	have	
processes	that	can	gain	more	privileges	than	their	parent.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	
containers	to	allow	privilege	escalation.	The	option	exists	(and	is	defaulted	to	true)	to	
permit	setuid	binaries	to	run.	

If	you	have	need	to	run	containers	which	use	setuid	binaries	or	require	privilege	escalation,	
this	should	be	defined	in	a	separate	PSP	and	you	should	carefully	check	RBAC	controls	to	
ensure	that	only	limited	service	accounts	and	users	are	given	permission	to	access	that	
PSP.	

Impact:	

Pods	defined	with	spec.allowPrivilegeEscalation: true	will	not	be	permitted	unless	
they	are	run	under	a	specific	PSP.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	privileged	is	enabled:

kubectl get psp <name> -o=jsonpath='{.spec.allowPrivilegeEscalation}'

Verify	that	there	is	at	least	one	PSP	which	does	not	return	true.

Remediation:	

90	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.allowPrivilegeEscalation	field	is	omitted	or	set	to	the	correct	value.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy	
2. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

91	|	P a g e 	
	

4.2.6 Minimize the admission of root containers (Automated)

Profile	Applicability:	

•		Level	2	

Description:	

Do	not	generally	permit	containers	to	be	run	as	the	root	user.	

Rationale:	

Containers	may	run	as	any	Linux	user.	Containers	which	run	as	the	root	user,	whilst	
constrained	by	Container	Runtime	security	features	still	have	a	escalated	likelihood	of	
container	breakout.	

Ideally,	all	containers	should	run	as	a	defined	non-UID	0	user.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	does	not	permit	root	
users	in	a	container.	

If	you	need	to	run	root	containers,	this	should	be	defined	in	a	separate	PSP	and	you	should	
carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	and	users	are	
given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	run	as	the	root	user	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	running	containers	as	root	is	enabled:

kubectl get psp <name> -o=jsonpath='{.spec.runAsUser.rule}'

Verify	that	there	is	at	least	one	PSP	which	returns	MustRunAsNonRoot	or	MustRunAs	with	the	
range	of	UIDs	not	including	0.

Remediation:	

92	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.runAsUser.rule	is	set	to	either	MustRunAsNonRoot	or	MustRunAs	with	the	range	of	
UIDs	not	including	0.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

93	|	P a g e 	
	

4.2.7 Minimize the admission of containers with the NET_RAW
capability (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	with	the	potentially	dangerous	NET_RAW	capability.	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	By	
default	this	can	include	potentially	dangerous	capabilities.	With	Docker	as	the	container	
runtime	the	NET_RAW	capability	is	enabled	which	may	be	misused	by	malicious	
containers.	

Ideally,	all	containers	should	drop	this	capability.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	prevents	containers	
with	the	NET_RAW	capability	from	launching.	

If	you	need	to	run	containers	with	this	capability,	this	should	be	defined	in	a	separate	PSP	
and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	service	accounts	
and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	run	with	the	NET_RAW	capability	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	NET_RAW	is	disabled:

kubectl get psp <name> -o=jsonpath='{.spec.requiredDropCapabilities}'

Verify	that	there	is	at	least	one	PSP	which	returns	NET_RAW	or	ALL.

Remediation:	

94	|	P a g e 	
	

Create	a	PSP	as	described	in	the	Kubernetes	documentation,	ensuring	that	the	
.spec.requiredDropCapabilities	is	set	to	include	either	NET_RAW	or	ALL.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

3. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

95	|	P a g e 	
	

4.2.8 Minimize the admission of containers with added capabilities
(Automated)

Profile	Applicability:	

•		Level	1	

Description:	

Do	not	generally	permit	containers	with	capabilities	assigned	beyond	the	default	set.	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	
Capabilities	outside	this	set	can	be	added	to	containers	which	could	expose	them	to	risks	of	
container	breakout	attacks.	

There	should	be	at	least	one	PodSecurityPolicy	(PSP)	defined	which	prevents	containers	
with	capabilities	beyond	the	default	set	from	launching.	

If	you	need	to	run	containers	with	additional	capabilities,	this	should	be	defined	in	a	
separate	PSP	and	you	should	carefully	check	RBAC	controls	to	ensure	that	only	limited	
service	accounts	and	users	are	given	permission	to	access	that	PSP.	

Impact:	

Pods	with	containers	which	require	capabilities	outwith	the	default	set	will	not	be	
permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

Verify	that	there	are	no	PSPs	present	which	have	allowedCapabilities	set	to	anything	
other	than	an	empty	array.

Remediation:	

Ensure	that	allowedCapabilities	is	not	present	in	PSPs	for	the	cluster	unless	it	is	set	to	an	
empty	array.	

Default	Value:	

96	|	P a g e 	
	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

3. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

97	|	P a g e 	
	

4.2.9 Minimize the admission of containers with capabilities assigned
(Manual)

Profile	Applicability:	

•		Level	2	

Description:	

Do	not	generally	permit	containers	with	capabilities	

Rationale:	

Containers	run	with	a	default	set	of	capabilities	as	assigned	by	the	Container	Runtime.	
Capabilities	are	parts	of	the	rights	generally	granted	on	a	Linux	system	to	the	root	user.	

In	many	cases	applications	running	in	containers	do	not	require	any	capabilities	to	operate,	
so	from	the	perspective	of	the	principal	of	least	privilege	use	of	capabilities	should	be	
minimized.	

Impact:	

Pods	with	containers	require	capabilities	to	operate	will	not	be	permitted.	

Audit:	

Get	the	set	of	PSPs	with	the	following	command:	

kubectl get psp

For	each	PSP,	check	whether	capabilities	have	been	forbidden:

kubectl get psp <name> -o=jsonpath='{.spec.requiredDropCapabilities}'

Remediation:

Review	the	use	of	capabilites	in	applications	runnning	on	your	cluster.	Where	a	namespace	
contains	applicaions	which	do	not	require	any	Linux	capabities	to	operate	consider	adding	
a	PSP	which	forbids	the	admission	of	containers	which	do	not	drop	all	capabilities.	

Default	Value:	

By	default,	PodSecurityPolicies	are	not	defined.	

References:	

98	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/policy/pod-security-policy/#enabling-pod-
security-policies	

2. https://www.nccgroup.trust/uk/our-research/abusing-privileged-and-
unprivileged-linux-containers/	

3. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 5.1	Minimize	And	Sparingly	Use	Administrative	Privileges	
	 Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	and	
monitor	for	anomalous	behavior.	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

99	|	P a g e 	
	

4.3 CNI Plugin

4.3.1 Ensure latest CNI version is used (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

There	are	a	variety	of	CNI	plugins	available	for	Kubernetes.	If	the	CNI	in	use	does	not	
support	Network	Policies	it	may	not	be	possible	to	effectively	restrict	traffic	in	the	cluster.	

Rationale:	

Kubernetes	network	policies	are	enforced	by	the	CNI	plugin	in	use.	As	such	it	is	important	
to	ensure	that	the	CNI	plugin	supports	both	Ingress	and	Egress	network	policies.	

Impact:	

None.	

Audit:	

Review	the	documentation	of	CNI	plugin	in	use	by	the	cluster,	and	confirm	that	it	supports	
network	policies.	

Remediation:	

As	with	RBAC	policies,	network	policies	should	adhere	to	the	policy	of	least	privileged	
access.	Start	by	creating	a	deny	all	policy	that	restricts	all	inbound	and	outbound	traffic	
from	a	namespace	or	create	a	global	policy	using	Calico.	

Default	Value:	

This	will	depend	on	the	CNI	plugin	in	use.	

References:	

1. https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-
net/network-plugins/	

2. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

Additional	Information:	

100	|	P a g e 	
	

One	example	here	is	Flannel	(https://github.com/coreos/flannel)	which	does	not	support	
Network	policy	unless	Calico	is	also	in	use.	

CIS	Controls:	

Version	7	

	 18.4	Only	Use	Up-to-date	And	Trusted	Third-Party	Components	
	 Only	use	up-to-date	and	trusted	third-party	components	for	the	software	developed	by	
the	organization.	

101	|	P a g e 	
	

4.3.2 Ensure that all Namespaces have Network Policies defined
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Use	network	policies	to	isolate	traffic	in	your	cluster	network.	

Rationale:	

Running	different	applications	on	the	same	Kubernetes	cluster	creates	a	risk	of	one	
compromised	application	attacking	a	neighboring	application.	Network	segmentation	is	
important	to	ensure	that	containers	can	communicate	only	with	those	they	are	supposed	
to.	A	network	policy	is	a	specification	of	how	selections	of	pods	are	allowed	to	
communicate	with	each	other	and	other	network	endpoints.	

Network	Policies	are	namespace	scoped.	When	a	network	policy	is	introduced	to	a	given	
namespace,	all	traffic	not	allowed	by	the	policy	is	denied.	However,	if	there	are	no	network	
policies	in	a	namespace	all	traffic	will	be	allowed	into	and	out	of	the	pods	in	that	
namespace.	

Impact:	

Once	network	policies	are	in	use	within	a	given	namespace,	traffic	not	explicitly	allowed	by	
a	network	policy	will	be	denied.	As	such	it	is	important	to	ensure	that,	when	introducing	
network	policies,	legitimate	traffic	is	not	blocked.	

Audit:	

Run	the	below	command	and	review	the	NetworkPolicy	objects	created	in	the	cluster.	

kubectl get networkpolicy --all-namespaces

ensure that each namespace defined in the cluster has at least one Network
Policy.

Remediation:

Follow	the	documentation	and	create	NetworkPolicy	objects	as	you	need	them.	
Clusters	you	create	with	Container	Engine	for	Kubernetes	have	flannel	installed	as	the	
default	CNI	network	provider.	flannel	is	a	simple	overlay	virtual	network	that	satisfies	the	

102	|	P a g e 	
	

requirements	of	the	Kubernetes	networking	model	by	attaching	IP	addresses	to	containers.	
Although	flannel	satisfies	the	requirements	of	the	Kubernetes	networking	model,	it	does	
not	support	NetworkPolicy	resources.	If	you	want	to	enhance	the	security	of	clusters	you	
create	with	Container	Engine	for	Kubernetes	by	implementing	network	policies,	you	have	
to	install	and	configure	a	network	provider	that	does	support	NetworkPolicy	resources.	
One	such	provider	is	Calico	(refer	to	the	Kubernetes	documentation	for	a	list	of	other	
network	providers).	Calico	is	an	open	source	networking	and	network	security	solution	for	
containers,	virtual	machines,	and	native	host-based	workloads.	
Use	the	Calico	open-source	software	in	conjunction	with	flannel.	The	Calico	Enterprise	does	
not	support	flannel.	

Default	Value:	

By	default,	network	policies	are	not	created.	

References:	

1. https://kubernetes.io/docs/concepts/services-networking/networkpolicies/	
2. https://octetz.com/posts/k8s-network-policy-apis	
3. https://kubernetes.io/docs/tasks/configure-pod-container/declare-network-

policy/	

CIS	Controls:	

Version	6	

	 14.1	Implement	Network	Segmentation	Based	On	Information	Class	
	 Segment	the	network	based	on	the	label	or	classification	level	of	the	information	stored	
on	the	servers.	Locate	all	sensitive	information	on	separated	VLANS	with	firewall	filtering	
to	ensure	that	only	authorized	individuals	are	only	able	to	communicate	with	systems	
necessary	to	fulfill	their	specific	responsibilities.	

Version	7	

	 14.1	Segment	the	Network	Based	on	Sensitivity	
	 Segment	the	network	based	on	the	label	or	classification	level	of	the	information	stored	
on	the	servers,	locate	all	sensitive	information	on	separated	Virtual	Local	Area	Networks	
(VLANs).	

	 14.2	Enable	Firewall	Filtering	Between	VLANs	
	 Enable	firewall	filtering	between	VLANs	to	ensure	that	only	authorized	systems	are	able	
to	communicate	with	other	systems	necessary	to	fulfill	their	specific	responsibilities.	

103	|	P a g e 	
	

4.4 Secrets Management

4.4.1 Prefer using secrets as files over secrets as environment variables
(Manual)

Profile	Applicability:	

•		Level	2	

Description:	

Kubernetes	supports	mounting	secrets	as	data	volumes	or	as	environment	variables.	
Minimize	the	use	of	environment	variable	secrets.	

Rationale:	

It	is	reasonably	common	for	application	code	to	log	out	its	environment	(particularly	in	the	
event	of	an	error).	This	will	include	any	secret	values	passed	in	as	environment	variables,	
so	secrets	can	easily	be	exposed	to	any	user	or	entity	who	has	access	to	the	logs.	

Impact:	

Application	code	which	expects	to	read	secrets	in	the	form	of	environment	variables	would	
need	modification	

Audit:	

Run	the	following	command	to	find	references	to	objects	which	use	environment	variables	
defined	from	secrets.	

kubectl get all -o jsonpath='{range .items[?(@..secretKeyRef)]} {.kind}
{.metadata.name} {"\n"}{end}' -A

Remediation:

If	possible,	rewrite	application	code	to	read	secrets	from	mounted	secret	files,	rather	than	
from	environment	variables.	

Default	Value:	

By	default,	secrets	are	not	defined	

References:	

104	|	P a g e 	
	

1. https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets	

Additional	Information:	

Mounting	secrets	as	volumes	has	the	additional	benefit	that	secret	values	can	be	updated	
without	restarting	the	pod	

CIS	Controls:	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

105	|	P a g e 	
	

4.4.2 Consider external secret storage (Manual)

Profile	Applicability:	

•		Level	2	

Description:	

Consider	the	use	of	an	external	secrets	storage	and	management	system,	instead	of	using	
Kubernetes	Secrets	directly,	if	you	have	more	complex	secret	management	needs.	Ensure	
the	solution	requires	authentication	to	access	secrets,	has	auditing	of	access	to	and	use	of	
secrets,	and	encrypts	secrets.	Some	solutions	also	make	it	easier	to	rotate	secrets.	

Rationale:	

Kubernetes	supports	secrets	as	first-class	objects,	but	care	needs	to	be	taken	to	ensure	that	
access	to	secrets	is	carefully	limited.	Using	an	external	secrets	provider	can	ease	the	
management	of	access	to	secrets,	especially	where	secrests	are	used	across	both	
Kubernetes	and	non-Kubernetes	environments.	

Impact:	

None	

Audit:	

Review	your	secrets	management	implementation.	

Remediation:	

Refer	to	the	secrets	management	options	offered	by	your	cloud	provider	or	a	third-party	
secrets	management	solution.	
The	master	nodes	in	a	Kubernetes	cluster	store	sensitive	configuration	data	(such	as	
authentication	tokens,	passwords,	and	SSH	keys)	as	Kubernetes	secret	objects	in	etcd.	Etcd	
is	an	open	source	distributed	key-value	store	that	Kubernetes	uses	for	cluster	coordination	
and	state	management.	In	the	Kubernetes	clusters	created	by	Container	Engine	for	
Kubernetes,	etcd	writes	and	reads	data	to	and	from	block	storage	volumes	in	the	Oracle	
Cloud	Infrastructure	Block	Volume	service.	Although	the	data	in	block	storage	volumes	is	
encrypted,	Kubernetes	secrets	at	rest	in	etcd	itself	are	not	encrypted	by	default.	
For	additional	security,	when	you	create	a	new	cluster	you	can	specify	that	Kubernetes	
secrets	at	rest	in	etcd	are	to	be	encrypted	using	the	Oracle	Cloud	Infrastructure	Vault	
service.	

106	|	P a g e 	
	

Default	Value:	

By	default,	no	external	secret	management	is	configured.	

References:	

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

107	|	P a g e 	
	

4.5 Extensible Admission Control

108	|	P a g e 	
	

4.6 General Policies

These	policies	relate	to	general	cluster	management	topics,	like	namespace	best	practices	
and	policies	applied	to	pod	objects	in	the	cluster.	

4.6.1 Create administrative boundaries between resources using
namespaces (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Use	namespaces	to	isolate	your	Kubernetes	objects.	

Rationale:	

Limiting	the	scope	of	user	permissions	can	reduce	the	impact	of	mistakes	or	malicious	
activities.	A	Kubernetes	namespace	allows	you	to	partition	created	resources	into	logically	
named	groups.	Resources	created	in	one	namespace	can	be	hidden	from	other	namespaces.	
By	default,	each	resource	created	by	a	user	in	Kubernetes	cluster	runs	in	a	default	
namespace,	called	default.	You	can	create	additional	namespaces	and	attach	resources	and	
users	to	them.	You	can	use	Kubernetes	Authorization	plugins	to	create	policies	that	
segregate	access	to	namespace	resources	between	different	users.	

Impact:	

You	need	to	switch	between	namespaces	for	administration.	

Audit:	

Run	the	below	command	and	review	the	namespaces	created	in	the	cluster.	

kubectl get namespaces

Ensure	that	these	namespaces	are	the	ones	you	need	and	are	adequately	administered	as	
per	your	requirements.

Remediation:	

Follow	the	documentation	and	create	namespaces	for	objects	in	your	deployment	as	you	
need	them.	

109	|	P a g e 	
	

Default	Value:	

By	default,	Kubernetes	starts	with	two	initial	namespaces:	

1. default	-	The	default	namespace	for	objects	with	no	other	namespace	
2. kube-system	-	The	namespace	for	objects	created	by	the	Kubernetes	system	
3. kube-public	-	The	namespace	for	public-readable	ConfigMap	
4. kube-node-lease	-	The	namespace	for	associated	lease	object	for	each	node	

References:	

1. https://kubernetes.io/docs/concepts/overview/working-with-
objects/namespaces/	

2. http://blog.kubernetes.io/2016/08/security-best-practices-kubernetes-
deployment.html	

CIS	Controls:	

Version	6	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

Version	7	

	 14	Controlled	Access	Based	on	the	Need	to	Know	
	 Controlled	Access	Based	on	the	Need	to	Know	

110	|	P a g e 	
	

4.6.2 Apply Security Context to Your Pods and Containers (Manual)

Profile	Applicability:	

•		Level	2	

Description:	

Apply	Security	Context	to	Your	Pods	and	Containers	

Rationale:	

A	security	context	defines	the	operating	system	security	settings	(uid,	gid,	capabilities,	
SELinux	role,	etc..)	applied	to	a	container.	When	designing	your	containers	and	pods,	make	
sure	that	you	configure	the	security	context	for	your	pods,	containers,	and	volumes.	A	
security	context	is	a	property	defined	in	the	deployment	yaml.	It	controls	the	security	
parameters	that	will	be	assigned	to	the	pod/container/volume.	There	are	two	levels	of	
security	context:	pod	level	security	context,	and	container	level	security	context.	

Impact:	

If	you	incorrectly	apply	security	contexts,	you	may	have	trouble	running	the	pods.	

Audit:	

Review	the	pod	definitions	in	your	cluster	and	verify	that	you	have	security	contexts	
defined	as	appropriate.	

Remediation:	

As	a	best	practice	we	recommend	that	you	scope	the	binding	for	privileged	pods	to	service	
accounts	within	a	particular	namespace,	e.g.	kube-system,	and	limiting	access	to	that	
namespace.	For	all	other	serviceaccounts/namespaces,	we	recommend	implementing	a	
more	restrictive	policy	such	as	this:	

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
 name: restricted
 annotations:
 seccomp.security.alpha.kubernetes.io/allowedProfileNames:
'docker/default,runtime/default'
 apparmor.security.beta.kubernetes.io/allowedProfileNames:
'runtime/default'
 seccomp.security.alpha.kubernetes.io/defaultProfileName:
'runtime/default'
 apparmor.security.beta.kubernetes.io/defaultProfileName:

111	|	P a g e 	
	

'runtime/default'
spec:
 privileged: false
 # Required to prevent escalations to root.
 allowPrivilegeEscalation: false
 # This is redundant with non-root + disallow privilege escalation,
 # but we can provide it for defense in depth.
 requiredDropCapabilities:
 - ALL
 # Allow core volume types.
 volumes:
 - 'configMap'
 - 'emptyDir'
 - 'projected'
 - 'secret'
 - 'downwardAPI'
 # Assume that persistentVolumes set up by the cluster admin are safe to
use.
 - 'persistentVolumeClaim'
 hostNetwork: false
 hostIPC: false
 hostPID: false
 runAsUser:
 # Require the container to run without root privileges.
 rule: 'MustRunAsNonRoot'
 seLinux:
 # This policy assumes the nodes are using AppArmor rather than SELinux.
 rule: 'RunAsAny'
 supplementalGroups:
 rule: 'MustRunAs'
 ranges:
 # Forbid adding the root group.
 - min: 1
 max: 65535
 fsGroup:
 rule: 'MustRunAs'
 ranges:
 # Forbid adding the root group.
 - min: 1
 max: 65535
 readOnlyRootFilesystem: false

This	policy	prevents	pods	from	running	as	privileged	or	escalating	privileges.	It	also	
restricts	the	types	of	volumes	that	can	be	mounted	and	the	root	supplemental	groups	that	
can	be	added.	
Another,	albeit	similar,	approach	is	to	start	with	policy	that	locks	everything	down	and	
incrementally	add	exceptions	for	applications	that	need	looser	restrictions	such	as	logging	
agents	which	need	the	ability	to	mount	a	host	path.

Default	Value:	

By	default,	no	security	contexts	are	automatically	applied	to	pods.	

112	|	P a g e 	
	

References:	

1. https://kubernetes.io/docs/concepts/policy/security-context/	
2. https://learn.cisecurity.org/benchmarks	
3. https://aws.github.io/aws-eks-best-practices/pods/#restrict-the-containers-that-

can-run-as-privileged	
4. https://docs.cloud.oracle.com/en-

us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	6	

	 3	Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	
	 Secure	Configurations	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations,	and	Servers	

Version	7	

	 5	Secure	Configuration	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations	and	Servers	
	 Secure	Configuration	for	Hardware	and	Software	on	Mobile	Devices,	Laptops,	
Workstations	and	Servers	

113	|	P a g e 	
	

4.6.3 The default namespace should not be used (Manual)

Profile	Applicability:	

•		Level	2	

Description:	

Kubernetes	provides	a	default	namespace,	where	objects	are	placed	if	no	namespace	is	
specified	for	them.	Placing	objects	in	this	namespace	makes	application	of	RBAC	and	other	
controls	more	difficult.	

Rationale:	

Resources	in	a	Kubernetes	cluster	should	be	segregated	by	namespace,	to	allow	for	security	
controls	to	be	applied	at	that	level	and	to	make	it	easier	to	manage	resources.	

Impact:	

None	

Audit:	

Run	this	command	to	list	objects	in	default	namespace	

kubectl get all -n default

The	only	entries	there	should	be	system	managed	resources	such	as	the	kubernetes	service

Remediation:	

Ensure	that	namespaces	are	created	to	allow	for	appropriate	segregation	of	Kubernetes	
resources	and	that	all	new	resources	are	created	in	a	specific	namespace.	

Default	Value:	

Unless	a	namespace	is	specific	on	object	creation,	the	default	namespace	will	be	used	

References:	

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengoverview.htm	

CIS	Controls:	

Version	7	

114	|	P a g e 	
	

	 5.1	Establish	Secure	Configurations	
	 Maintain	documented,	standard	security	configuration	standards	for	all	authorized	
operating	systems	and	software.	

115	|	P a g e 	
	

5 Managed services

This	section	consists	of	security	recommendations	for	the	Oracle	OKE.	These	
recommendations	are	applicable	for	configurations	that	Oracle	OKE	customers	own	and	
manage.	

116	|	P a g e 	
	

5.1 Image Registry and Image Scanning

This	section	contains	recommendations	relating	to	container	image	registries	and	securing	
images	in	those	registries,	such	as	Oracle	Container	Registry	(OCR).	

5.1.1 Oracle Cloud Security Penetration and Vulnerability Testing
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Oracle	regularly	performs	penetration	and	vulnerability	testing	and	security	assessments	
against	the	Oracle	Cloud	infrastructure,	platforms,	and	applications.	These	tests	are	
intended	to	validate	and	improve	the	overall	security	of	Oracle	Cloud	services.	

Rationale:	

Vulnerabilities	in	software	packages	can	be	exploited	by	hackers	or	malicious	users	to	
obtain	unauthorized	access	to	local	cloud	resources.	Oracle	Cloud	Container	Analysis	and	
other	third	party	products	allow	images	stored	in	Oracle	Cloud	to	be	scanned	for	known	
vulnerabilities.	

Impact:	

None.	

Audit:	

As	a	service	administrator,	you	can	run	tests	for	some	Oracle	Cloud	services.	Before	
running	the	tests,	you	must	first	review	the	Oracle	Cloud	Testing	Policies	section.	Follow	
the	steps	below	to	notify	Oracle	of	a	penetration	and	vulnerability	test.	

Remediation:	

As	a	service	administrator,	you	can	run	tests	for	some	Oracle	Cloud	services.	Before	
running	the	tests,	you	must	first	review	the	Oracle	Cloud	Testing	Policies	section.	
Note:	
You	must	have	an	Oracle	Account	with	the	necessary	privileges	to	file	service	maintenance	
requests,	and	you	must	be	signed	in	to	the	environment	that	will	be	the	subject	of	the	

117	|	P a g e 	
	

penetration	and	vulnerability	testing.	
Submitting	a	Cloud	Security	Testing	Notification	

References:	

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/Security/Concepts/security_testing-policy.htm	

CIS	Controls:	

Version	7	

	 3	Continuous	Vulnerability	Management	
	 Continuous	Vulnerability	Management	

	 3.1	Run	Automated	Vulnerability	Scanning	Tools	
	 Utilize	an	up-to-date	SCAP-compliant	vulnerability	scanning	tool	to	automatically	scan	all	
systems	on	the	network	on	a	weekly	or	more	frequent	basis	to	identify	all	potential	
vulnerabilities	on	the	organization's	systems.	

	 3.2	Perform	Authenticated	Vulnerability	Scanning	
	 Perform	authenticated	vulnerability	scanning	with	agents	running	locally	on	each	system	
or	with	remote	scanners	that	are	configured	with	elevated	rights	on	the	system	being	
tested.	

118	|	P a g e 	
	

5.1.2 Minimize user access control to Container Engine for Kubernetes
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Restrict	user	access	to	OKE,	limiting	interaction	with	build	images	to	only	authorized	
personnel	and	service	accounts.	

Rationale:	

Weak	access	control	to	OKE	may	allow	malicious	users	to	replace	built	images	with	
vulnerable	or	backdoored	containers.	

Impact:	

Care	should	be	taken	not	to	remove	access	to	Oracle	Cloud	Infrastructure	Registry	(OCR)	
for	accounts	that	require	this	for	their	operation.	Any	account	granted	the	Storage	Object	
Viewer	role	at	the	project	level	can	view	all	objects	stored	in	OCS	for	the	project.	

Audit:	

For	most	operations	on	Kubernetes	clusters	created	and	managed	by	Container	Engine	for	
Kubernetes,	Oracle	Cloud	Infrastructure	Identity	and	Access	Management	(IAM)	provides	
access	control.	A	user's	permissions	to	access	clusters	comes	from	the	groups	to	which	they	
belong.	The	permissions	for	a	group	are	defined	by	policies.	Policies	define	what	actions	
members	of	a	group	can	perform,	and	in	which	compartments.	Users	can	then	access	
clusters	and	perform	operations	based	on	the	policies	set	for	the	groups	they	are	members	
of.	
IAM	provides	control	over:	

• whether	a	user	can	create	or	delete	clusters	
• whether	a	user	can	add,	remove,	or	modify	node	pools	
• which	Kubernetes	object	create/delete/view	operations	a	user	can	perform	on	all	

clusters	within	a	compartment	or	tenancy	

See	Policy	Configuration	for	Cluster	Creation	and	Deployment.	
In	addition	to	IAM,	the	Kubernetes	RBAC	Authorizer	can	enforce	additional	fine-grained	
access	control	for	users	on	specific	clusters	via	Kubernetes	RBAC	roles	and	clusterroles.	A	
Kubernetes	RBAC	role	is	a	collection	of	permissions.	For	example,	a	role	might	include	read	

119	|	P a g e 	
	

permission	on	pods	and	list	permission	for	pods.	A	Kubernetes	RBAC	clusterrole	is	just	like	
a	role,	but	can	be	used	anywhere	in	the	cluster.	A	Kubernetes	RBAC	rolebinding	maps	a	role	
to	a	user	or	set	of	users,	granting	that	role's	permissions	to	those	users	for	resources	in	that	
namespace.	Similarly,	a	Kubernetes	RBAC	clusterrolebinding	maps	a	clusterrole	to	a	user	
or	set	of	users,	granting	that	clusterrole's	permissions	to	those	users	across	the	entire	
cluster.	

Remediation:	

By	default,	users	are	not	assigned	any	Kubernetes	RBAC	roles	(or	clusterroles)	by	default.	
So	before	attempting	to	create	a	new	role	(or	clusterrole),	you	must	be	assigned	an	
appropriately	privileged	role	(or	clusterrole).	A	number	of	such	roles	and	clusterroles	are	
always	created	by	default,	including	the	cluster-admin	clusterrole	(for	a	full	list,	see	Default	
Roles	and	Role	Bindings	in	the	Kubernetes	documentation).	The	cluster-admin	clusterrole	
essentially	confers	super-user	privileges.	A	user	granted	the	cluster-admin	clusterrole	can	
perform	any	operation	across	all	namespaces	in	a	given	cluster.	
Note	that	Oracle	Cloud	Infrastructure	tenancy	administrators	already	have	sufficient	
privileges,	and	do	not	require	the	cluster-admin	clusterrole.	
See:	Granting	the	Kubernetes	RBAC	cluster-admin	clusterrole	

CIS	Controls:	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

120	|	P a g e 	
	

5.1.3 Minimize cluster access to read-only (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Configure	the	Cluster	Service	Account	to	only	allow	read-only	access	to	OKE.	

Rationale:	

The	Cluster	Service	Account	does	not	require	administrative	access	to	OCR,	only	requiring	
pull	access	to	containers	to	deploy	onto	OKE.	Restricting	permissions	follows	the	principles	
of	least	privilege	and	prevents	credentials	from	being	abused	beyond	the	required	role.	

Impact:	

A	separate	dedicated	service	account	may	be	required	for	use	by	build	servers	and	other	
robot	users	pushing	or	managing	container	images.	

Audit:	

Review	Oracle	OCS	worker	node	IAM	role	IAM	Policy	Permissions	to	verify	that	they	are	set	
and	the	minimum	required	level.	
If	utilizing	a	3rd	party	tool	to	scan	images	utilize	the	minimum	required	permission	level	
required	to	interact	with	the	cluster	-	generally	this	should	be	read-only.	

Remediation:	

To	access	a	cluster	using	kubectl,	you	have	to	set	up	a	Kubernetes	configuration	file	
(commonly	known	as	a	'kubeconfig'	file)	for	the	cluster.	The	kubeconfig	file	(by	default	
named	config	and	stored	in	the	$HOME/.kube	directory)	provides	the	necessary	details	to	
access	the	cluster.	Having	set	up	the	kubeconfig	file,	you	can	start	using	kubectl	to	manage	
the	cluster.	
The	steps	to	follow	when	setting	up	the	kubeconfig	file	depend	on	how	you	want	to	access	
the	cluster:	

• To	access	the	cluster	using	kubectl	in	Cloud	Shell,	run	an	Oracle	Cloud	Infrastructure	
CLI	command	in	the	Cloud	Shell	window	to	set	up	the	kubeconfig	file.	

• To	access	the	cluster	using	a	local	installation	of	kubectl:	
1. Generate	an	API	signing	key	pair	(if	you	don't	already	have	one).	
2. Upload	the	public	key	of	the	API	signing	key	pair.	
3. Install	and	configure	the	Oracle	Cloud	Infrastructure	CLI.	

121	|	P a g e 	
	

4. Set	up	the	kubeconfig	file.	

See	Setting	Up	Local	Access	to	Clusters	

Default	Value:	

The	default	permissions	for	the	cluster	Service	account	is	dependent	on	the	initial	
configuration	and	IAM	policy.	

CIS	Controls:	

Version	7	

	 3.2	Perform	Authenticated	Vulnerability	Scanning	
	 Perform	authenticated	vulnerability	scanning	with	agents	running	locally	on	each	system	
or	with	remote	scanners	that	are	configured	with	elevated	rights	on	the	system	being	
tested.	

122	|	P a g e 	
	

5.1.4 Minimize Container Registries to only those approved (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Use	approved	container	registries.	

Rationale:	

Allowing	unrestricted	access	to	external	container	registries	provides	the	opportunity	for	
malicious	or	unapproved	containers	to	be	deployed	into	the	cluster.	Allow	listing	only	
approved	container	registries	reduces	this	risk.	

Impact:	

All	container	images	to	be	deployed	to	the	cluster	must	be	hosted	within	an	approved	
container	image	registry.	

Audit:	

Remediation:	

CIS	Controls:	

Version	7	

	 5.2	Maintain	Secure	Images	
	 Maintain	secure	images	or	templates	for	all	systems	in	the	enterprise	based	on	the	
organization's	approved	configuration	standards.	Any	new	system	deployment	or	existing	
system	that	becomes	compromised	should	be	imaged	using	one	of	those	images	or	
templates.	

	 5.3	Securely	Store	Master	Images	
	 Store	the	master	images	and	templates	on	securely	configured	servers,	validated	with	
integrity	monitoring	tools,	to	ensure	that	only	authorized	changes	to	the	images	are	
possible.	

123	|	P a g e 	
	

5.2 Identity and Access Management (IAM)

This	section	contains	recommendations	relating	to	using	Oracle	Cloud	IAM	with	OKE.	

5.2.1 Prefer using dedicated Service Accounts (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Kubernetes	workloads	should	not	use	cluster	node	service	accounts	to	authenticate	to	
Oracle	Cloud	APIs.	Each	Kubernetes	Workload	that	needs	to	authenticate	to	other	Oracle	
services	using	Cloud	IAM	should	be	provisioned	a	dedicated	Service	account.	

Rationale:	

Manual	approaches	for	authenticating	Kubernetes	workloads	running	on	OKE	against	
Oracle	Cloud	APIs	are:	storing	service	account	keys	as	a	Kubernetes	secret	(which	
introduces	manual	key	rotation	and	potential	for	key	compromise);	or	use	of	the	
underlying	nodes'	IAM	Service	account,	which	violates	the	principle	of	least	privilege	on	a	
multitenanted	node,	when	one	pod	needs	to	have	access	to	a	service,	but	every	other	pod	
on	the	node	that	uses	the	Service	account	does	not.	

Audit:	

For	each	namespace	in	the	cluster,	review	the	rights	assigned	to	the	default	service	account	
and	ensure	that	it	has	no	roles	or	cluster	roles	bound	to	it	apart	from	the	defaults.	

Remediation:	

When	you	create	a	pod,	if	you	do	not	specify	a	service	account,	it	is	automatically	assigned	
the	default	service	account	in	the	same	namespace.	If	you	get	the	raw	json	or	yaml	for	a	pod	
you	have	created	(for example, kubectl get pods/<podname> -o yaml),	you	can	see	the	
spec.serviceAccountName	field	has	been	automatically	set.	
See	Configure	Service	Accounts	for	Pods	

CIS	Controls:	

Version	7	

	 4.3	Ensure	the	Use	of	Dedicated	Administrative	Accounts	
	 Ensure	that	all	users	with	administrative	account	access	use	a	dedicated	or	secondary	

124	|	P a g e 	
	

account	for	elevated	activities.	This	account	should	only	be	used	for	administrative	
activities	and	not	internet	browsing,	email,	or	similar	activities.	

125	|	P a g e 	
	

5.3 Cloud Key Management Service (Cloud KMS)

This	section	contains	recommendations	relating	to	using	Cloud	KMS	with	OKE.	

5.3.1 Encrypting Kubernetes Secrets at Rest in Etcd (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Encrypt	Kubernetes	secrets,	stored	in	etcd,	at	the	application-layer	using	a	customer-
managed	key.	

Rationale:	

The	master	nodes	in	a	Kubernetes	cluster	store	sensitive	configuration	data	(such	as	
authentication	tokens,	passwords,	and	SSH	keys)	as	Kubernetes	secret	objects	in	etcd.	Etcd	
is	an	open	source	distributed	key-value	store	that	Kubernetes	uses	for	cluster	coordination	
and	state	management.	In	the	Kubernetes	clusters	created	by	Container	Engine	for	
Kubernetes,	etcd	writes	and	reads	data	to	and	from	block	storage	volumes	in	the	Oracle	
Cloud	Infrastructure	Block	Volume	service.	Although	the	data	in	block	storage	volumes	is	
encrypted,	Kubernetes	secrets	at	rest	in	etcd	itself	are	not	encrypted	by	default.	

Audit:	

Before	you	can	create	a	cluster	where	Kubernetes	secrets	are	encrypted	in	the	etcd	key-
value	store,	you	have	to:	

• know	the	name	and	OCID	of	a	suitable	master	encryption	key	in	Vault	
• create	a	dynamic	group	that	includes	all	clusters	in	the	compartment	in	which	you	

are	going	to	create	the	new	cluster	
• create	a	policy	authorizing	the	dynamic	group	to	use	the	master	encryption	key	

Remediation:	

You	can	create	a	cluster	in	one	tenancy	that	uses	a	master	encryption	key	in	a	different	
tenancy.	In	this	case,	you	have	to	write	cross-tenancy	policies	to	enable	the	cluster	in	its	
tenancy	to	access	the	master	encryption	key	in	the	Vault	service's	tenancy.	Note	that	if	you	
want	to	create	a	cluster	and	specify	a	master	encryption	key	that's	in	a	different	tenancy,	
you	cannot	use	the	Console	to	create	the	cluster.	
For	example,	assume	the	cluster	is	in	the	ClusterTenancy,	and	the	master	encryption	key	is	

126	|	P a g e 	
	

in	the	KeyTenancy.	Users	belonging	to	a	group	(OKEAdminGroup)	in	the	ClusterTenancy	
have	permissions	to	create	clusters.	A	dynamic	group	(OKEAdminDynGroup)	has	been	
created	in	the	cluster,	with	the	rule	ALL	{resource.type = 'cluster',
resource.compartment.id = 'ocid1.compartment.oc1..<unique_ID>'},	so	all	clusters	
created	in	the	ClusterTenancy	belong	to	the	dynamic	group.	
In	the	root	compartment	of	the	KeyTenancy,	the	following	policies:	

• use	the	ClusterTenancy's	OCID	to	map	ClusterTenancy	to	the	alias	OKE_Tenancy	
• use	the	OCIDs	of	OKEAdminGroup	and	OKEAdminDynGroup	to	map	them	to	the	

aliases	RemoteOKEAdminGroup	and	RemoteOKEClusterDynGroup	respectively	
• give	RemoteOKEAdminGroup	and	RemoteOKEClusterDynGroup	the	ability	to	list,	

view,	and	perform	cryptographic	operations	with	a	particular	master	key	in	the	
KeyTenancy	

Define tenancy OKE_Tenancy as ocid1.tenancy.oc1..<unique_ID>
Define dynamic-group RemoteOKEClusterDynGroup as
ocid1.dynamicgroup.oc1..<unique_ID>
Define group RemoteOKEAdminGroup as ocid1.group.oc1..<unique_ID>
Admit dynamic-group RemoteOKEClusterDynGroup of tenancy ClusterTenancy to use
keys in tenancy where target.key.id = 'ocid1.key.oc1..<unique_ID>'
Admit group RemoteOKEAdminGroup of tenancy ClusterTenancy to use keys in
tenancy where target.key.id = 'ocid1.key.oc1..<unique_ID>'

In	the	root	compartment	of	the	ClusterTenancy,	the	following	policies:

• use	the	KeyTenancy's	OCID	to	map	KeyTenancy	to	the	alias	KMS_Tenancy	
• give	OKEAdminGroup	and	OKEAdminDynGroup	the	ability	to	use	master	keys	in	the	

KeyTenancy	
• allow	OKEAdminDynGroup	to	use	a	specific	master	key	obtained	from	the	

KeyTenancy	in	the	ClusterTenancy	

Define tenancy KMS_Tenancy as ocid1.tenancy.oc1..<unique_ID>
Endorse group OKEAdminGroup to use keys in tenancy KMS_Tenancy
Endorse dynamic-group OKEAdminDynGroup to use keys in tenancy KMS_Tenancy
Allow dynamic-group OKEAdminDynGroup to use keys in tenancy where
target.key.id = 'ocid1.key.oc1..<unique_ID>'

See	Accessing	Object	Storage	Resources	Across	Tenancies	for	more	examples	of	writing	
cross-tenancy	policies.	
Having	entered	the	policies,	you	can	now	run	a	command	similar	to	the	following	to	create	
a	cluster	in	the	ClusterTenancy	that	uses	the	master	key	obtained	from	the	KeyTenancy:

oci ce cluster create --name oke-with-cross-kms --kubernetes-version v1.16.8
--vcn-id ocid1.vcn.oc1.iad.<unique_ID> --service-lb-subnet-ids
'["ocid1.subnet.oc1.iad.<unique_ID>"]' --compartment-id
ocid1.compartment.oc1..<unique_ID> --kms-key-id ocid1.key.oc1.iad.<unique_ID>

127	|	P a g e 	
	

References:

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Tasks/contengencryptingdata.htm	

CIS	Controls:	

Version	7	

	 14.8	Encrypt	Sensitive	Information	at	Rest	
	 Encrypt	all	sensitive	information	at	rest	using	a	tool	that	requires	a	secondary	
authentication	mechanism	not	integrated	into	the	operating	system,	in	order	to	access	the	
information.	

128	|	P a g e 	
	

5.4 Cluster Networking

This	section	contains	recommendations	relating	to	network	security	configurations	in	OKE.	

5.4.1 Restrict Access to the Control Plane Endpoint (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Enable	Master	Authorized	Networks	to	restrict	access	to	the	cluster's	control	plane	(master	
endpoint)	to	only	an	allowlist	(whitelist)	of	authorized	IPs.	

Rationale:	

Authorized	networks	are	a	way	of	specifying	a	restricted	range	of	IP	addresses	that	are	
permitted	to	access	your	cluster's	control	plane.	Kubernetes	Engine	uses	both	Transport	
Layer	Security	(TLS)	and	authentication	to	provide	secure	access	to	your	cluster's	control	
plane	from	the	public	internet.	This	provides	you	the	flexibility	to	administer	your	cluster	
from	anywhere;	however,	you	might	want	to	further	restrict	access	to	a	set	of	IP	addresses	
that	you	control.	You	can	set	this	restriction	by	specifying	an	authorized	network.	

Restricting	access	to	an	authorized	network	can	provide	additional	security	benefits	for	
your	container	cluster,	including:	

• Better	protection	from	outsider	attacks:	Authorized	networks	provide	an	additional	
layer	of	security	by	limiting	external,	non-OCP	access	to	a	specific	set	of	addresses	
you	designate,	such	as	those	that	originate	from	your	premises.	This	helps	protect	
access	to	your	cluster	in	the	case	of	a	vulnerability	in	the	cluster's	authentication	or	
authorization	mechanism.	

• Better	protection	from	insider	attacks:	Authorized	networks	help	protect	your	
cluster	from	accidental	leaks	of	master	certificates	from	your	company's	premises.	
Leaked	certificates	used	from	outside	OCP	and	outside	the	authorized	IP	ranges	(for	
example,	from	addresses	outside	your	company)	are	still	denied	access.	

Impact:	

When	implementing	Master	Authorized	Networks,	be	careful	to	ensure	all	desired	
networks	are	on	the	allowlist	(whitelist)	to	prevent	inadvertently	blocking	external	access	
to	your	cluster's	control	plane.	

Audit:	

129	|	P a g e 	
	

Remediation:	

Default	Value:	

By	default,	Master	Authorized	Networks	is	disabled.	

CIS	Controls:	

Version	7	

	 14.6	Protect	Information	through	Access	Control	Lists	
	 Protect	all	information	stored	on	systems	with	file	system,	network	share,	claims,	
application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

130	|	P a g e 	
	

5.4.2 Ensure clusters are created with Private Endpoint Enabled and
Public Access Disabled (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Disable	access	to	the	Kubernetes	API	from	outside	the	node	network	if	it	is	not	required.	

Rationale:	

In	a	private	cluster,	the	master	node	has	two	endpoints,	a	private	and	public	endpoint.	The	
private	endpoint	is	the	internal	IP	address	of	the	master,	behind	an	internal	load	balancer	
in	the	master's	VPC	network.	Nodes	communicate	with	the	master	using	the	private	
endpoint.	The	public	endpoint	enables	the	Kubernetes	API	to	be	accessed	from	outside	the	
master's	VPC	network.	

Although	Kubernetes	API	requires	an	authorized	token	to	perform	sensitive	actions,	a	
vulnerability	could	potentially	expose	the	Kubernetes	publically	with	unrestricted	access.	
Additionally,	an	attacker	may	be	able	to	identify	the	current	cluster	and	Kubernetes	API	
version	and	determine	whether	it	is	vulnerable	to	an	attack.	Unless	required,	disabling	
public	endpoint	will	help	prevent	such	threats,	and	require	the	attacker	to	be	on	the	
master's	VPC	network	to	perform	any	attack	on	the	Kubernetes	API.	

Impact:	

This	topic	gives	an	overview	of	the	options	for	enabling	private	access	to	services	within	
Oracle	Cloud	Infrastructure.	Private	access	means	that	traffic	does	not	go	over	the	internet.	
Access	can	be	from	hosts	within	your	virtual	cloud	network	(VCN)	or	your	on-premises	
network.	

• You	can	enable	private	access	to	certain	services	within	Oracle	Cloud	Infrastructure	
from	your	VCN	or	on-premises	network	by	using	either	a	private	endpoint	or	a	
service	gateway.	See	the	sections	that	follow.	

• For	each	private	access	option,	these	services	or	resource	types	are	available:	
o With	a	private	endpoint:	Autonomous	Database	(shared	Exadata	

infrastructure)	
o With	a	service	gateway:	Available	services	

• With	either	private	access	option,	the	traffic	stays	within	the	Oracle	Cloud	
Infrastructure	network	and	does	not	traverse	the	internet.	However,	if	you	use	a	
service	gateway,	requests	to	the	service	use	a	public	endpoint	for	the	service.	

131	|	P a g e 	
	

• If	you	do	not	want	to	access	a	given	Oracle	service	through	a	public	endpoint,	Oracle	
recommends	using	a	private	endpoint	in	your	VCN	(assuming	the	service	supports	
private	endpoints).	A	private	endpoint	is	represented	as	a	private	IP	address	within	
a	subnet	in	your	VCN.	

See	About	Private	Endpoints	

Audit:	

Remediation:	

Default	Value:	

By	default,	the	Private	Endpoint	is	disabled.	

CIS	Controls:	

Version	7	

	 12	Boundary	Defense	
	 Boundary	Defense	

132	|	P a g e 	
	

5.4.3 Ensure clusters are created with Private Nodes (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Disable	public	IP	addresses	for	cluster	nodes,	so	that	they	only	have	private	IP	addresses.	
Private	Nodes	are	nodes	with	no	public	IP	addresses.	

Rationale:	

Disabling	public	IP	addresses	on	cluster	nodes	restricts	access	to	only	internal	networks,	
forcing	attackers	to	obtain	local	network	access	before	attempting	to	compromise	the	
underlying	Kubernetes	hosts.	

Impact:	

To	enable	Private	Nodes,	the	cluster	has	to	also	be	configured	with	a	private	master	IP	
range	and	IP	Aliasing	enabled.	

Private	Nodes	do	not	have	outbound	access	to	the	public	internet.	If	you	want	to	provide	
outbound	Internet	access	for	your	private	nodes,	you	can	use	Cloud	NAT	or	you	can	
manage	your	own	NAT	gateway.	

Audit:	

Remediation:	

Default	Value:	

By	default,	Private	Nodes	are	disabled.	

CIS	Controls:	

Version	7	

	 12	Boundary	Defense	
	 Boundary	Defense	

133	|	P a g e 	
	

5.4.4 Ensure Network Policy is Enabled and set as appropriate (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Use	Network	Policy	to	restrict	pod	to	pod	traffic	within	a	cluster	and	segregate	workloads.	

Rationale:	

By	default,	all	pod	to	pod	traffic	within	a	cluster	is	allowed.	Network	Policy	creates	a	pod-
level	firewall	that	can	be	used	to	restrict	traffic	between	sources.	Pod	traffic	is	restricted	by	
having	a	Network	Policy	that	selects	it	(through	the	use	of	labels).	Once	there	is	any	
Network	Policy	in	a	namespace	selecting	a	particular	pod,	that	pod	will	reject	any	
connections	that	are	not	allowed	by	any	Network	Policy.	Other	pods	in	the	namespace	that	
are	not	selected	by	any	Network	Policy	will	continue	to	accept	all	traffic.	

Network	Policies	are	managed	via	the	Kubernetes	Network	Policy	API	and	enforced	by	a	
network	plugin,	simply	creating	the	resource	without	a	compatible	network	plugin	to	
implement	it	will	have	no	effect.	OKE	supports	Network	Policy	enforcement	through	the	
use	of	Calico.	

Impact:	

Network	Policy	requires	the	Network	Policy	add-on.	This	add-on	is	included	automatically	
when	a	cluster	with	Network	Policy	is	created,	but	for	an	existing	cluster,	needs	to	be	
added	prior	to	enabling	Network	Policy.	

Enabling/Disabling	Network	Policy	causes	a	rolling	update	of	all	cluster	nodes,	similar	to	
performing	a	cluster	upgrade.	This	operation	is	long-running	and	will	block	other	
operations	on	the	cluster	(including	delete)	until	it	has	run	to	completion.	

If	Network	Policy	is	used,	a	cluster	must	have	at	least	2	nodes	of	type	n1-standard-1	or	
higher.	The	recommended	minimum	size	cluster	to	run	Network	Policy	enforcement	is	3	
n1-standard-1	instances.	

Enabling	Network	Policy	enforcement	consumes	additional	resources	in	nodes.	Specifically,	
it	increases	the	memory	footprint	of	the	kube-system	process	by	approximately	128MB,	
and	requires	approximately	300	millicores	of	CPU.	

Audit:	

134	|	P a g e 	
	

Remediation:	

Default	Value:	

By	default,	Network	Policy	is	disabled.	

CIS	Controls:	

Version	7	

	 9.2	Ensure	Only	Approved	Ports,	Protocols	and	Services	Are	Running	
	 Ensure	that	only	network	ports,	protocols,	and	services	listening	on	a	system	with	
validated	business	needs,	are	running	on	each	system.	

	 9.4	Apply	Host-based	Firewalls	or	Port	Filtering	
	 Apply	host-based	firewalls	or	port	filtering	tools	on	end	systems,	with	a	default-deny	
rule	that	drops	all	traffic	except	those	services	and	ports	that	are	explicitly	allowed.	

135	|	P a g e 	
	

5.4.5 Encrypt traffic to HTTPS load balancers with TLS certificates
(Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Encrypt	traffic	to	HTTPS	load	balancers	using	TLS	certificates.	

Rationale:	

Encrypting	traffic	between	users	and	your	Kubernetes	workload	is	fundamental	to	
protecting	data	sent	over	the	web.	

Audit:	

Remediation:	

CIS	Controls:	

Version	7	

	 14.4	Encrypt	All	Sensitive	Information	in	Transit	
	 Encrypt	all	sensitive	information	in	transit.	

136	|	P a g e 	
	

5.5 Authentication and Authorization

This	section	contains	recommendations	relating	to	authentication	and	authorization	in	
OKE.	

5.5.1 Access Control and Container Engine for Kubernetes (Manual)

Profile	Applicability:	

•		Level	1	

Description:	

Cluster	Administrators	should	leverage	Oracle	Groups	and	Cloud	IAM	to	assign	Kubernetes	
user	roles	to	a	collection	of	users,	instead	of	to	individual	emails	using	only	Cloud	IAM.	

Rationale:	

For	most	operations	on	Kubernetes	clusters	created	and	managed	by	Container	Engine	for	
Kubernetes,	Oracle	Cloud	Infrastructure	Identity	and	Access	Management	(IAM)	provides	
access	control.	A	user's	permissions	to	access	clusters	comes	from	the	groups	to	which	they	
belong.	The	permissions	for	a	group	are	defined	by	policies.	Policies	define	what	actions	
members	of	a	group	can	perform,	and	in	which	compartments.	Users	can	then	access	
clusters	and	perform	operations	based	on	the	policies	set	for	the	groups	they	are	members	
of.	

IAM	provides	control	over:	

• whether	a	user	can	create	or	delete	clusters	
• whether	a	user	can	add,	remove,	or	modify	node	pools	
• which	Kubernetes	object	create/delete/view	operations	a	user	can	perform	on	all	

clusters	within	a	compartment	or	tenancy	

See	Policy	Configuration	for	Cluster	Creation	and	Deployment	

Impact:	

Users	must	now	be	assigned	to	the	IAM	group	created	to	use	this	namespace	and	deploy	
applications.	If	they	are	not	they	will	not	be	able	to	access	the	namespace	or	deploy.	

Audit:	

By	default,	users	are	not	assigned	any	Kubernetes	RBAC	roles	(or	clusterroles)	by	default.	
So	before	attempting	to	create	a	new	role	(or	clusterrole),	you	must	be	assigned	an	

137	|	P a g e 	
	

appropriately	privileged	role	(or	clusterrole).	A	number	of	such	roles	and	clusterroles	are	
always	created	by	default,	including	the	cluster-admin	clusterrole	(for	a	full	list,	see	Default	
Roles	and	Role	Bindings	in	the	Kubernetes	documentation).	The	cluster-admin	clusterrole	
essentially	confers	super-user	privileges.	A	user	granted	the	cluster-admin	clusterrole	can	
perform	any	operation	across	all	namespaces	in	a	given	cluster.	

Remediation:	

Example:	Granting	the	Kubernetes	RBAC	cluster-admin	clusterrole	
Follow	these	steps	to	grant	a	user	who	is	not	a	tenancy	administrator	the	Kubernetes	RBAC	
cluster-admin	clusterrole	on	a	cluster	deployed	on	Oracle	Cloud	Infrastructure:	

1. If	you	haven't	already	done	so,	follow	the	steps	to	set	up	the	cluster's	kubeconfig	
configuration	file	and	(if	necessary)	set	the	KUBECONFIG	environment	variable	to	
point	to	the	file.	Note	that	you	must	set	up	your	own	kubeconfig	file.	You	cannot	
access	a	cluster	using	a	kubeconfig	file	that	a	different	user	set	up.	See	Setting	Up	
Cluster	Access.	

2. In	a	terminal	window,	grant	the	Kubernetes	RBAC	cluster-admin	clusterrole	to	the	
user	by	entering:	

$ kubectl create clusterrolebinding <my-cluster-admin-binding> --
clusterrole=cluster-admin --user=<user_OCID>

where:

• is	a	string	of	your	choice	to	be	used	as	the	name	for	the	binding	between	the	user	
and	the	Kubernetes	RBAC	cluster-admin	clusterrole.	For	example,	jdoe_clst_adm	

• <user_OCID>	is	the	user's	OCID	(obtained	from	the	Console).	For	example,	
ocid1.user.oc1..aaaaa...zutq	(abbreviated	for	readability).	

For	example:	

$ kubectl create clusterrolebinding jdoe_clst_adm --clusterrole=cluster-admin
--user=ocid1.user.oc1..aaaaa...zutq

References:

1. https://docs.cloud.oracle.com/en-
us/iaas/Content/ContEng/Concepts/contengaboutaccesscontrol.htm	

CIS	Controls:	

Version	7	

138	|	P a g e 	
	

	 16.2	Configure	Centralized	Point	of	Authentication	
	 Configure	access	for	all	accounts	through	as	few	centralized	points	of	authentication	as	
possible,	including	network,	security,	and	cloud	systems.	

		

139	|	P a g e 	
	

Appendix:	Summary	Table	
Control	 Set	

Correctly	
Yes	 No	

1	 Control	Plane	Components	
2	 Control	Plane	Configuration	
2.1	 Authentication	and	Authorization	
2.1.1	 Client	certificate	authentication	should	not	be	used	for	users	

(Manual)	 o	 o	

2.1.2	 Ensure	OKE	service	level	admins	are	created	to	manage	OKE	
(Manual)	 o	 o	

2.2	 Authentication	and	Authorization	
2.2.1	 Client	certificate	authentication	should	not	be	used	for	users	

(Manual)	 o	 o	

2.2.2	 Ensure	OKE	service	level	admins	are	created	to	manage	OKE	
(Manual)	 o	 o	

2.3	 Logging	
2.3.1	 Ensure	access	to	OCI	Audit	service	Log	for	OKE	(Automated)	 o	 o	
2.3.2	 Ensure	that	the	audit	policy	covers	key	security	concerns	

(Manual)	 o	 o	

3	 Worker	Nodes	
3.1	 Worker	Node	Configuration	Files	
3.1.1	 Ensure	that	the	kubeconfig	file	permissions	are	set	to	644	or	

more	restrictive	(Manual)	 o	 o	

3.1.2	 Ensure	that	the	proxy	kubeconfig	file	ownership	is	set	to	
root:root	(Manual)	 o	 o	

3.1.3	 Ensure	that	the	kubelet	configuration	file	has	permissions	
set	to	644	or	more	restrictive	(Manual)	 o	 o	

3.1.4	 Ensure	that	the	kubelet	configuration	file	ownership	is	set	
to	root:root	(Manual)	 o	 o	

3.2	 Kubelet	
3.2.1	 Ensure	that	the	--anonymous-auth	argument	is	set	to	false	

(Automated)	 o	 o	

3.2.2	 Ensure	that	the	--authorization-mode	argument	is	not	set	to	
AlwaysAllow	(Automated)	 o	 o	

3.2.3	 Ensure	that	the	--client-ca-file	argument	is	set	as	
appropriate	(Automated)	 o	 o	

3.2.4	 Ensure	that	the	--read-only-port	argument	is	set	to	0	
(Manual)	 o	 o	

3.2.5	 Ensure	that	the	--streaming-connection-idle-timeout	
argument	is	not	set	to	0	(Manual)	 o	 o	

140	|	P a g e 	
	

3.2.6	 Ensure	that	the	--protect-kernel-defaults	argument	is	set	to	
true	(Manual)	 o	 o	

3.2.7	 Ensure	that	the	--make-iptables-util-chains	argument	is	set	
to	true	(Automated)	 o	 o	

3.2.8	 Ensure	that	the	--hostname-override	argument	is	not	set	
(Manual)	 o	 o	

3.2.9	 Ensure	that	the	--event-qps	argument	is	set	to	0	or	a	level	
which	ensures	appropriate	event	capture	(Automated)	 o	 o	

3.2.10	 Ensure	that	the	--tls-cert-file	and	--tls-private-key-file	
arguments	are	set	as	appropriate	(Automated)	 o	 o	

3.2.11	 Ensure	that	the	--rotate-certificates	argument	is	not	set	to	
false	(Automated)	 o	 o	

3.2.12	 Ensure	that	the	--rotate-server-certificates	argument	is	set	
to	true	(Manual)	 o	 o	

4	 Policies	
4.1	 RBAC	and	Service	Accounts	
4.1.1	 Ensure	that	the	cluster-admin	role	is	only	used	where	

required	(Manual)	 o	 o	

4.1.2	 Minimize	access	to	secrets	(Manual)	 o	 o	
4.1.3	 Minimize	wildcard	use	in	Roles	and	ClusterRoles	(Manual)	 o	 o	
4.1.4	 Minimize	access	to	create	pods	(Manual)	 o	 o	
4.1.5	 Ensure	that	default	service	accounts	are	not	actively	used.	

(Manual)	 o	 o	

4.1.6	 Ensure	that	Service	Account	Tokens	are	only	mounted	
where	necessary	(Manual)	 o	 o	

4.2	 Pod	Security	Policies	
4.2.1	 Minimize	the	admission	of	privileged	containers	(Manual)	 o	 o	
4.2.2	 Minimize	the	admission	of	containers	wishing	to	share	the	

host	process	ID	namespace	(Automated)	 o	 o	

4.2.3	 Minimize	the	admission	of	containers	wishing	to	share	the	
host	IPC	namespace	(Automated)	 o	 o	

4.2.4	 Minimize	the	admission	of	containers	wishing	to	share	the	
host	network	namespace	(Automated)	 o	 o	

4.2.5	 Minimize	the	admission	of	containers	with	
allowPrivilegeEscalation	(Automated)	 o	 o	

4.2.6	 Minimize	the	admission	of	root	containers	(Automated)	 o	 o	
4.2.7	 Minimize	the	admission	of	containers	with	the	NET_RAW	

capability	(Manual)	 o	 o	

4.2.8	 Minimize	the	admission	of	containers	with	added	
capabilities	(Automated)	 o	 o	

4.2.9	 Minimize	the	admission	of	containers	with	capabilities	
assigned	(Manual)	 o	 o	

4.3	 CNI	Plugin	
4.3.1	 Ensure	latest	CNI	version	is	used	(Manual)	 o	 o	

141	|	P a g e 	
	

4.3.2	 Ensure	that	all	Namespaces	have	Network	Policies	defined	
(Manual)	 o	 o	

4.4	 Secrets	Management	
4.4.1	 Prefer	using	secrets	as	files	over	secrets	as	environment	

variables	(Manual)	 o	 o	

4.4.2	 Consider	external	secret	storage	(Manual)	 o	 o	
4.5	 Extensible	Admission	Control	
4.6	 General	Policies	
4.6.1	 Create	administrative	boundaries	between	resources	using	

namespaces	(Manual)	 o	 o	

4.6.2	 Apply	Security	Context	to	Your	Pods	and	Containers	
(Manual)	 o	 o	

4.6.3	 The	default	namespace	should	not	be	used	(Manual)	 o	 o	
5	 Managed	services	
5.1	 Image	Registry	and	Image	Scanning	
5.1.1	 Oracle	Cloud	Security	Penetration	and	Vulnerability	Testing	

(Manual)	 o	 o	

5.1.2	 Minimize	user	access	control	to	Container	Engine	for	
Kubernetes	(Manual)	 o	 o	

5.1.3	 Minimize	cluster	access	to	read-only	(Manual)	 o	 o	
5.1.4	 Minimize	Container	Registries	to	only	those	approved	

(Manual)	 o	 o	

5.2	 Identity	and	Access	Management	(IAM)	
5.2.1	 Prefer	using	dedicated	Service	Accounts	(Manual)	 o	 o	
5.3	 Cloud	Key	Management	Service	(Cloud	KMS)	
5.3.1	 Encrypting	Kubernetes	Secrets	at	Rest	in	Etcd	(Manual)	 o	 o	
5.4	 Cluster	Networking	
5.4.1	 Restrict	Access	to	the	Control	Plane	Endpoint	(Manual)	 o	 o	
5.4.2	 Ensure	clusters	are	created	with	Private	Endpoint	Enabled	

and	Public	Access	Disabled	(Manual)	 o	 o	

5.4.3	 Ensure	clusters	are	created	with	Private	Nodes	(Manual)	 o	 o	
5.4.4	 Ensure	Network	Policy	is	Enabled	and	set	as	appropriate	

(Manual)	 o	 o	

5.4.5	 Encrypt	traffic	to	HTTPS	load	balancers	with	TLS	certificates	
(Manual)	 o	 o	

5.5	 Authentication	and	Authorization	
5.5.1	 Access	Control	and	Container	Engine	for	Kubernetes	

(Manual)	 o	 o	

	

	 	

142	|	P a g e 	
	

		

	
	

