

http://benchmarks.cisecurity.org

CIS Apache HTTP Server 2.4 Benchmark

v1.4.0 – 07-13-2018

1 | P a g e

Terms of Use
Please see the below link for our current terms of use:
https://www.cisecurity.org/cis-securesuite/cis-securesuite-membership-terms-of-use/

2 | P a g e

Table of Contents
Terms of Use .. 1
Table of Contents .. 2
Overview .. 6

Intended Audience .. 6
Consensus Guidance ... 6
Typographical Conventions ... 7

Scoring Information .. 7
Profile Definitions ... 8
Acknowledgements ... 9

Recommendations ... 10
1 Planning and Installation .. 10

1.1 Pre-Installation Planning Checklist (Not Scored) ... 10
1.2 Do Not Install a Multi-Use System (Not Scored) ... 11
1.3 Installing Apache (Not Scored) .. 12

2 Minimize Apache Modules... 14
2.1 Enable Only Necessary Authentication and Authorization Modules (Not Scored) 14
2.2 Enable the Log Config Module (Scored) .. 16
2.3 Disable WebDAV Modules (Scored) ... 18
2.4 Disable Status Module (Scored) ... 20

2.5 Disable Autoindex Module (Scored) .. 22
2.6 Disable Proxy Modules (Scored).. 24
2.7 Disable User Directories Modules (Scored) ... 26

2.8 Disable Info Module (Scored) .. 28
3 Principles, Permissions, and Ownership ... 30

3.1 Run the Apache Web Server as a non-root user (Scored) ... 30

3.2 Give the Apache User Account an Invalid Shell (Scored) .. 32
3.3 Lock the Apache User Account (Scored) ... 33
3.4 Set Ownership on Apache Directories and Files (Scored) ... 34
3.5 Set Group Id on Apache Directories and Files (Scored).. 35
3.6 Restrict Other Write Access on Apache Directories and Files (Scored) 36
3.7 Secure Core Dump Directory (Scored) ... 37
3.8 Secure the Lock File (Scored) .. 39
3.9 Secure the Pid File (Scored) ... 41

3 | P a g e

3.10 Secure the ScoreBoard File (Scored) .. 43
3.11 Restrict Group Write Access for the Apache Directories and Files (Scored) 45
3.12 Restrict Group Write Access for the Document Root Directories and Files (Scored)
 .. 46

4 Apache Access Control .. 47
4.1 Deny Access to OS Root Directory (Scored) .. 47
4.2 Allow Appropriate Access to Web Content (Not Scored) ... 50
4.3 Restrict Override for the OS Root Directory (Scored) .. 53

4.4 Restrict Override for All Directories (Scored) .. 55
5 Minimize Features, Content and Options .. 57

5.1 Restrict Options for the OS Root Directory (Scored) .. 57
5.2 Restrict Options for the Web Root Directory (Scored) ... 59
5.3 Minimize Options for Other Directories (Scored)... 61
5.4 Remove Default HTML Content (Scored).. 63
5.5 Remove Default CGI Content printenv (Scored) .. 67
5.6 Remove Default CGI Content test-cgi (Scored).. 69
5.7 Limit HTTP Request Methods (Scored) ... 71
5.8 Disable HTTP TRACE Method (Scored) ... 73
5.9 Restrict HTTP Protocol Versions (Scored) ... 74
5.10 Restrict Access to .ht* files (Scored) .. 76
5.11 Restrict File Extensions (Scored) ... 78
5.12 Deny IP Address Based Requests (Scored) .. 80
5.13 Restrict Listen Directive (Scored) .. 82
5.14 Restrict Browser Frame Options (Scored) .. 84

6 Operations - Logging, Monitoring and Maintenance ... 86
6.1 Configure the Error Log (Scored) .. 86
6.2 Configure a Syslog Facility for Error Logging (Scored) ... 88
6.3 Configure the Access Log (Scored) .. 90
6.4 Log Storage and Rotation (Scored) .. 92
6.5 Apply Applicable Patches (Scored) .. 95
6.6 Install and Enable ModSecurity (Scored) ... 97
6.7 Install and Enable OWASP ModSecurity Core Rule Set (Scored) 99

7 SSL/TLS Configuration .. 103
7.1 Install mod_ssl and/or mod_nss (Scored) ... 103
7.2 Install a Valid Trusted Certificate (Scored) .. 105

4 | P a g e

7.3 Protect the Server's Private Key (Scored) ... 109
7.4 Disable the SSL v3.0 Protocol (Scored) ... 111

7.5 Restrict Weak SSL/TLS Ciphers (Scored).. 113
7.6 Disable SSL Insecure Renegotiation (Scored) .. 115
7.7 Ensure SSL Compression is not Enabled (Scored) ... 117

7.8 Restrict Medium Strength SSL/TLS Ciphers (Scored) ... 119
7.9 Disable the TLS v1.0 Protocol (Scored) ... 121
7.10 Enable OCSP Stapling (Scored) ... 123
7.11 Enable HTTP Strict Transport Security (Scored) .. 125

8 Information Leakage .. 127
8.1 Set ServerToken to 'Prod' (Scored)... 127

8.2 Set ServerSignature to 'Off' (Scored) .. 129
8.3 Information Leakage via Default Apache Content (Scored).................................... 130
8.4 Information Leakage via ETag (Scored) ... 132

9 Denial of Service Mitigations ... 134
9.1 Set TimeOut to 10 or less (Scored) .. 134
9.2 Set the KeepAlive directive to On (Scored) .. 136

9.3 Set MaxKeepAliveRequests to 100 or greater (Scored) .. 137
9.4 Set KeepAliveTimeout Low to Mitigate Denial of Service (Scored)....................... 138
9.5 Set Timeout Limits for Request Headers (Scored) .. 139
9.6 Set Timeout Limits for the Request Body (Scored) .. 141

10 Request Limits ... 143
10.1 Set the LimitRequestLine directive to 512 or less (Scored) 143
10.2 Set the LimitRequestFields directive to 100 or less (Scored) 145
10.3 Set the LimitRequestFieldsize directive to 1024 or less (Scored) 147
10.4 Set the LimitRequestBody directive to 102400 or less (Scored) 149

11 Enable SELinux to Restrict Apache Processes .. 150
11.1 Enable SELinux in Enforcing Mode (Scored) .. 150
11.2 Run Apache Processes in the httpd_t Confined Context (Scored) 152

11.3 Ensure the httpd_t Type is Not in Permissive Mode (Scored) 155
11.4 Ensure Only the Necessary SELinux Booleans are Enabled (Not Scored) 157

12 Enable AppArmor to Restrict Apache Processes ... 159

12.1 Enable the AppArmor Framework (Scored) ... 159
12.2 Customize the Apache AppArmor Profile (Not Scored) 161

5 | P a g e

12.3 Ensure Apache AppArmor Profile is in Enforce Mode (Scored) 164
Appendix: Summary Table.. 166

Appendix: Change History .. 169

6 | P a g e

Overview
This document, CIS Apache 2.4 Benchmark, provides prescriptive guidance for establishing a
secure configuration posture for Apache Web Server versions 2.4 running on Linux. This guide
was tested against Apache Web Server 2.4.3 - 2.4.6 as built from source httpd-2.4.x.tar.gz
from http://httpd.apache.org/ on Linux. To obtain the latest version of this guide, please visit
http://benchmarks.cisecurity.org. If you have questions, comments, or have identified ways to
improve this guide, please write us at feedback@cisecurity.org.

Intended Audience
This document is intended for system and application administrators, security specialists,
auditors, help desk, and platform deployment personnel who plan to develop, deploy, assess, or
secure solutions that incorporate Apache HTTP Server 2.4 running on Linux.

Consensus Guidance
This benchmark was created using a consensus review process comprised of subject matter
experts. Consensus participants provide perspective from a diverse set of backgrounds including
consulting, software development, audit and compliance, security research, operations,
government, and legal.
Each CIS benchmark undergoes two phases of consensus review. The first phase occurs during
initial benchmark development. During this phase, subject matter experts convene to discuss,
create, and test working drafts of the benchmark. This discussion occurs until consensus has been
reached on benchmark recommendations. The second phase begins after the benchmark has been
published. During this phase, all feedback provided by the Internet community is reviewed by
the consensus team for incorporation in the benchmark. If you are interested in participating in
the consensus process, please visit https://workbench.cisecurity.org/.

7 | P a g e

Typographical Conventions
The following typographical conventions are used throughout this guide:

Convention Meaning
Stylized Monospace font Used for blocks of code, command, and script examples. Text

should be interpreted exactly as presented.
Monospace font Used for inline code, commands, or examples. Text should be

interpreted exactly as presented.
<italic	font	in	brackets>	 Italic texts set in angle brackets denote a variable requiring

substitution for a real value.
Italic font Used to denote the title of a book, article, or other publication.
Note Additional information or caveats

Scoring Information
A scoring status indicates whether compliance with the given recommendation impacts the
assessed target's benchmark score. The following scoring statuses are used in this benchmark:

Scored

Failure to comply with "Scored" recommendations will decrease the final benchmark score.
Compliance with "Scored" recommendations will increase the final benchmark score.

Not Scored

Failure to comply with "Not Scored" recommendations will not decrease the final benchmark
score. Compliance with "Not Scored" recommendations will not increase the final benchmark
score.

8 | P a g e

Profile Definitions
The following configuration profiles are defined by this Benchmark:

• Level 1

Items in this profile intend to:

o be practical and prudent;
o provide a clear security benefit; and
o not inhibit the utility of the technology beyond acceptable means.

• Level 2

This profile extends the "Level 1" profile. Items in this profile exhibit one or more of the
following characteristics:

o are intended for environments or use cases where security is paramount
o acts as defense in depth measure
o may negatively inhibit the utility or performance of the technology.

9 | P a g e

Acknowledgements
This benchmark exemplifies the great things a community of users, vendors, and subject matter
experts can accomplish through consensus collaboration. The CIS community thanks the entire
consensus team with special recognition to the following individuals who contributed greatly to
the creation of this guide:

Author
Ralph Durkee GXPN, CISSP, GSEC, GCIH, GSNA, GPEN, C|EH, Durkee Consulting, Inc.

Contributor
Ahmed Adel
Ryan Barnett
Quan Bui
Lawrence Grim
Adam Montville
Eduardo Petazze
Vytautas Vysniauskas
Roger Kennedy Linux Systems Engineer
Christian Folini
Tim Harrison CISSP, ICP, Center for Internet Security

10 | P a g e

Recommendations
1 Planning and Installation
This section contains recommendations for the planning and installation of an Apache HTTP
Server.

1.1 Pre-Installation Planning Checklist (Not Scored)

Profile Applicability:

• Level 1

Description:

Review and implement the following items as appropriate:

• Reviewed and implemented company's security policies as they relate to web security.
• Implemented a secure network infrastructure by controlling access to/from your web

server by using firewalls, routers and switches.
• Harden the underlying Operating System of the web server, by minimizing listening

network services, applying proper patches and hardening the configurations as
recommended in the appropriate Center for Internet Security benchmark for the platform.

• Implement central log monitoring processes.
• Implemented a disk space monitoring process and log rotation mechanism.
• Educate developers, architects and testers about developing secure applications, and

integrate security into the software development lifecycle. https://www.owasp.org/
http://www.webappsec.org/

• Ensure the WHOIS Domain information registered for our web presence does not reveal
sensitive personnel information, which may be leveraged for Social Engineering
(Individual POC Names), War Dialing (Phone Numbers) and Brute Force Attacks (Email
addresses matching actual system usernames).

• Ensure your Domain Name Service (DNS) servers have been properly secured to prevent
attacks, as recommended in the CIS BIND DNS Benchmark.

• Implemented a Network Intrusion Detection System to monitor attacks against the web
server.

References:

1. Open Web Application Security Project - https://www.OWASP.org
2. Web Application Security Consortium - http://www.webappsec.org/

11 | P a g e

1.2 Do Not Install a Multi-Use System (Not Scored)

• Level 1

Description:

Default server configurations often expose a wide variety of services unnecessarily increasing
the risk to the system. Just because a server can perform many services doesn't mean it is wise to
do so. The number of services and daemons executing on the Apache Web server should be
limited to those necessary, with the Web server being the only primary function of the server.

Rationale:

Maintaining a server for a single purpose increases the security of your application and system.
The more services which are exposed to an attacker, the more potential vectors an attacker has to
exploit the system and therefore the higher the risk for the server. A Web server should function
as only a web server and if possible should not be mixed with other primary functions such as
mail, DNS, database or middleware.

Audit:

Leverage the package or services manager for your OS to list enabled services and review with
documented business needs of the server. On Red Hat systems, the following will produce the
list of current services enabled:

chkconfig --list | grep ':on'

Remediation:

Leverage the package or services manager for your OS to uninstall or disable unneeded services.
On Red Hat systems, the following will disable a given service:

chkconfig <servicename> off

Default Value:

Depends on OS Platform

CIS Controls:

9.5 Operate Critical Services On Dedicated Hosts (i.e. DNS, Mail, Web, Database)
Operate critical services on separate physical or logical host machines, such as DNS, file,
mail, web, and database servers.

12 | P a g e

1.3 Installing Apache (Not Scored)

• Level 1

Description:

The CIS Apache Benchmark recommends using the Apache binary provided by your vendor for
most situations in order to reduce the effort and increase the effectiveness of maintenance and
security patches. However, to keep the benchmark as generic and applicable to all Unix/Linux
platforms as possible, a default source build has been used for this benchmark.
Important Note: There is a major difference between source builds and most vendor packages
that is very important to highlight. The default source build of Apache is fairly conservative and
minimalist in the modules included and therefore starts off in a fairly strong security state, while
most vendor binaries are typically very well loaded with most of the functionality that one may
be looking for. Therefore, it is important that you don't assume the default value shown in the
benchmark will match default values in your installation. You should always test any new
installation in your environment before putting it into production. Also keep in mind you can
install and run a new version alongside the old one by using a different Apache prefix and a
different IP address or port number in the Listen directive.

Rationale:

The benefits of using the vendor supplied binaries include:

• Ease of installation as it will just work, straight out of the box.
• It is customized for your OS environment.
• It will be tested and have gone through QA procedures.
• Everything you need is likely to be included, probably including some third-party

modules. For example, many OS vendors ship Apache with mod_ssl and OpenSSL, PHP,
mod_perl, and ModSecurity.

• Your vendor will tell you about security issues so you have to look in fewer places.
• Updates to fix security issues will be easy to apply. The vendor will have already verified

the problem, checked the signature on the Apache download, worked out the impact and
so on.

• You may be able to get the updates automatically, reducing the window of risk.

Remediation:

Installation depends on the operating system platform. For a source build, consult the Apache 2.4
documentation on compiling and installing https://httpd.apache.org/docs/2.4/install.html for a
Red Hat Enterprise Linux 5 or 6, the following yum command could be used.

# yum install httpd	

13 | P a g e

References:

1. Apache Compiling and Installation https://httpd.apache.org/docs/2.4/install.html

CIS Controls:

2 Inventory of Authorized and Unauthorized Software
Inventory of Authorized and Unauthorized Software

14 | P a g e

2 Minimize Apache Modules
It's crucial to have a minimal and compact Apache installation based on documented business
requirements. This section covers specific modules that should be reviewed and disabled if not
required for business purposes. However, it's very important that the review and analysis of
which modules are required for business purposes not be limited to the modules explicitly listed.

2.1 Enable Only Necessary Authentication and Authorization Modules
(Not Scored)

• Level 1

Description:

The Apache 2.4 modules for authentication and authorization are grouped and named to provide
both granularity, and a consistent naming convention to simplify configuration. The authn_*
modules provide authentication, while the authz_* modules provide authorization. Apache
provides two types of authentication - basic and digest. Review the Apache Authentication and
Authorization how-to documentation http://httpd.apache.org/docs/2.4/howto/auth.html and
enable only the modules that are required.

Rationale:

Authentication and authorization are the front doors to the protected information in your web
site. Most installations only need a small subset of the modules available. By minimizing the
enabled modules to those that are actually used, we reduce the number of "doors" and therefore
reduce the attack surface of the web site. Likewise, having fewer modules means less software
that could have vulnerabilities.

Audit:

1. Use the httpd -M option as root to check which auth*modules are loaded.

httpd -M | egrep 'auth._'

2. Also use the httpd -M option as root to check for any LDAP modules which don't
follow the same naming convention.

httpd -M | egrep 'ldap'

The above commands should generate a list of modules installed to stdout.

Remediation:

Consult Apache module documentation for descriptions of each module in order to determine the
necessary modules for the specific installation. http://httpd.apache.org/docs/2.4/mod/ The

15 | P a g e

unnecessary static compiled modules are disabled through compile time configuration options as
documented in http://httpd.apache.org/docs/2.4/programs/configure.html. The dynamically
loaded modules are disabled by commenting out or removing the LoadModule directive from the
Apache configuration files (typically httpd.conf). Some modules may be separate packages,
and may be removed.

Default Value:

The following modules are loaded by a default source build: authn_file_module (shared)
authn_core_module (shared) authz_host_module (shared) authz_groupfile_module
(shared) authz_user_module (shared) authz_core_module (shared)

References:

1. https://httpd.apache.org/docs/2.4/howto/auth.html
2. https://httpd.apache.org/docs/2.4/mod/
3. https://httpd.apache.org/docs/2.4/programs/configure.html

CIS Controls:

16 Account Monitoring and Control
Account Monitoring and Control

16 | P a g e

2.2 Enable the Log Config Module (Scored)

• Level 1

Description:

The log_config module provides for flexible logging of client requests, and provides for the
configuration of the information in each log.

Rationale:

Logging is critical for monitoring usage and potential abuse of your web server. This module is
required to configure web server logging using the log_format directive.

Audit:

Perform the following to determine if the log_config has been loaded:

Use the httpd -M option as root to check that the module is loaded.

httpd -M | grep log_config

Note: If the module is correctly enabled, the output will include the module name and whether it
is loaded statically or as a shared module

Remediation:

Perform either one of the following:

• For source builds with static modules, run the Apache ./configure script without
including the --disable-log-config script options.

$ cd $DOWNLOAD_HTTPD
$./configure

• For dynamically loaded modules, add or modify the LoadModule directive so that it is
present in the apache configuration as below and not commented out:

LoadModule log_config_module modules/mod_log_config.so

Default Value:

The log_config module is loaded by default.

17 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html

CIS Controls:

6.2 Ensure Audit Log Settings Support Appropriate Log Entry Formatting
Validate audit log settings for each hardware device and the software installed on it, ensuring
that logs include a date, timestamp, source addresses, destination addresses, and various other
useful elements of each packet and/or transaction. Systems should record logs in a
standardized format such as syslog entries or those outlined by the Common Event
Expression initiative. If systems cannot generate logs in a standardized format, log
normalization tools can be deployed to convert logs into such a format.

18 | P a g e

2.3 Disable WebDAV Modules (Scored)

• Level 1

Description:

The Apache mod_dav and mod_dav_fs modules support WebDAV ('Web-based Distributed
Authoring and Versioning') functionality for Apache. WebDAV is an extension to the HTTP
protocol which allows clients to create, move, and delete files and resources on the web server.

Rationale:

Disabling WebDAV modules will improve the security posture of the web server by reducing the
amount of potentially vulnerable code paths exposed to the network and reducing potential for
unauthorized access to files via misconfigured WebDAV access controls.

Audit:

Perform the following to determine if the WebDAV modules are enabled.

Run the httpd server with the -M option to list enabled modules:

httpd -M | grep ' dav_[[:print:]]+module'

Note: If the WebDav modules are correctly disabled, there will be no output when executing the
above command.

Remediation:

Perform either one of the following to disable WebDAV module:

1. For source builds with static modules run the Apache ./configure script without
including the mod_dav, and mod_dav_fs in the --enable-modules=configure script
options.

$ cd $DOWNLOAD_HTTPD
$./configure

2. For dynamically loaded modules comment out or remove the LoadModule directive for
mod_dav, and mod_dav_fs modules from the httpd.conf file.

##LoadModule dav_module modules/mod_dav.so
##LoadModule dav_fs_module modules/mod_dav_fs.so

Default Value:

The WebDav modules are not enabled with a default source build.

19 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_dav.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

20 | P a g e

2.4 Disable Status Module (Scored)

• Level 1

Description:

The Apache mod_status module provides current server performance statistics.

Rationale:

When mod_status is loaded into the server, its handler capability is available in all
configuration files, including per-directory files (e.g., .htaccess). The mod_status module may
provide an adversary with information that can be used to refine exploits that depend on
measuring server load.

Audit:

Perform the following to determine if the Status module is enabled.

Run the httpd server with the -M option to list enabled modules:

httpd -M | egrep 'status_module'

Note: If the modules are correctly disabled, there will be no output when executing the above
command.

Remediation:

Perform either one of the following to disable the mod_status module:

1. For source builds with static modules, run the Apache ./configure script with the --
disable-status configure script options.

$ cd $DOWNLOAD_HTTPD
$./configure --disable-status

2. For dynamically loaded modules, comment out or remove the LoadModule directive for
the mod_status module from the httpd.conf file.

##LoadModule status_module modules/mod_status.so

Default Value:

The mod_status module IS enabled with a default source build.

21 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_status.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

22 | P a g e

2.5 Disable Autoindex Module (Scored)

• Level 1

Description:

The Apache autoindex module automatically generates web page listing the contents of
directories on the server, typically used so that an index.html does not have to be generated.

Rationale:

Automated directory listings should not be enabled as it will also reveal information helpful to an
attacker such as naming conventions and directory paths. Directory listings may also reveal files
that were not intended to be revealed.

Audit:

Perform the following to determine if the module is enabled.

Run the httpd server with the -M option to list enabled modules:

httpd -M | grep autoindex_module

Note: If the module is correctly disabled, there will be no output when executing the above
command.

Remediation:

Perform either one of the following to disable the mod_autoindex module:

1. For source builds with static modules, run the Apache ./configure script with the --
disable-autoindex configure script options

$ cd $DOWNLOAD_HTTPD
$./configure -disable-autoindex

2. For dynamically loaded modules, comment out or remove the LoadModule directive for
mod_autoindex from the httpd.conf file.

LoadModule autoindex_module modules/mod_autoindex.so

Default Value:

The mod_autoindex module IS enabled with a default source build.

23 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_autoindex.html

CIS Controls:

18 Application Software Security
Application Software Security

24 | P a g e

2.6 Disable Proxy Modules (Scored)

• Level 1

Description:

The Apache proxy modules allow the server to act as a proxy (either forward or reverse proxy)
of HTTP and other protocols with additional proxy modules loaded. If the Apache installation is
not intended to proxy requests to or from another network then the proxy module should not be
loaded.

Rationale:

Proxy servers can act as an important security control when properly configured, however a
secure proxy server is not within the scope of this benchmark. A web server should be primarily
a web server or a proxy server but not both, for the same reasons that other multi-use servers are
not recommended. Scanning for web servers that will also proxy requests is a very common
attack, as proxy servers are useful for anonymizing attacks on other servers, or possibly proxying
requests into an otherwise protected network.

Audit:

Perform the following to determine if the modules are enabled.

Run the httpd server with the -Moption to list enabled modules:

httpd -M | grep proxy_

Note: If the modules are correctly disabled, there will be no output when executing the above
command.

Remediation:

Perform either one of the following to disable the proxy module:

1. For source builds with static modules, run the Apache ./configure script without
including the mod_proxy in the --enable-modules=configure script options.

$ cd $DOWNLOAD_HTTPD
$./configure	

25 | P a g e

2. For dynamically loaded modules, comment out or remove the LoadModule directive for
mod_proxy module and all other proxy modules from the httpd.conf file.

##LoadModule proxy_module modules/mod_proxy.so
##LoadModule proxy_connect_module modules/mod_proxy_connect.so
##LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
##LoadModule proxy_http_module modules/mod_proxy_http.so
##LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so
##LoadModule proxy_scgi_module modules/mod_proxy_scgi.so
##LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
##LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
##LoadModule proxy_express_module modules/mod_proxy_express.so
##LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so
##LoadModule proxy_fdpass_module modules/mod_proxy_fdpass.so

Default Value:

The mod_proxy module and other proxy modules are NOT enabled with a default source build.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_proxy.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

26 | P a g e

2.7 Disable User Directories Modules (Scored)

• Level 1

Description:

The UserDir directive must be disabled so that user home directories are not accessed via the
web site with a tilde (~) preceding the username. The directive also sets the path name of the
directory that will be accessed. For example:

• http://example.com/~ralph/ might access a public_html sub-directory of ralph user's
home directory.

• The directive UserDir ./ might map /~root to the root directory (/).

Rationale:

The user directories should not be globally enabled since it allows anonymous access to anything
users may want to share with other users on the network. Also consider that every time a new
account is created on the system, there is potentially new content available via the web site.

Audit:

Perform the following to determine if the modules are enabled.

Run the httpd server with the -M option to list enabled modules:

httpd -M | grep userdir_

Note: If the modules are correctly disabled, there will be no output when executing the above
command.

Remediation:

Perform either one of the following to disable the user directories module:

1. For source builds with static modules, run the Apache ./configure script with the --
disable-userdir configure script options.

$ cd $DOWNLOAD_HTTPD
$./configure --disable-userdir

2. For dynamically loaded modules, comment out or remove the LoadModule directive for
mod_userdir module from the httpd.conf file.

##LoadModule userdir_module modules/mod_userdir.so	

27 | P a g e

Default Value:

The mod_userdir module is not enabled with a default source build.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_userdir.html

CIS Controls:

18 Application Software Security
Application Software Security

28 | P a g e

2.8 Disable Info Module (Scored)

• Level 1

Description:

The Apache mod_info module provides information on the server configuration via access to a
/server-info URL location.

Rationale:

While having server configuration information available as a web page may be convenient it's
recommended that this module NOT be enabled. Once mod_info is loaded into the server, its
handler capability is available in per-directory .htaccess files and can leak sensitive
information from the configuration directives of other Apache modules such as system paths,
usernames/passwords, database names, etc.

Audit:

Perform the following to determine if the Info module is enabled.

Run the httpd server with the -M option to list enabled modules:

httpd -M | egrep 'info_module'

Note: If the module is correctly disabled, there will be no output when executing the above
command.

Remediation:

Perform either one of the following to disable the mod_info module:

1. For source builds with static modules, run the Apache ./configure script without
including the mod_info in the --enable-modules= configure script options.

$ cd $DOWNLOAD_HTTPD
$./configure

2. For dynamically loaded modules, comment out or remove the LoadModule directive for
the mod_info module from the httpd.conf file.

##LoadModule info_module modules/mod_info.so

Default Value:

The mod_info module is not enabled with a default source build.

29 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_info.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

30 | P a g e

3 Principles, Permissions, and Ownership
This section provides recommendations for configuring identities (users and groups) that Apache
leverages, permissions on Apache-related filesystem resources, and ownership of Apache-related
filesystem resources.

3.1 Run the Apache Web Server as a non-root user (Scored)

• Level 1

Description:

Although Apache is typically started with root privileges in order to listen on port 80 and 443, it
can and should run as another non-root user in order to perform the web services. The Apache
User and Group directives are used to designate the user and group that the Apache worker
processes will assume.

Rationale:

One of the best ways to reduce your exposure to attack when running a web server is to create a
unique, unprivileged user and group for the server application. The nobody or daemon user and
group that comes default on Unix variants should NOT be used to run the web server, since the
account is commonly used for other separate daemon services. Instead, an account used only by
the apache software so as to not give unnecessary access to other services. Also, the identifier
used for the apache user should be a unique system account. System user accounts UID numbers
have lower values which are reserved for the special system accounts not used by regular users,
such as discussed in User Accounts section of the CIS Red Hat benchmark. Typically, system
accounts numbers range from 1-999, or 1-499 and are defined in the /etc/login.defs file.
As an even more secure alternative, if the Apache web server can be run on high unprivileged
ports, then it is not necessary to start Apache as root, and all of the Apache processes may be
run as the Apache specific user as described below.

Audit:

Ensure the apache account is unique and has been created with a UID less than the minimum
normal user account with the apache group and configured in the httpd.conf file.

1. Ensure the User and Group directives are present in the Apache configuration and not
commented out:

grep -i '^User' $APACHE_PREFIX/conf/httpd.conf
User apache
grep -i '^Group' $APACHE_PREFIX/conf/httpd.conf
Group apache	

31 | P a g e

2. Ensure the Apache account UID is correct:

grep '^UID_MIN' /etc/login.defs
id apache

The UID must be less than the UID_MIN value in /etc/login.defs, and group of apache
similar to the following entries:

UID_MIN 1000
uid=48(apache) gid=48(apache) groups=48(apache)

3. While the web server is running, check the user id for the httpd processes. The user
name should match the configuration file.

ps axu | grep httpd | grep -v '^root'

Remediation:

Perform the following:

1. If the apache user and group do not already exist, create the account and group as a
unique system account:

groupadd -r apache
useradd apache -r -g apache -d /var/www -s /sbin/nologin

2. Configure the Apache user and group in the Apache configuration file httpd.conf:

User apache
Group apache

Default Value:

The default Apache user and group are configured as daemon.

CIS Controls:

5.1 Minimize And Sparingly Use Administrative Privileges
Minimize administrative privileges and only use administrative accounts when they are
required. Implement focused auditing on the use of administrative privileged functions and
monitor for anomalous behavior.

32 | P a g e

3.2 Give the Apache User Account an Invalid Shell (Scored)

• Level 1

Description:

The apache account must not be used as a regular login account, and should be assigned an
invalid or nologin shell to ensure that the account cannot be used to login.

Rationale:

Service accounts such as the apache account represent a risk if they can be used to get a login
shell to the system.

Audit:

Check the apache login shell in the /etc/passwd file:

grep apache /etc/passwd

The apache account shell must be /sbin/nologin or /dev/null similar to the following:
/etc/passwd:apache:x:48:48:Apache:/var/www:/sbin/nologin

Remediation:

Change the apache account to use the nologin shell or an invalid shell such as /dev/null:

chsh -s /sbin/nologin apache

Default Value:

The default Apache user account is daemon. The daemon account may have a valid login shell or
a shell of /sbin/nologin depending on the operating system distribution version.

CIS Controls:

16 Account Monitoring and Control
Account Monitoring and Control

33 | P a g e

3.3 Lock the Apache User Account (Scored)

• Level 1

Description:

The user account under which Apache runs should not have a valid password, but should be
locked.

Rationale:

As a defense-in-depth measure the Apache user account should be locked to prevent logins, and
to prevent a user from su'ing to apache using the password. In general, there shouldn't be a need
for anyone to have to su as apache, and when there is a need, then sudo should be used instead,
which would not require the apache account password.

Audit:

Ensure the apache account is locked using the following:

passwd -S apache

The results will be similar to the following:

apache LK 2010-01-28 0 99999 7 -1 (Password locked.)

- or -

apache L 07/02/2012 -1 -1 -1 -1

Remediation:

Use the passwd command to lock the apache account:

passwd -l apache

Default Value:

The default user is daemon and the account is typically locked.

CIS Controls:

16 Account Monitoring and Control
Account Monitoring and Control

34 | P a g e

3.4 Set Ownership on Apache Directories and Files (Scored)

Profile Applicability:

• Level 1

Description:

The Apache directories and files should be owned by root. This applies to all of the Apache
software directories and files installed.

Rationale:

Restricting ownership of the Apache files and directories will reduce the probability of
unauthorized modifications to those resources.

Audit:

Identify files in the Apache directory that are not owned by root:

find $APACHE_PREFIX \! -user root -ls

Remediation:

Perform the following:
Set ownership on the $APACHE_PREFIX directories such as /usr/local/apache2:

$ chown -R root $APACHE_PREFIX

Default Value:

Default ownership and group is a mixture of the user:group that built the software and
root:root.

CIS Controls:

5.1 Minimize And Sparingly Use Administrative Privileges
Minimize administrative privileges and only use administrative accounts when they are
required. Implement focused auditing on the use of administrative privileged functions and
monitor for anomalous behavior.

35 | P a g e

3.5 Set Group Id on Apache Directories and Files (Scored)

• Level 1

Description:

The Apache directories and files should be set to have a group Id of root, (or a root equivalent)
group. This applies to all of the Apache software directories and files installed. The only
expected exception is that the Apache web document root ($APACHE_PREFIX/htdocs) is likely to
need a designated group to allow web content to be updated (such as webupdate) through a
change management process.

Rationale:

Securing Apache files and directories will reduce the probability of unauthorized modifications
to those resources.

Audit:

Identify files in the Apache directories other than htdocs with a group other than root:

find $APACHE_PREFIX -path $APACHE_PREFIX/htdocs -prune -o \! -group root -
ls

Remediation:

Perform the following:

Set ownership on the $APACHE_PREFIX directories such as /usr/local/apache2:

$ chgrp -R root $APACHE_PREFIX

Default Value:

Default ownership and group is a mixture of the user:group that built the software and
root:root.

CIS Controls:

5 Controlled Use of Administration Privileges
Controlled Use of Administration Privileges

36 | P a g e

3.6 Restrict Other Write Access on Apache Directories and Files (Scored)

• Level 1

Description:

Permissions on Apache directories should generally be rwxr-xr-x (755) and file permissions
should be similar except not executable unless appropriate. This applies to all of the Apache
software directories and files installed with the possible exception of the web document root
$APACHE_PREFIX/htdocs. The directories and files in the web document root may have a
designated group with write access to allow web content to be updated. In summary, the
minimum recommendation is to not allow write access by other.

Rationale:

None of the Apache files and directories, including the Web document root must allow other
write access. Other write access is likely to be very useful for unauthorized modification of web
content, configuration files or software for malicious attacks.

Audit:

Identify files or directories in the Apache directory with other write access, excluding symbolic
links:

find -L $APACHE_PREFIX \! -type l -perm /o=w -ls

Remediation:

Perform the following to remove other write access on the $APACHE_PREFIX directories.

chmod -R o-w $APACHE_PREFIX

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

37 | P a g e

3.7 Secure Core Dump Directory (Scored)

• Level 1

Description:

The CoreDumpDirectory directive is used to specify the directory Apache attempts to switch to
before creating the core dump. Core dumps will be disabled if the directory is not writable by the
Apache user. Also, core dumps will be disabled if the server is started as root and switches to a
non-root user, as is typical. It is recommended that the CoreDumpDirectory directive be set to a
directory that is owned by the root user, owned by the group the Apache HTTPD process
executes as, and be unaccessible to other users.

Rationale:

Core dumps are snapshots of memory and may contain sensitive information that should not be
accessible by other accounts on the system.

Audit:

Verify that either the CoreDumpDirectory directive is not enabled in any of the Apache
configuration files or that the configured directory meets the following requirements:

1. CoreDumpDirectory is not within the Apache web document root
($APACHE_PREFIX/htdocs)

2. Must be owned by root and have a group ownership of the Apache group (as defined via
the Group directive)

3. Must have no read-write-search access permission for other users. (e.g. o=rwx)

Remediation:

Either remove the CoreDumpDirectory directive from the Apache configuration files or ensure
that the configured directory meets the following requirements.

1. CoreDumpDirectory is not to be within the Apache web document root
($APACHE_PREFIX/htdocs)

2. Must be owned by root and have a group ownership of the Apache group (as defined via
the Group directive)

chown root:apache /var/log/httpd

3. Must have no read-write-search access permission for other users.

# chmod o-rwx /var/log/httpd	

38 | P a g e

Default Value:

The default core dump directory is the ServerRoot directory.

References:

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#coredumpdirectory

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

39 | P a g e

3.8 Secure the Lock File (Scored)

• Level 1

Description:

The Mutex directive sets the locking mechanism used to serialize access to resources. It may be
used to specify that a lock file is to be used as a mutex mechanism and may provide the path to
the lock file to be used with the fcntl(2) or flock(2) system calls. Most Linux systems will
default to using semaphores instead, so the directive may not apply. However, in the event a lock
file is used, it is important for the lock file to be in a local directory that is not writable by other
users.

Rationale:

If the lock file to be used as a mutex is placed in a writable directory, other accounts could create
a denial of service attack and prevent the server from starting by creating a lock file with the
same name.

Audit:

Verify the configuration does NOT include a Mutex directive with the mechanism of fcntl,
flock or file.
If one of the file locking mechanisms is configured, then find the directory in which the lock file
would be created. The default value is the ServerRoot/logs directory.

1. Verify that the lock file directory is not a directory within the Apache DocumentRoot
2. Verify that the ownership and group of the directory is root:root (or the user under

which Apache initially starts up if not root).
3. Verify the permissions on the directory are only writable by root (or the startup user if not

root),
4. Check that the lock file directory is on a locally mounted hard drive rather than an NFS

mounted file system

Remediation:

Find the directory path in which the lock file would be created. The default value is the
ServerRoot/logs directory.

1. Modify the directory if the path is a directory within the Apache DocumentRoot
2. Change the ownership and group to be root:root, if not already.
3. Change the permissions so that the directory is only writable by root, or the user under

which Apache initially starts up (default is root),
4. Check that the lock file directory is on a locally mounted hard drive rather than an NFS

mounted file system.

40 | P a g e

Default Value:

The default mechanism for the Mutexdirective is platform specific and may be determined by
running httpd -V. The default path is the ServerRoot/logs directory.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#mutex

CIS Controls:

18 Application Software Security
Application Software Security

41 | P a g e

3.9 Secure the Pid File (Scored)

• Level 1

Description:

The PidFile directive sets the file path to the process ID file to which the server records the
process id of the server, which is useful for sending a signal to the server process or for checking
on the health of the process.

Rationale:

If the PidFile is placed in a writable directory, other accounts could create a denial of service
attack and prevent the server from starting by creating a pid file with the same name.

Audit:

1. Find the directory in which the PidFile would be created. The default value is the
ServerRoot/logs directory.

2. Verify that the process ID file directory is not a directory within the Apache
DocumentRoot

3. Verify that the ownership and group of the directory is root:root (or the user under
which Apache initially starts up if not root).

4. Verify the permissions on the directory are only writable by root (or the startup user if not
root).

Remediation:

1. Find the directory in which the PidFile would be created. The default value is the
ServerRoot/logs directory.

2. Modify the directory if the PidFile is in a directory within the Apache `DocumentRoot'.
3. Change the ownership and group to be root:root, if not already.
4. Change the permissions so that the directory is only writable by root, or the user under

which Apache initially starts up (default is root).

Default Value:

The default process ID file is logs/httpd.pid.

References:

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#pidfile

42 | P a g e

CIS Controls:

18 Application Software Security
Application Software Security

43 | P a g e

3.10 Secure the ScoreBoard File (Scored)

• Level 1

Description:

The ScoreBoardFile directive sets a file path which the server will use for inter-process
communication (IPC) among the Apache processes. On most Linux platforms, shared memory
will be used instead of a file in the file system, so this directive is not generally needed and does
not need to be specified. However, if the directive is specified, then Apache will use the
configured file for the inter-process communication. Therefore if it is specified, it needs to be
located in a secure directory.

Rationale:

If the ScoreBoardFile is placed in a writable directory, other accounts could create a denial of
service attack and prevent the server from starting by creating a file with the same name, and
users could monitor and disrupt the communication between the processes by reading and
writing to the file.

Audit:

1. Check to see if the ScoreBoardFile is specified in any of the Apache configuration files.
If it is not present, the configuration is compliant.

2. Find the directory in which the ScoreBoardFile would be created. The default value is
the ServerRoot/logs directory.

3. Verify that the scoreboard file directory is not a directory within the Apache
DocumentRoot

4. Verify that the ownership and group of the directory is root:root (or the user under
which Apache initially starts up if not root).

5. Change the permissions so that the directory is only writable by root (or the startup user
if not root).

6. Check that the scoreboard file directory is on a locally mounted hard drive rather than an
NFS mounted file system.

Remediation:

1. Check to see if the ScoreBoardFile is specified in any of the Apache configuration files.
If it is not present, no changes are required.

2. If the directive is present, find the directory in which the ScoreBoardFile would be
created. The default value is the ServerRoot/logs directory.

3. Modify the directory if the ScoreBoardFile is in a directory within the Apache
DocumentRoot

4. Change the ownership and group to be root:root, if not already.
5. Change the permissions so that the directory is only writable by root, or the user under

which apache initially starts up (default is root),

44 | P a g e

6. Check that the scoreboard file directory is on a locally mounted hard drive rather than an
NFS mounted file system.

Default Value:

The default scoreboard file is logs/apache_status.

References:

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#scoreboardfile

CIS Controls:

18 Application Software Security
Application Software Security

45 | P a g e

3.11 Restrict Group Write Access for the Apache Directories and Files
(Scored)

• Level 1

Description:

Group permissions on Apache directories should generally be r-x and file permissions should be
similar except not executable if executable is not appropriate. This applies to all of the Apache
software directories and files installed with the possible exception of the web document root
$DOCROOT defined by Apache DocumentRoot and defaults to $APACHE_PREFIX/htdocs. The
directories and files in the web document root may have a designated web development group
with write access to allow web content to be updated.

Rationale:

Restricting write permissions on the Apache files and directories can help mitigate attacks that
modify web content to provide unauthorized access, or to attack web clients.

Audit:

Identify files or directories in the Apache directory with group write access, excluding symbolic
links:

find -L $APACHE_PREFIX \! -type l -perm /g=w -ls

Remediation:

Perform the following to remove group write access on the $APACHE_PREFIX directories.

chmod -R g-w $APACHE_PREFIX

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

46 | P a g e

3.12 Restrict Group Write Access for the Document Root Directories and
Files (Scored)

• Level 1

Description:

Group permissions on Apache Document Root directories $DOCROOT may need to be writable by
an authorized group such as development, support, or a production content management tool.
However, it is important that the Apache group used to run the server does not have write access
to any directories or files in the document root.

Rationale:

Preventing Apache from writing to the web document root helps mitigate risk associated with
web application vulnerabilities associated with file uploads or command execution. Typically, if
an application hosted by Apache needs to write to directory, it is best practice to have that
directory live outside the web root.

Audit:

Identify files or directories in the Apache Document Root directory with Apache group write
access.

Define $GRP to be the Apache group configured
GRP=$(grep '^Group' $APACHE_PREFIX/conf/httpd.conf | cut -d' ' -f2)
find -L $DOCROOT -group $GRP -perm /g=w -ls

Remediation:

Perform the following to remove group write access on the $DOCROOT directories and files with
the apache group.

find -L $DOCROOT -group $GRP -perm /g=w -print | xargs chmod g-w

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

47 | P a g e

4 Apache Access Control
Recommendations in this section pertain to configurable access control mechanisms that are
available in Apache HTTP server.

4.1 Deny Access to OS Root Directory (Scored)

• Level 1

Description:

The Apache Directory directive allows for directory specific configuration of access controls
and many other features and options. One important usage is to create a default deny policy that
does not allow access to operating system directories and files, except for those specifically
allowed. This is done by denying access to the OS root directory.

Rationale:

One aspect of Apache, which is occasionally misunderstood, is the feature of default access. That
is, unless you take steps to change it, if the server can find its way to a file through normal URL
mapping rules, it can and will serve it to clients. Having a default deny is a predominate security
principle, and then helps prevent the unintended access, and we do that in this case by denying
access to the OS root directory using either of two methods but not both:

1. Using the Apache Deny directive along with an Order directive.
2. Using the Apache Require directive.

Either method is effective. The Order/Deny/Allow combination are now deprecated; they
provide three passes where all the directives are processed in the specified order. In contrast, the
Require directive works on the first match similar to firewall rules. The Require directive is the
default for Apache 2.4 and is demonstrated in the remediation procedure as it may be less likely
to be misunderstood.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root <Directory> element.

2. Ensure that either one of the following two methods are configured:

Using the deprecated Order/Deny/Allow method:

1. Ensure there is a single Order directive with the value of deny, allow
2. Ensure there is a Deny directive, and with the value of from all.

48 | P a g e

3. Ensure there are no Allow or Require directives in the root <Directory>
element.

Using the Require method:

4. Ensure there is a single Require directive with the value of all denied
5. Ensure there are no Allow or Deny directives in the root <Directory> element.

The following may be useful in extracting root directory elements from the Apache configuration
for auditing.

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root <Directory> element.

2. Add a single Require directive and set the value to all denied
3. Remove any Deny and Allow directives from the root <Directory> element.

<Directory>
 . . .
 Require all denied
 . . .
</Directory>

Default Value:

The following is the default root directory configuration:
<Directory>
 . . .
 Require all denied
 . . .
</Directory>

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#directory
2. https://httpd.apache.org/docs/2.4/mod/mod_authz_host.html

49 | P a g e

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

50 | P a g e

4.2 Allow Appropriate Access to Web Content (Not Scored)

• Level 1

Description:

In order to serve Web content, either the Apache Allow directive or the Require directive will
need to be used to allow for appropriate access to directories, locations and virtual hosts that
contain web content.

Rationale:

Either the Allow or Require directives may be used within a directory, a location or other
context to allow appropriate access. Access may be allowed to all, or to specific networks, or
hosts, or users as appropriate. The Allow/Deny/Order directives are deprecated and should be
replaced by the Require directive. It is also recommended that either the Allow directive or the
Require directive be used, but not both in the same context.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find all <Directory> elements.

2. Ensure that either one of the following two methods are configured:

Use the deprecated Order/Deny/Allow method:

1. Ensure there is a single Order directive with the value of Deny,Allow for each.
2. Ensure the Allow and Deny directives, have values that are appropriate for the

purposes of the directory.

Use the Require method:

1. Ensure that the Order/Deny/Allow directives are NOT used for the directory.
2. Ensure the Require directives have values that are appropriate for the purposes of

the directory.

The following command may be useful to extract <Directory> and <Location> elements and
Allow directives from the Apache configuration files.

perl -ne 'print if /^ *<Directory */i .. //<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf
perl -ne 'print if /^ *<Location */i .. //<\/Location/i'
$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf
grep -i -C 6 -i 'Allow[[:space:]]from' $APACHE_PREFIX/conf/httpd.conf
$APACHE_PREFIX/conf.d/*.conf

51 | P a g e

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find all <Directory> and <Location> elements. There should be one for the
document root and any special purpose directories or locations. There are likely to be
other access control directives in other contexts, such as virtual hosts or special elements
like <Proxy>.

2. Include the appropriate Require directives, with values that are appropriate for the
purposes of the directory.

The configurations below are just a few possible examples.

<Directory "/var/www/html/">
 Require ip 192.169.
</Directory>

<Directory "/var/www/html/">
 Require all granted
</Directory>

<Location /usage>
 Require local
</Location>
<Location /portal>
 Requirevalid-user
</Location>

Default Value:

The following is the default Web root directory configuration:
<Directory "/usr/local/apache2/htdocs">
 . . .
 Require all granted
 . . .
</Directory>

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#directory
2. https://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
3. https://httpd.apache.org/docs/2.4/mod/mod_authz_core.html
4. https://httpd.apache.org/docs/2.4/mod/mod_access_compat.html

52 | P a g e

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

53 | P a g e

4.3 Restrict Override for the OS Root Directory (Scored)

• Level 1

Description:

The Apache AllowOverRide directive and the new AllowOverrideList directive allow for
.htaccess files to be used to override much of the configuration, including authentication,
handling of document types, auto generated indexes, access control, and options. When the
server finds an .htaccess file (as specified by AccessFileName) it needs to know which
directives declared in that file can override earlier access information. When this directive is set
to None, then .htaccess files are completely ignored. In this case, the server will not even
attempt to read .htaccess files in the filesystem. When this directive is set to All, then any
directive which has the .htaccess Context is allowed in the .htaccess files.

Rationale:

While the functionality of htaccess files is sometimes convenient, usage decentralizes the
access controls and increases the risk of configurations being changed or viewed inappropriately
by an unintended or rogue .htaccess file. Consider also that some of the more common
vulnerabilities in web servers and web applications allow the web files to be viewed or to be
modified, then it is wise to keep the configuration out of the web server from being placed in
.htaccess files.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root element.

2. Ensure there is a single AllowOverride directive with the value of None.
3. Ensure there are no AllowOverrideList directives present.

The following may be useful for extracting root directory elements from the Apache
configuration for auditing.

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root <Directory> element.

2. Remove any AllowOverrideList directives found.

54 | P a g e

3. Add a single AllowOverride directive if there is none.
4. Set the value for AllowOverride to None.

<Directory />
 . . .
 AllowOverride None
 . . .
</Directory>

Default Value:

The following is the default root directory configuration:

<Directory />
 . . .
 AllowOverride None
 . . .
</Directory>

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverride
2. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverridelist

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

55 | P a g e

4.4 Restrict Override for All Directories (Scored)

• Level 1

Description:

The Apache AllowOverride directive and the new AllowOverrideList directive allow for
.htaccess files to be used to override much of the configuration, including authentication,
handling of document types, auto generated indexes, access control, and options. When the
server finds an .htaccess file (as specified by AccessFileName) it needs to know which
directives declared in that file can override earlier access information. When this directive is set
to None, then .htaccess files are completely ignored. In this case, the server will not even
attempt to read .htaccess files in the filesystem. When this directive is set to All, then any
directive which has the .htaccess context is allowed in .htaccess files.

Rationale:

.htaccess files decentralizes access control and increases the risk of server configuration being
changed inappropriately.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find any AllowOverride directives.

2. Ensure there the value for AllowOverride is None.

grep -i AllowOverride $APACHE_PREFIX/conf/httpd.conf

3. Ensure there are no AllowOverrideList directives present.

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find AllowOverride directives.

2. Set the value for all AllowOverride directives to None.

. . .
AllowOverride None
. . .

3. Remove any AllowOverrideList directives found.

56 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverride
2. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverridelist

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

57 | P a g e

5 Minimize Features, Content and Options
Recommendations in this section intend to reduce the effective attack surface of Apache HTTP
server.

5.1 Restrict Options for the OS Root Directory (Scored)

• Level 1

Description:

The Apache Options directive allows for specific configuration of options, including execution
of CGI, following symbolic links, server side includes, and content negotiation.

Rationale:

The Options directive for the root OS level is used to create a default minimal options policy
that allows only the minimal options at the root directory level. Then for specific web sites or
portions of the web site, options may be enabled as needed and appropriate. No options should
be enabled and the value for the Options directive should be None.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root <Directory> element.

2. Ensure there is a single Options directive with the value of None.

The following may be useful for extracting root directory elements from the Apache
configuration for auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find a root <Directory> element.

2. Add a single Options directive if there is none.

58 | P a g e

3. Set the value for Options to None.

<Directory />
 . . .
 Options None
 . . .
</Directory>

Default Value:

The default value for the root directory's Option directive is Indexes FollowSymLinks.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#options

CIS Controls:

18 Application Software Security
Application Software Security

59 | P a g e

5.2 Restrict Options for the Web Root Directory (Scored)

• Level 1

Description:

The Apache Options directive allows for specific configuration of options, including:

• Execution of CGI
• Following symbolic links
• Server side includes
• Content negotiation

Rationale:

The Options directive at the web root or document root level also needs to be restricted to the
minimal options required. A setting of None is highly recommended, however it is recognized
that this level content negotiation may be needed if multiple languages are supported. No other
options should be enabled.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find the document root <Directory> elements.

2. Ensure there is a single Options directive with the value of None or Multiviews.

The following may be useful in extracting directory elements from the Apache configuration for
auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find the document root <Directory> element.

60 | P a g e

2. Add or modify any existing Options directive to have a value of None or Multiviews, if
multiviews are needed.

<Directory "/usr/local/apache2/htdocs">
 . . .
 Options None
 . . .
</Directory>

Default Value:

The default value for the web root directory's Option directive is FollowSymLinks.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#options

CIS Controls:

18 Application Software Security
Application Software Security

61 | P a g e

5.3 Minimize Options for Other Directories (Scored)

• Level 1

Description:

The Apache Options directive allows for specific configuration of options, including execution
of CGI, following symbolic links, server side includes, and content negotiation.

Rationale:

Likewise, the options for other directories and hosts needs to be restricted to the minimal options
required. A setting of None is recommended, however it is recognized that other options may be
needed in some cases:

• Multiviews - Is appropriate if content negotiation is required, such as when multiple
languages are supported.

• ExecCGI - Is only appropriate for special directories dedicated to executable content such
as a cgi-bin/ directory. That way you will know what is executed on the server. It is
possible to enable CGI script execution based on file extension or permission settings,
however this makes script control and management almost impossible as developers may
install scripts without your knowledge. This may become a factor in a hosting
environment.

• FollowSymLinks & SymLinksIfOwnerMatch - The following of symbolic links is not
recommended and should be disabled if possible. The usage of symbolic links opens up
additional risk for possible attacks that may use inappropriate symbolic links to access
content outside of the document root of the web server. Also consider that it could be
combined with a vulnerability that allowed an attacker or insider to create an
inappropriate link. The option SymLinksIfOwnerMatch is much safer in that the
ownership must match in order for the link to be used, however keep in mind there is
additional overhead created by requiring Apache to check the ownership.

• Includes & IncludesNOEXEC - The IncludesNOEXEC option should only be needed
when server side includes are required. The full Includes option should not be used as it
also allows execution of arbitrary shell commands. See Apache Mod Include for details
https://httpd.apache.org/docs/2.4/mod/mod_include.html

• Indexes - The Indexes option causes automatic generation of indexes, if the default
index page is missing, and should be disabled unless required.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find the all Directory elements.

2. Ensure that the Options directives do not enable Includes.

62 | P a g e

The following may be useful for extracting Directory elements from the Apache configuration
for auditing.

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

or

grep -i -A 12 '<Directory[[:space:]]' $APACHE_PREFIX/conf/httpd.conf

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files (httpd.conf and any included configuration files)
to find all <Directory> elements.

2. Add or modify any existing Options directive to NOT have a value of Includes. Other
options may be set if necessary and appropriate as described above.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#options

CIS Controls:

18 Application Software Security
Application Software Security

63 | P a g e

5.4 Remove Default HTML Content (Scored)

• Level 1

Description:

Apache installations have default content that is not needed or appropriate for production use.
The primary function for this sample content is to provide a default web site, provide user
manuals or to demonstrate special features of the web server. All content that is not needed
should be removed.

Rationale:

Historically these sample content and features have been remotely exploited and can provide
different levels of access to the server. In the Microsoft arena, Code Red exploited a problem
with the index service provided by the Internet Information Service. Usually these routines are
not written for production use and consequently little thought was given to security in their
development.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Verify the document root directory and the configuration files do not provide for default
index.html or welcome page,

2. Ensure the Apache User Manual content is not installed by checking the configuration
files for manual location directives.

3. Verify the Apache configuration files do not have the Server Status handler configured.
4. Verify that the Server Information handler is not configured.
5. Verify that any other handler configurations such as perl-status is not enabled.

Remediation:

Review all pre-installed content and remove content which is not required. In particular look for
the unnecessary content which may be found in the document root directory, a configuration
directory such as conf/extra directory, or as a Unix/Linux package

1. Remove the default index.html or welcome page if it is a separate package. If the default
welcome page is part of the main Apache httpd package such as it is on Red Hat Linux,
then comment out the configuration as shown below. Removing a file such as the
welcome.conf is not recommended as it may get replaced if the package is updated.

64 | P a g e

This configuration file enables the default "Welcome"
page if there is no default index page present for
the root URL. To disable the Welcome page, comment
out all the lines below.

##<LocationMatch "^/+$">
Options -Indexes
ErrorDocument 403 /error/noindex.html
##</LocationMatch>

2. Remove the Apache user manual content or comment out configurations referencing the
manual

yum erase httpd-manual

3. Remove or comment out any Server Status handler configuration.

Allow server status reports generated by mod_status,
with the URL of http://servername/server-status
Change the ".example.com" to match your domain to enable.

##<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

4. Remove or comment out any Server Information handler configuration.

Allow remote server configuration reports, with the URL of
http://servername/server-info (requires that mod_info.c be loaded).
Change the ".example.com" to match your domain to enable.

##<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

5. Remove or comment out any other handler configuration such as perl-status.

65 | P a g e

This will allow remote server configuration reports, with the URL of
http://servername/perl-status
Change the ".example.com" to match your domain to enable.

##<Location /perl-status>
SetHandler perl-script
PerlResponseHandler Apache2::Status
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

Default Value:

The default source build provides extra content available in the
/usr/local/apache2/conf/extra/ directory, but the configuration of most of the extra
content is commented out by default. In particular, the include of conf/extra/proxy-
html.conf is not commented out in the httpd.conf.
Server-pool management (MPM specific)
#Include conf/extra/httpd-mpm.conf
Multi-language error messages
#Include conf/extra/httpd-multilang-errordoc.conf
Fancy directory listings
#Include conf/extra/httpd-autoindex.conf
Language settings
#Include conf/extra/httpd-languages.conf
User home directories
#Include conf/extra/httpd-userdir.conf
Real-time info on requests and configuration
#Include conf/extra/httpd-info.conf
Virtual hosts
#Include conf/extra/httpd-vhosts.conf
Local access to the Apache HTTP Server Manual
#Include conf/extra/httpd-manual.conf
Distributed authoring and versioning (WebDAV)
#Include conf/extra/httpd-dav.conf
Various default settings
#Include conf/extra/httpd-default.conf
Configure mod_proxy_html to understand HTML4/XHTML1
<IfModule proxy_html_module>
Include conf/extra/proxy-html.conf
</IfModule>
Secure (SSL/TLS) connections
#Include conf/extra/httpd-ssl.conf	

66 | P a g e

Also, the only other default content is a minimal barebones index.html in the document root
which contains.

<html>
 <body>
 <h1>It works!</h1>
 </body>
</html>

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

67 | P a g e

5.5 Remove Default CGI Content printenv (Scored)

• Level 1

Description:

Most Web Servers, including Apache installations have default CGI content which is not needed
or appropriate for production use. The primary function for these sample programs is to
demonstrate the capabilities of the web server. One common default CGI content for Apache
installations is the script printenv. This script will print back to the requester all of the CGI
environment variables which includes many server configuration details and system paths.

Rationale:

CGI programs have a long history of security bugs and problems associated with improperly
accepting user-input. Since these programs are often targets of attackers, we need to make sure
that there are no unnecessary CGI programs that could potentially be used for malicious
purposes. Usually these programs are not written for production use and consequently little
thought was given to security in their development. The printenv script in particular will
disclose inappropriate information about the web server including directory paths and detailed
version and configuration information.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias or ScriptAliasMatch or ScriptInterpreterSource directives.

2. Ensure the printenv CGI is not installed in any configured cgi-bin directory.

Remediation:

Perform the following to implement the recommended state:

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias, ScriptAliasMatch, or ScriptInterpreterSource directives.

2. Remove the printenvdefault CGI in cgi-bin directory if it is installed.

rm $APACHE_PREFIX/cgi-bin/printenv

Default Value:

The default source installation includes the printenv script. However, this script is not
executable by default.

68 | P a g e

CIS Controls:

18 Application Software Security
Application Software Security

69 | P a g e

5.6 Remove Default CGI Content test-cgi (Scored)

• Level 1

Description:

Most Web Servers, including Apache installations have default CGI content which is not needed
or appropriate for production use. The primary function for these sample programs is to
demonstrate the capabilities of the web server. A common default CGI content for Apache
installations is the script test-cgi. This script will print back to the requester CGI environment
variables which includes many server configuration details.

Rationale:

CGI programs have a long history of security bugs and problems associated with improperly
accepting user-input. Since these programs are often targets of attackers, we need to make sure
that there are no unnecessary CGI programs that could potentially be used for malicious
purposes. Usually these programs are not written for production use and consequently little
thought was given to security in their development. The test-cgi script in particular will
disclose inappropriate information about the web server including directory paths and detailed
version and configuration information.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias or ScriptAliasMatch other ScriptInterpreterSource directives.

2. Ensure the test-cgi script is not installed in any configured cgi-bin directory.

Remediation:

Perform the following to implement the recommended state:

1. Locate cgi-bin files and directories enabled in the Apache configuration via Script,
ScriptAlias, ScriptAliasMatch, or ScriptInterpreterSource directives.

2. Remove the test-cgi default CGI in cgi-bin directory if it is installed.

rm $APACHE_PREFIX/cgi-bin/test-cgi

Default Value:

The default source installation includes the test-cgi script. However, this script is not executable
by default.

70 | P a g e

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

71 | P a g e

5.7 Limit HTTP Request Methods (Scored)

• Level 1

Description:

Use the Apache <LimitExcept> directive to restrict unnecessary HTTP request methods of the
web server to only accept and process the GET, HEAD, POST and OPTIONS HTTP request methods.

Rationale:

The HTTP 1.1 protocol supports several request methods which are rarely used and potentially
high risk. For example, methods such as PUT and DELETE are rarely used and should be disabled
in keeping with the primary security principal of minimize features and options. Also since the
usage of these methods is typically to modify resources on the web server, they should be
explicitly disallowed. For normal web server operation, you will typically need to allow only the
GET, HEAD and POST request methods. This will allow for downloading of web pages and
submitting information to web forms. The OPTIONS request method will also be allowed as it
used to request which HTTP request methods are allowed. Unfortunately, the Apache
<LimitExcept> directive does not deny the TRACE request method. The TRACE request method
will be disallowed in another benchmark recommendation with the TraceEnable directive.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Search for all <Directory> directives other than the OS root directory.
3. Ensure that either one of the following two methods are configured:

Using the deprecated Order/Deny/Allow method:

1. Ensure that group contains a single Order directive within the <Directory>
directive with a value of deny, allow

2. Verify the <LimitExcept> directive does not include any HTTP methods other
than GET, POST, and OPTIONS. (It may contain fewer methods.)

Using the Require method:

1. Ensure there is a single Require directive with the value of all denied
2. Ensure there are no Allow or Deny directives in the root element.

Remediation:

Perform the following to implement the recommended state:

72 | P a g e

1. Locate the Apache configuration files and included configuration files.
2. Search for the directive on the document root directory such as:

<Directory "/usr/local/apache2/htdocs">
 . . .
</Directory>

3. Add a directive as shown below within the group of document root directives.

Limit HTTP methods to standard methods. Note: Does not limit TRACE
<LimitExcept GET POST OPTIONS>
 Require all denied
</LimitExcept>

4. Search for other directives in the Apache configuration files other than the OS root
directory and add the same directives to each. It is very important to understand that the
directives are based on the OS file system hierarchy as accessed by Apache and not the
hierarchy of the locations within web site URLs.

<Directory "/usr/local/apache2/cgi-bin">
 . . .
 # Limit HTTP methods
 <LimitExcept GET POST OPTIONS>
 Require all denied
 </LimitExcept>
</Directory>

Default Value:

No Limits on HTTP methods.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitexcept
2. https://www.ietf.org/rfc/rfc2616.txt

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

73 | P a g e

5.8 Disable HTTP TRACE Method (Scored)

• Level 1

Description:

Use the Apache TraceEnable directive to disable the HTTP TRACE request method.

Rationale:

The HTTP 1.1 protocol requires support for the TRACE request method which reflects the request
back as a response and was intended for diagnostics purposes. The TRACE method is not needed
and is easily subjected to abuse and should be disabled.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Verify there is a single TraceEnable directive configured with a value of off.

Remediation:

Perform the following to implement the recommended state:

1. Locate the main Apache configuration file such as httpd.conf.
2. Add a TraceEnable directive to the server level configuration with a value of off.

Server level configuration is the top-level configuration, not nested within any other
directives like <Directory> or <Location>.

Default Value:

The TRACE method is enabled.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#traceenable
2. https://www.ietf.org/rfc/rfc2616.txt

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

74 | P a g e

5.9 Restrict HTTP Protocol Versions (Scored)

Profile Applicability:

• Level 1

Description:

The Apache modules mod_rewrite or mod_security can be used to disallow old and invalid
HTTP protocols versions. The HTTP version 1.1 RFC is dated June 1999 and has been supported
by Apache since version 1.2. It should no longer be necessary to allow ancient versions of HTTP
such as 1.0 and prior.

Rationale:

Many malicious automated programs, vulnerability scanners and fingerprinting tools will send
abnormal HTTP protocol versions to see how the web server responds. These requests are
usually part of the attacker's enumeration process and therefore it is important that we respond by
denying these requests.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Verify there is a rewrite condition within the global server context that disallows requests

that do not include the HTTP/1.1 header as shown below.

RewriteEngine On
RewriteCond %{THE_REQUEST} !HTTP/1\.1$
RewriteRule .* - [F]

3. Verify the following directives are included in each section so that the main server
settings will be inherited.

RewriteEngine On
RewriteOptions Inherit

Remediation:

Perform the following to implement the recommended state:

1. Load the mod_rewrite module for Apache by doing either one of the following:
a. Build	Apache	with	mod_rewrite	statically	loaded	during	the	build,	by	adding	

the	--enable-rewrite	option	to	the	./configure	script.

./configure --enable-rewrite.

75 | P a g e

b. Or,	dynamically	loading	the	module	with	the	LoadModule	directive	in
the	httpd.conf	configuration	file.

LoadModule rewrite_module modules/mod_rewrite.so

2. Locate the main Apache configuration file such as httpd.conf and add the following
rewrite condition to match HTTP/1.1 and the rewrite rule to the global server level
configuration to disallow other protocol versions.

RewriteEngine On
RewriteCond %{THE_REQUEST} !HTTP/1\.1$
RewriteRule .* - [F]

3. By default, mod_rewrite configuration settings from the main server context are not
inherited by virtual hosts. Therefore, it is also necessary to add the following directives in
each section to inherit the main server settings.

RewriteEngine On
RewriteOptions Inherit

Default Value:

The default value for the RewriteEngine directive is off.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_rewrite.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

76 | P a g e

5.10 Restrict Access to .ht* files (Scored)

• Level 1

Description:

Restrict access to any files beginning with .ht using the FilesMatch directive.

Rationale:

The default name for access filename which allows files in web directories to override the
Apache configuration is .htaccess. The usage of access files should not be allowed, but as a
defense in depth a FilesMatch directive is recommended to prevent web clients from viewing
those files in case they are created. Also a common name for web password and group files are
.htpasswd and .htgroup. Neither of these files should be placed in the document root, but, in
the event they are, the FilesMatch directive can be used to prevent them from being viewed by
web clients.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that a FilesMatch directive similar to the one below is present in the apache
configuration and not commented out. The deprecated Deny from All directive may be used
instead of the Require directive.

<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>

Remediation:

Perform the following to implement the recommended state:
Add or modify the following lines in the Apache configuration file at the server configuration
level.

<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>

Default Value:

.ht* files are not accessible.

77 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#filesmatch

CIS Controls:

18.3 Sanitize Input For In-house Software
For in-house developed software, ensure that explicit error checking is performed and
documented for all input, including for size, data type, and acceptable ranges or formats.

78 | P a g e

5.11 Restrict File Extensions (Scored)

• Level 2

Description:

Restrict access to inappropriate file extensions that are not expected to be a legitimate part of
web sites using the FilesMatch directive.

Rationale:

There are many files that are often left within the web server document root that could provide
an attacker with sensitive information. Most often these files are mistakenly left behind after
installation, trouble-shooting, or backing up files before editing. Regardless of the reason for
their creation, these files can still be served by Apache even when there is no hyperlink pointing
to them. The web administrators should use the FilesMatch directive to restrict access to only
those file extensions that are appropriate for the web server. Rather than create a list of
potentially inappropriate file extensions such as .bak, .config, .old, etc, it is recommended
instead that a white list of the appropriate and expected file extensions for the web server be
created, reviewed and restricted with a FilesMatch directive.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Verify that the FilesMatch directive that denies access to all files is present as shown in
step 3 of the remediation.

2. Verify that there is another FilesMatch directive similar to the one in step 4 of the
remediation, with an expression that matches the approved file extensions.

Remediation:

Perform the following to implement the recommended state:

1. Compile a list of existing file extension on the web server. The following find/awk
command may be useful, but is likely to need some customization according to the
appropriate webroot directories for your web server. Please note that the find command
skips over any files without a dot (.) in the file name, as these are not expected to be
appropriate web content.

find */htdocs -type f -name '*.*' | awk -F. '{print $NF }' | sort -u

79 | P a g e

2. Review the list of existing file extensions, for appropriate content for the web server,
remove those that are inappropriate and add any additional file extensions expected to be
added to the web server in the near future.

3. Add the FilesMatch directive below which denies access to all files by default.

Block all files by default, unless specifically allowed.
<FilesMatch "^.*$">
 Require all denied
</FilesMatch>

4. Add another a FilesMatch directive that allows access to those file extensions
specifically allowed from the review process in step 2. An example FilesMatch directive
is below. The file extensions in the regular expression should match your approved list,
and not necessarily the expression below.

Allow files with specifically approved file extensions
Such as (css, htm; html; js; pdf; txt; xml; xsl; ...),
images (gif; ico; jpeg; jpg; png; ...), multimedia
<FilesMatch "^.*\.(css|html?|js|pdf|txt|xml|xsl|gif|ico|jpe?g|png)$">
 Require all granted
</FilesMatch>

Default Value:

There are no restrictions on file extensions in the default configuration.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#filesmatch

CIS Controls:

18.3 Sanitize Input For In-house Software
For in-house developed software, ensure that explicit error checking is performed and
documented for all input, including for size, data type, and acceptable ranges or formats.

80 | P a g e

5.12 Deny IP Address Based Requests (Scored)

• Level 2

Description:

The Apache module mod_rewrite can be used to disallow access for requests that use an IP
address instead of a host name for the URL. Most normal access to the website from browsers
and automated software will use a host name which will therefore include the host name in the
HTTP HOST header.

Rationale:

A common malware propagation and automated network scanning technique is to use IP
addresses rather than host names for web requests, since it's much simpler to automate. By
denying IP based web requests, these automated techniques will be denied access to the website.
Of course, malicious web scanning techniques continue to evolve, and many are now using
hostnames, however denying access to the IP based requests is still a worthwhile defense.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Verify there is a rewrite condition within the global server context that disallows IP based

requests by requiring a HTTP HOST header similar to the example shown below.

RewriteCond %{HTTP_HOST} !^www\.example\.com [NC]
RewriteCond %{REQUEST_URI} !^/error [NC]
RewriteRule ^.(.*) - [L,F]

Remediation:

Perform the following to implement the recommended state:

1. Load the mod_rewrite module for Apache by doing either one of the following:

a. Build	Apache	with	mod_rewrite statically	loaded	during	the	build,	by	adding	
the	--enable-rewrite	option	to	the	./configure	script.

./configure --enable-rewrite

b. Or,	dynamically	loading	the	module	with	the	LoadModule	directive	in	
the	httpd.conf	configuration	file.

LoadModule rewrite_module modules/mod_rewrite.so

81 | P a g e

2. Add the RewriteEngine directive to the configuration within the global server context
with the value of on so that the rewrite engine is enabled.

RewriteEngine On

3. Locate the Apache configuration file such as httpd.conf and add the following rewrite
condition to match the expected host name of the top server level configuration.

RewriteCond %{HTTP_HOST} !^www\.example\.com [NC]
RewriteCond %{REQUEST_URI} !^/error [NC]
RewriteRule ^.(.*) - [L,F]

Default Value:

RewriteEngine off

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_rewrite.html

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

82 | P a g e

5.13 Restrict Listen Directive (Scored)

• Level 2

Description:

The Apache Listen directive specifies the IP addresses and port numbers the Apache web server
will listen for requests. Rather than be unrestricted to listen on all IP addresses available to the
system, the specific IP address or addresses intended should be explicitly specified. Specifically,
a Listen directive with no IP address specified, or with an IP address of zeros should not be
used.

Rationale:

Having multiple interfaces on web servers is fairly common, and without explicit Listen
directives, the web server is likely to be listening on an inappropriate IP address / interface that
was not intended for the web server. Single homed system with a single IP addressed are also
required to have an explicit IP address in the Listen directive, in case additional interfaces are
added to the system at a later date.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that no Listen directives are in the Apache configuration file with no IP address
specified, or with an IP address of all zero's.

Remediation:

Perform the following to implement the recommended state:

1. Find any Listen directives in the Apache configuration file with no IP address specified,
or with an IP address of all zeros similar to the examples below. Keep in mind there may
be both IPv4 and IPv6 addresses on the system.

Listen 80
Listen 0.0.0.0:80
Listen [::ffff:0.0.0.0]:80

2. Modify the Listen directives in the Apache configuration file to have explicit IP
addresses according to the intended usage. Multiple Listendirectives may be specified
for each IP address & Port.

Listen 10.1.2.3:80
Listen 192.168.4.5:80
Listen [2001:db8::a00:20ff:fea7:ccea]:80	

83 | P a g e

Default Value:

Listen 80

References:

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#listen

CIS Controls:

9.1 Limit Open Ports, Protocols, and Services
Ensure that only ports, protocols, and services with validated business needs are running on
each system.

84 | P a g e

5.14 Restrict Browser Frame Options (Scored)

• Level 2

Description:

The Header directive allows server HTTP response headers to be added, replaced or merged. We
will use the directive to add a server HTTP response header to tell browsers to restrict all of the
web pages from being framed by other web sites.

Rationale:

Using iframes and regular web frames to embed malicious content along with expected web
content has been a favored attack vector for attacking web clients for a long time. This can
happen when the attacker lures the victim to a malicious web site, which using frames to include
the expected content from the legitimate site. The attack can also be performed via XSS (either
reflected, DOM or stored XSS) to add the malicious content to the legitimate web site. To
combat this vector, an HTTP Response header, X-Frame-Options, has been introduced that
allows a server to specify whether a web page may be loaded in any frame (DENY) or those
frames that share the pages origin (SAMEORIGIN).

Audit:

Perform the following steps to determine if the recommended state is implemented:
Ensure a Header directive for X-Frame-Options is present in the Apache configuration and has
the condition always, an action of append and a value of SAMEORIGIN or DENY, as shown below:

grep -i X-Frame-Options $APACHE_PREFIX/conf/httpd.conf
Header always append X-Frame-Options SAMEORIGIN

Remediation:

Perform the following to implement the recommended state:
Add or modify the Header directive for the X-Frames-Options header in the Apache
configuration to have the condition always, an action of append and a value of SAMEORIGIN or
DENY, as shown below.

Header always append X-Frame-Options SAMEORIGIN

Default Value:

The X-Frame-Options HTTP response header is not generated by default.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_headers.html#header
2. https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header/

85 | P a g e

3. https://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-
defenses.aspx

CIS Controls:

18 Application Software Security
Application Software Security

86 | P a g e

6 Operations - Logging, Monitoring and Maintenance
Operational procedures of logging, monitoring and maintenance are vital to protecting your web
servers as well as the rest of the infrastructure.

6.1 Configure the Error Log (Scored)

• Level 1

Description:

The LogLevel directive is used to configure the severity level for the error logs. While the
ErrorLog directive configures the error log file name. The log level values are the standard
syslog levels of emerg, alert, crit, error, warn, notice, info and debug. The recommended
level is notice for most modules, so that all errors from the emerg level through notice level
will be logged. The recommended setting for the core module is info so that any not found
requests will be included in the error logs.

Rationale:

The server error logs are invaluable because they can also be used to spot any potential problems
before they become serious. Most importantly, they can be used to watch for anomalous behavior
such as a lot of not found or unauthorized errors may be an indication that an attack is
pending or has occurred. Starting with Apache 2.4 the error log does not include the not found
errors except at the info logging level. Therefore, it is important that the log level be set to info
for the core module. The not found requests need to be included in the error log for both
forensics investigation and host intrusion detection purposes. Monitoring the access logs may not
be practical for many web servers with high volume traffic.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Verify the LogLevel in the Apache server configuration has a value of info or lower for
the core module and notice or lower for other modules. Note that it is also compliant to
have a value of info or debug if there is a need for a more verbose log and the storage
and monitoring processes are capable of handling the extra load. The recommended value
is notice core:info.

2. Verify the ErrorLog directive is configured to an appropriate log file or syslog facility.
3. Verify there is a similar ErrorLog directive for each virtual host configured if the virtual

host will have different people responsible for the web site.

Remediation:

Perform the following to implement the recommended state:

87 | P a g e

1. Add or modify the LogLevel in the Apache configuration to have a value of info or
lower for the core module and notice or lower for all other modules. Note that is it is
compliant to have a value of info or debug if there is a need for a more verbose log and
the storage and monitoring processes are capable of handling the extra load. The
recommended value is notice core:info.

LogLevel notice core:info

2. Add an ErrorLog directive if not already configured. The file path may be relative or
absolute, or the logs may be configured to be sent to a syslog server.

ErrorLog "logs/error_log"

3. Add a similar ErrorLog directive for each virtual host configured if the virtual host will
have different people responsible for the web site. Each responsible individual or
organization needs access to their own web logs and needs the skills/training/tools for
monitoring the logs.

Default Value:

The following is the default configuration:

LogLevel warn
ErrorLog "logs/error_log"

References:

1. https://httpd.apache.org/docs/2.4/logs.html
2. https://httpd.apache.org/docs/2.4/mod/core.html#loglevel
3. https://httpd.apache.org/docs/2.4/mod/core.html#errorlog

CIS Controls:

6.2 Ensure Audit Log Settings Support Appropriate Log Entry Formatting
Validate audit log settings for each hardware device and the software installed on it, ensuring
that logs include a date, timestamp, source addresses, destination addresses, and various other
useful elements of each packet and/or transaction. Systems should record logs in a
standardized format such as syslog entries or those outlined by the Common Event
Expression initiative. If systems cannot generate logs in a standardized format, log
normalization tools can be deployed to convert logs into such a format.

88 | P a g e

6.2 Configure a Syslog Facility for Error Logging (Scored)

• Level 2

Description:

The ErrorLog directive should be configured to send logs to a syslog facility so that the logs
can be processed and monitored along with the system logs.

Rationale:

It is easy for the web server error logs to be overlooked in the log monitoring process, and yet the
application level attacks have become the most common and are extremely important for
detecting attacks early, as well as detecting non-malicious problems such as a broken link, or
internal errors. By including the Apache error logs with the system logging facility, the
application logs are more likely to be included in the established log monitoring process.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Verify that the ErrorLog in the Apache server configuration has a value of
syslog:facility where facility can be any of the syslog facility values such as
local1.

2. Verify there is a similar ErrorLog directive which is either configured or inherited for
each virtual host.

Remediation:

Perform the following to implement the recommended state:

1. Add an ErrorLog directive if not already configured. Any appropriate syslog facility may
be used in place of local1.

ErrorLog "syslog:local1"

2. Add a similar ErrorLog directive for each virtual host if necessary.

Default Value:

The following is the default configuration:

ErrorLog "logs/error_log"	

89 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/logs.html
2. https://httpd.apache.org/docs/2.4/mod/core.html#loglevel
3. https://httpd.apache.org/docs/2.4/mod/core.html#errorlog

CIS Controls:

6.6 Deploy A SIEM OR Log Analysis Tools For Aggregation And Correlation/Analysis
Deploy a SIEM (Security Information and Event Management) or log analytic tools for log
aggregation and consolidation from multiple machines and for log correlation and analysis.
Using the SIEM tool, system administrators and security personnel should devise profiles of
common events from given systems so that they can tune detection to focus on unusual
activity, avoid false positives, more rapidly identify anomalies, and prevent overwhelming
analysts with insignificant alerts.

90 | P a g e

6.3 Configure the Access Log (Scored)

• Level 1

Description:

The LogFormat directive defines the format and information to be included in the access log
entries. The CustomLog directive specifies the log file, syslog facility or piped logging utility.

Rationale:

The server access logs are also invaluable for a variety of reasons. They can be used to determine
what resources are being used most. Most importantly, they can be used to investigate anomalous
behavior that may be an indication that an attack is pending or has occurred. If the server only
logs errors, and does not log successful access, then it is very difficult to investigate incidents.
You may see that the errors stop, and wonder if the attacker gave up, or was the attack
successful.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Verify the LogFormat directive in the Apache server configuration has the recommended
information parameters.

2. Verify the CustomLog directive is configured to an appropriate log file, syslog facility, or
piped logging utility and uses the combined format.

3. Verify there is a similar CustomLog directives for each virtual host configured if the
virtual host will have different people responsible for the web site.

Remediation:

Perform the following to implement the recommended state:

1. Add or modify the LogFormat directives in the Apache configuration to use the standard
and recommended combined format show as shown below.

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
agent}i\"" combined

2. Add or modify the CustomLog directives in the Apache configuration to use the
combined format with an appropriate log file, syslog facility or piped logging utility.

CustomLog log/access_log combined

3. Add a similar CustomLog directives for each virtual host configured if the virtual host
will have different people responsible for the web site. Each responsible individual or

91 | P a g e

organization needs access to their own web logs as well as the skills/training/tools for
monitoring the logs.
The format string tokens provide the following information:

o %h = Remote hostname or IP address if HostnameLookups is set to Off, which is
the default.

o %l =Remote logname / identity.
o %u =Remote user, if the request was authenticated.
o %t = Time the request was received,
o %r = First line of request.
o %>s = Final status.
o %b = Size of response in bytes.
o %{Referer}i = Variable value for Referer header.
o %{User-agent}i = Variable value for User Agent header.

Default Value:

The following are the default log configuration:

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "logs/access_log" common

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html#customlog
2. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats

CIS Controls:

6.2 Ensure Audit Log Settings Support Appropriate Log Entry Formatting
Validate audit log settings for each hardware device and the software installed on it, ensuring
that logs include a date, timestamp, source addresses, destination addresses, and various other
useful elements of each packet and/or transaction. Systems should record logs in a standardized
format such as syslog entries or those outlined by the Common Event Expression initiative. If
systems cannot generate logs in a standardized format, log normalization tools can be deployed
to convert logs into such a format.

92 | P a g e

6.4 Log Storage and Rotation (Scored)

• Level 1

Description:

It is important that there is adequate disk space on the partition that will hold all the log files, and
that log rotation is configured to retain at least 3 months or 13 weeks if central logging is not
used for storage.

Rationale:

Keep in mind that the generation of logs is under a potential attacker's control. So, do not hold
any Apache log files on the root partition of the OS. This could result in a denial of service
against your web server host by filling up the root partition and causing the system to crash. For
this reason, it is recommended that the log files should be stored on a dedicated partition.
Likewise consider that attackers sometimes put information into your logs which is intended to
attack your log collection or log analysis processing software. So, it is important that they are not
vulnerable. Investigation of incidents often require access to several months or more of logs,
which is why it is important to keep at least 3 months available. Two common log rotation
utilities include rotatelogs(8) which is bundled with Apache, and logrotate(8) commonly
bundled on Linux distributions are described in the remediation section.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Verify the web log rotation configuration matches the Apache configured log files.
2. Verify the rotation period and number of logs to retain is at least 13 weeks or 3 months.
3. For each virtual host configured with its own log files ensure that those log files are also

included in a similar log rotation.

Remediation:

To implement the recommended state, do either option 'a' if using the Linux logrotate utility or
option 'b' if using a piped logging utility such as the Apache rotatelogs:
a) File Logging with Logrotate:

1. Add or modify the web log rotation configuration to match your configured log files in
/etc/logrotate.d/httpd to be similar to the following.

/var/log/httpd/*log {
 missingok
 notifempty
 sharedscripts
 postrotate
 /bin/kill -HUP 'cat /var/run/httpd.pid 2>/dev/null' 2> /dev/null

93 | P a g e

|| true
 endscript
}

2. Modify the rotation period and number of logs to keep so that at least 13 weeks or 3
months of logs are retained. This may be done as the default value for all logs in
/etc/logrotate.conf or in the web specific log rotation configuration in
/etc/logrotate.d/httpdto be similar to the following.

rotate log files weekly
weekly
keep 13 weeks of backlogs
rotate 13

3. For each virtual host configured with its own log files ensure that those log files are also
included in a similar log rotation.

b) Piped Logging:

1. Configure the log rotation interval and log file names to a suitable interval such as daily.

CustomLog "|bin/rotatelogs -l /var/logs/logfile.%Y.%m.%d 86400"
combined

2. Ensure the log file naming and any rotation scripts provide for retaining at least 3 months
or 13 weeks of log files.

3. For each virtual host configured with its own log files ensure that those log files are also
included in a similar log rotation.

Default Value:

The following is the default httpd log rotation configuration in /etc/logrotate.d/httpd:

/var/log/httpd/*log {
 missingok
 notifempty
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/httpd.pid 2>/dev/null` 2> /dev/null || true
 endscript
}	

94 | P a g e

The default log retention configured in /etc/logrotate.conf:

rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4

CIS Controls:

6.3 Ensure Audit Logging Systems Are Not Subject To Loss (i.e. rotation/archive)
Ensure that all systems that store logs have adequate storage space for the logs generated on a
regular basis, so that log files will not fill up between log rotation intervals. The logs must be
archived and digitally signed on a periodic basis.

95 | P a g e

6.5 Apply Applicable Patches (Scored)

• Level 1

Description:

Apply available Apache patches within 1 month of availability.

Rationale:

Obviously knowing about newly discovered vulnerabilities is only part of the solution; there
needs to be a process in place where patches are tested and installed. These patches fix diverse
problems, including security issues. It is recommended to use the Apache packages and updates
provided by the Linux platform vendor rather than building from source when possible, in order
to minimize the disruption and the work of keeping the software up-to-date.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. When Apache was built from source:

a. Check the Apache web site for latest versions, date of releases and any security
patches. https://httpd.apache.org/security/vulnerabilities_24.html Apache patches are
available https://www.apache.org/dist/httpd/patches

b. If newer versions with security patches more than 1 month old and are not installed,
then the installation is not sufficiently up-to-date.

2. When using platform packages

a. Check for vendor supplied updates from the vendor web site.
b. If newer versions with security patches more than 1 month old are not installed, then

the installation is not sufficiently up-to-date.

Remediation:

Update to the latest Apache release available according to either of the following:

1. When building from source:

a. Read release notes and related security patch information
b. Download latest source and any dependent modules such as mod_security.
c. Build new Apache software according to your build process with the same

configuration options.
d. Install and test the new software according to your organizations testing process.
e. Move to production according to your organizations deployment process.

96 | P a g e

2. When using platform packages:

a. Read release notes and related security patch information
b. Download and install latest available Apache package and any dependent software.
c. Test the new software according to your organizations testing process.
d. Move to production according to your organizations deployment process.

Default Value:

Not Applicable

References:

1. https://httpd.apache.org/security/vulnerabilities_24.html

CIS Controls:

4 Continuous Vulnerability Assessment and Remediation
Continuous Vulnerability Assessment and Remediation

97 | P a g e

6.6 Install and Enable ModSecurity (Scored)

• Level 2

Description:

ModSecurity is an open source web application firewall (WAF) for real-time web application
monitoring, logging, and access control. It enables but does not include a powerful customizable
rule set, which may be used to detect and block common web application attacks. Installation of
ModSecurity without a rule set does not provide additional security for the protected web
applications. Refer to the benchmark recommendation "Install and Enable OWASP ModSecurity
Core Rule Set" for details on a recommended rule set.

Note: Like other application security/application firewall systems, ModSecurity requires a
significant commitment of staff resources for initial tuning of the rules and handling alerts. In
some cases, this may require additional time working with application developers/maintainers to
modify applications based on analysis of the results of tuning and monitoring logs. After setup,
an ongoing commitment of staff is required for monitoring logs and ongoing tuning, especially
after upgrades/patches. Without this commitment to tuning and monitoring, installing
ModSecurity may NOT be effective and may provide a false sense of security.

Rationale:

Installation of the ModSecurity Apache module enables a customizable web application firewall
rule set which may be configured to detect and block common attack patterns as well as block
outbound data leakage.

Audit:

Perform the following to determine if the security2_module has been loaded:
Use the httpd -M option as root to check that the module is loaded.
httpd -M | grep security2_module

Note: If the module is correctly enabled, the output will include the module name and whether it
is loaded statically or as a shared module.

Remediation:

1. Install the ModSecurity module if it is not already installed in
modules/mod_security2.so. It may be installed via OS package installation (such as
apt-get or yum) or built from the source files. See
https://www.modsecurity.org/download.html for details.

2. Add or modify the LoadModule directive if not already present in the Apache
configuration as shown below. Typically the LoadModule directive is placed in file
named mod_security.conf which is included in the Apache configuration:

98 | P a g e

LoadModule security2_module modules/mod_security2.so

Default Value:

The ModSecurity module is NOT loaded by default.

References:

1. https://www.modsecurity.org/

CIS Controls:

18.2 Deploy And Configure Web Application Firewalls
Protect web applications by deploying web application firewalls (WAFs) that inspect all
traffic flowing to the web application for common web application attacks, including but
not limited to cross-site scripting, SQL injection, command injection, and directory
traversal attacks. For applications that are not web-based, specific application firewalls
should be deployed if such tools are available for the given application type. If the traffic is
encrypted, the device should either sit behind the encryption or be capable of decrypting
the traffic prior to analysis. If neither option is appropriate, a host-based web application
firewall should be deployed.

99 | P a g e

6.7 Install and Enable OWASP ModSecurity Core Rule Set (Scored)

• Level 2

Description:

The OWASP ModSecurity Core Rules Set (CRS) is a set of open source web application
defensive rules for the ModSecurity web application firewall (WAF). The OWASP ModSecurity
CRS provides baseline protections in the following attack/threat categories:

• HTTP Protection - detecting violations of the HTTP protocol and a locally defined usage
policy.

• Real-time Blacklist Lookups - utilizes 3rd Party IP Reputation
• HTTP Denial of Service Protections - defense against HTTP Flooding and Slow HTTP

DoS Attacks.
• Common Web Attacks Protection - detecting common web application security attack.
• Automation Detection - detecting bots, crawlers, scanners and other surface malicious

activity.
• Integration with AV Scanning for File Uploads - detects malicious files uploaded through

the web application.
• Tracking Sensitive Data - tracks credit card usage and blocks leakages.
• Trojan Protection - detecting access to trojan horses.
• Identification of Application Defects - alerts on application misconfigurations.
• Error Detection and Hiding - disguising error messages sent by the server.

Note: Like other application security/application firewall systems, ModSecurity requires a
significant commitment of staff resources for initial tuning of the rules and handling alerts. In
some cases, this may require additional time working with application developers/maintainers to
modify applications based on analysis of the results of tuning and monitoring logs. After setup,
an ongoing commitment of staff is required for monitoring logs and ongoing tuning, especially
after upgrades/patches. Without this commitment to tuning and monitoring, installing
ModSecurity may NOT be effective and may provide a false sense of security.

Rationale:

Installing, configuring and enabling of the OWASP ModSecurity Core Rule Set (CRS), provides
additional baseline security defense, and provides a good starting point to customize the
monitoring and blocking of common web application attacks.

100 | P a g e

Audit:

For the OWASP ModSecurity CRS version 2.2.9, perform the following to audit the
configuration.
In the 2.2.9 release, the OWASP ModSecurity CRS contains 15 base_rule configuration files,
each with rule sets. The CRS also contains 14 optional rule sets, and 17 experimental rule sets.
Since it is expected that customization and testing will be necessary to implement the CRS, it is
not expected that any site will implement all CRS configuration files / rule sets. Therefore, for
the purpose of auditing, the OWASP ModSecurity CRS will be considered implemented if 200
or more of the security rules (SecRule) are active in the CRS configuration files. The default
2.2.9 installation contains 227 security rules. Perform the following to determine if 2.2.9
OWASP ModSecurity CRS is enabled:

• Set RULE_DIR environment variable to the directory where the active rules are included
from the modsecurity configuration file. An example is shown below.

 RULE_DIR=$APACHE_PREFIX/modsecurity.d/activated_rules/

• Use the following command to count the security rules in all of the active CRS
configuration files.

find $APACHE_PREFIX/modsecurity.d/activated_rules/ -name
'modsecurity_crs_*.conf' | xargs grep '^SecRule ' | wc -l

• If the number of active files is 200 or greater, then OWASP ModSecurity CRS is
considered active and the audit passed.

For the OWASP ModSecurity CRS version 3.0, perform the following to audit the
configuration.
In the 3.0 release, the OWASP ModSecurity CRS contains 29 rule configuration files, each with
rule sets. It is expected that customization and testing will be necessary to implement the CRS; it
is not expected that any site will implement all CRS configuration files / rule sets. Therefore, for
the purpose of auditing, the OWASP ModSecurity CRS v3.0 will be considered implemented if
325 or more of the security rules (SecRule) are active in the CRS configuration files. The default
OWASP ModSecurity CRS 3.0 installation contains 462 security rules. In addition to the rules,
there are three additional values that have to be set. The Inbound and the Outbound Anomaly
Threshold and the Paranoia Mode. The Anomaly Threshold values set a limit so that traffic is not
blocked until the threshold is exceeded. Any traffic that triggers enough active rules so that the
additive value of each rule exceeds the threshold value will be block. The suitable paranoia level
has to be defined according to the security level of the service in question. The default value of 1
should be applicable for any online service. The Paranoia Level 2 should be chosen for online
services with a need for further hardening, (such as online services with a wide attack surface or
online services with known security issues and concerns). Paranoia Level 3 and Level 4 cater
services with even higher security requirements but have to be considered experimental.
Perform the following to determine if OWASP ModSecurity CRS 3.0 is enabled, and is
configured to meet or exceed the expected values:

101 | P a g e

• Set RULE_DIR environment variable to the directory where the active rules are included
from the modsecurity configuration file. An example is shown below.

RULE_DIR=$APACHE_PREFIX/modsecurity.d/owasp-modsecurity-crs-3.0.0/

• Use the following command to count the security rules in all of the active CRS
configuration files.

find $RULE_DIR -name '*.conf' | xargs grep '^SecRule ' | wc -l

• If the number of active rules is 325 or greater then OWASP ModSecurity CRS 3.0 is
considered active.

• The Inbound Anomaly Threshold must be less than or equal to 5, and can be checked
with the following command.

find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.inbound_anomaly_score_threshold'

• The Outbound Anomaly Threshold must be less than or equal to 4, and may be audited
with the following command.

find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.outbound_anomaly_score_threshold'

• The Paranoia Level must be greater than or equal to 1, and may be audited with the
following command.

find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.paranoia_level'

Remediation:

Install, configure and test the OWASP ModSecurity Core Rule Set:

1. Download the OWASP ModSecurity CRS from the project page
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Proj
ect

2. Unbundled the archive and follow the instructions in the INSTALL file.
3. Depending on the CRS version used, the crs-setup.conf or the

modsecurity_crs_10_setup.conf file will be required, and rules in the base_rules
directory are intended as a baseline useful for most applications.

4. Test the application for correct functionality after installing the CRS. Check web server
error logs and the modsec_audit.log file for blocked requests due to false positives.

5. It is also recommended to test the application response to malicious traffic such as an
automated web application scanner to ensure the rules are active. The web server error
log and modsec_audit.log files should show logs of the attacks and the servers response
codes.

102 | P a g e

Default Value:

The OWASP ModSecurity CRS is NOT installed or enabled by default.
CRS v3.0 Default Values:

• inbound_anomaly_score_threshold = 5
• outbound_anomaly_score_threshold = 4
• paranoia_level = 1

References:

1. https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Proj
ect

2. https://www.modsecurity.org/

CIS Controls:

18.2 Deploy And Configure Web Application Firewalls
Protect web applications by deploying web application firewalls (WAFs) that inspect all
traffic flowing to the web application for common web application attacks, including but
not limited to cross-site scripting, SQL injection, command injection, and directory
traversal attacks. For applications that are not web-based, specific application firewalls
should be deployed if such tools are available for the given application type. If the traffic is
encrypted, the device should either sit behind the encryption or be capable of decrypting
the traffic prior to analysis. If neither option is appropriate, a host-based web application
firewall should be deployed.

103 | P a g e

7 SSL/TLS Configuration
Recommendations in this section pertain to the configuration of SSL/TLS-related aspects of
Apache HTTP server.

7.1 Install mod_ssl and/or mod_nss (Scored)

• Level 1

Description:

Secure Sockets Layer (SSL) was developed by Netscape and turned into an open standard and
was renamed Transport Layer Security (TLS) as part of the process. TLS is important for
protecting communication and can provide authentication of the server and even the client.
However contrary to vendor claims, implementing SSL does NOT directly make your web server
more secure! SSL is used to encrypt traffic and therefore does provide confidentiality of private
information and users credentials. Keep in mind, however that just because you have encrypted
the data in transit does not mean that the data provided by the client is secure while it is on the
server. Also, SSL does not protect the web server, as attackers will easily target SSL-Enabled
web servers, and the attack will be hidden in the encrypted channel. The mod_ssl module is the
standard, most used module that implements SSL/TLS for Apache. A newer module found on
Red Hat systems can be a compliment or replacement for mod_ssl and provides the same
functionality plus additional security services. The mod_nss is an Apache module
implementation of the Network Security Services (NSS) software from Mozilla, which
implements a wide range of cryptographic functions in addition to TLS.

Rationale:

It is best to plan for SSL/TLS implementation from the beginning of any new web server. As
most web servers have some need for SSL/TLS due to:

• Non-public information submitted that should be protected as it's transmitted to the web
server.

• Non-public information that is downloaded from the web server.
• Users are going to be authenticated to some portion of the web server
• There is a need to authenticate the web server to ensure users that they have reached the

real web server and have not been phished or redirected to a bogus site.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Ensure the mod_ssl and/or mod_nssis loaded in the Apache configuration:

httpd -M | egrep 'ssl_module|nss_module'

Results should show either or both of the modules.

104 | P a g e

Remediation:

Perform either of the following to implement the recommended state:

1. For Apache installations built from the source, use the option --with-ssl= to specify the
openssl path, and the --enable-ssl configure option to add the SSL modules to the
build. The --with-included-apr configure option may be necessary if there are
conflicts with the platform version. If a new version of Openssl is needed it may be
downloaded from http://www.openssl.org/ See the Apache documentation on building
from source http://httpd.apache.org/docs/2.4/install.htmlfor details.

./configure --with-included-apr --with-ssl=$OPENSSL_DIR --enable-ssl

2. For installations using OS packages, it is typically just a matter of ensuring the mod_ssl
package is installed. The mod_nsspackage might also be installed. The following yum
commands are suitable for Red Hat Linux.

yum install mod_ssl

Default Value:

SSL is not enabled by default.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html
2. https://www.centos.org/docs/5/html/5.4/technical-notes/mod_nss.html

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

105 | P a g e

7.2 Install a Valid Trusted Certificate (Scored)

• Level 1

Description:

The default SSL certificate is self-signed and is not trusted. Install a valid certificate signed by a
commonly trusted certificate authority. To be valid, the certificate must be:

• Signed by a trusted certificate authority
• Not be expired, and
• Have a common name that matches the host name of the web server, such as

www.example.com.

Rationale:

A digital certificate on your server automatically communicates your site's authenticity to
visitors' web browsers. If a trusted authority signs your certificate, it confirms for the visitor they
are actually communicating with you, and not with a fraudulent site stealing credit card numbers
or personal information.

Audit:

Perform either or both of the following steps to determine if the recommended state is
implemented:

1. OpenSSL can also be used to validate a certificate as a valid trusted certificate, using a
trusted bundle of CA certificate. It is important that the CA bundle of certificates be an
already validated and trusted file in order for the test to be valid.

$ openssl verify -CAfile /etc/pki/tls/certs/ca-bundle.crt -purpose
sslserver /etc/pki/tls/certs/example.com.crt
/etc/pki/tls/certs/example.com.crt: OK

A specific error message and code will be reported in addition to the OK if the certificate
is not valid, For example:

error 10 at 0 depth lookup:certificate has expired
OK

2. Testing can also be done by connecting to a running web server. This may be done with
your favorite browser, a command line web client or with openssl s_client. Of course,
it is important here as well to be sure of the integrity of the trusted certificate authorities
used by the web client. Visit the OWASP testing SSL web page for additional
suggestions: https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-
CM-001%29

106 | P a g e

Remediation:

Perform the following to implement the recommended state:

1. Decide on the host name to be used for the certificate. It is important to remember that
the browser will compare the host name in the URL to the common name in the
certificate, so that it is important that all https: URL's match the correct host name.
Specifically, the host name www.example.com is not the same as example.com nor the
same as ssl.example.com.

2. Generate a private key using openssl. Although certificate key lengths of 1024 have been
common in the past, a key length of 2048 is now recommended for strong authentication.
The key must be kept confidential and will be encrypted with a passphrase by default.
Follow the steps below and respond to the prompts for a passphrase. See the Apache or
OpenSSL documentation for details:

o https://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#realcert
o https://www.openssl.org/docs/HOWTO/certificates.txt

cd /etc/pki/tls/certs
umask 077
openssl genrsa -aes128 2048 > example.com.key
Generating RSA private key, 2048 bit long modulus
...+++
............+++
e is 65537 (0x10001)
Enter pass phrase:
Verifying - Enter pass phrase:

3. Generate the certificate signing request (CSR) to be signed by a certificate authority. It is
important that common name exactly make the web host name.

openssl req -utf8 -new -key www.example.com.key -out www.example.com.csr
Enter pass phrase for example.com.key:
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:New York
Locality Name (eg, city) [Newbury]:Lima
Organization Name (eg, company) [My Company Ltd]:Durkee Consulting
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:www.example.com
Email Address []:ralph@example.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
mv www.example.com.key /etc/pki/tls/private/

4. Send the certificate signing request (CSR) to a certificate signing authority to be signed
and follow their instructions for submission and validation. The CSR and the final signed

107 | P a g e

certificate are just encoded text, and need to be protected for integrity, but not
confidentiality. This certificate will be given out for every SSL connection made.

5. The resulting signed certificate may be named www.example.com.crt and placed in
/etc/pki/tls/certs/ as readable by all (mode 0444). Please note that the certificate
authority does not need the private key (example.com.key) and this file must be
carefully protected. With a decrypted copy of the private key, it would be possible to
decrypt all conversations with the server.

6. Do not forget the passphrase used to encrypt the private key. It will be required every
time the server is started in https mode. If it is necessary to avoid requiring an
administrator having to type the passphrase every time the httpd service is started, the
private key may be stored in clear text. Storing the private key in clear text increases the
convenience while increasing the risk of disclosure of the key, but may be appropriate for
the sake of being able to restart, if the risks are well managed. Be sure that the key file is
only readable by root. To decrypt the private key and store it in clear text file the
following openssl command may be used. You can tell by the private key headers
whether it is encrypted or clear text.

cd /etc/pki/tls/private/
umask 077
openssl rsa -in www.example.com.key -out www.example.com.key.clear

7. Locate the Apache configuration file for mod_ssl and add or modify the
SSLCertificateFile and SSLCertificateKeyFiledirectives to have the correct path
for the private key and signed certificate files. If a clear text key is referenced then a
passphrase will not be required. You can use the CA's certificate that signed your
certificate instead of the CA bundle, to speed up the initial SSL connection as fewer
certificates will need to be transmitted.

SSLCertificateFile /etc/pki/tls/certs/example.com.crt
SSLCertificateKeyFile /etc/pki/tls/private/example.com.key
Default CA file, can be replaced with your CA's certificate.
SSLCACertificateFile /etc/pki/tls/certs/ca-bundle.crt

8. Lastly, start or restart the httpd service and verify correct functioning with your favorite
browser.

References:

1. https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29
2. https://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#realcert
3. https://www.openssl.org/docs/HOWTO/certificates.txt

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be

108 | P a g e

encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

109 | P a g e

7.3 Protect the Server's Private Key (Scored)

• Level 1

Description:

It is critical to protect the server's private key. The server's private key is encrypted by default as
a means of protecting it. However, having it encrypted means that the passphrase is required
each time the server is started up, and now it is necessary to protect the passphrase as well. The
passphrase may be typed in when it is manually started up or provided by an automated program.
To summarize, the options are:

1. Use SSLPassPhraseDialog builtin, - requires a passphrase to be manually entered.
2. Use SSLPassPhraseDialog |/path/to/program to provide the passphrase.
3. Use SSLPassPhraseDialog exec:/path/to/program to provide the passphrase,
4. Store the private key in clear text so that a passphrase is not required. Any of the above

options 1-4 are acceptable as long as the key and passphrase are protected as described
below. Option 1 has the additional security benefit of not storing the passphrase, but is
not generally acceptable for most production web servers, since it requires the web server
to be manually started. Options 2 and 3 can provide additional security if the programs
providing them are secure. Option 4 is the simplest, is widely used and is acceptable as
long as the private key is appropriately protected.

Rationale:

If the private key were to be disclosed, it could be used to decrypt all of the SSL communications
with the web server as well as to impersonate the web server.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. For each certificate file referenced in the Apache configuration files with the
SSLCertificateFile directive, examine the file for a private key, clearly identified by
the string PRIVATE KEY—--

2. For each file referenced in the Apache configuration files with the
SSLCertificateKeyFile directive, verify the ownership is root:root and the
permission 0400.

110 | P a g e

Remediation:

Perform the following to implement the recommended state:

1. All private keys must be stored separately from the public certificates. Find all
SSLCertificateFile directives in the Apache configuration files. For any
SSLCertificateFile directives that do not have a corresponding separate
SSLCertificateKeyFile directive, move the key to a separate file from the certificate,
and add the SSLCertificateKeyFile directive for the key file.

2. For each of the SSLCertificateKeyFile directives, change the ownership and
permissions on the server private key to be owned by root:root with permission 0400.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslpassphrasedialog

CIS Controls:

14 Controlled Access Based on the Need to Know
Controlled Access Based on the Need to Know

111 | P a g e

7.4 Disable the SSL v3.0 Protocol (Scored)

• Level 1

Description:

The Apache SSLProtocol directive specifies the SSL and TLS protocols allowed. The SSLv3
protocol should be disabled in this directive as it is outdated and vulnerable to information
disclosure. Only TLS protocols should be enabled.

Rationale:

The SSLv3 protocol was discovered to be vulnerable to the POODLE attack (Padding Oracle On
Downgraded Legacy Encryption) in October 2014. The attack allows decryption and extraction
of information from the server's memory. Due to this vulnerability disabling the SSLv3 protocol
is highly recommended.

Audit:

Perform the following steps to determine if the recommended state is implemented: Search the
Apache configuration files for the SSLProtocol directive.
Verify that the directive exists and has either:

• a minus -SSLv3 value included
• an explicit list of only TLS protocols without any plus (+) or minus (-) symbols

Remediation:

Perform the following to implement the recommended state: Search the Apache configuration
files for the SSLProtocol directive; add the directive, if not present, or change the value to
match one of the following values. The first setting TLSv1.1 TLS1.2 is preferred when it is
acceptable to also disable the TLSv1.0 protocol. See the level 2 recommendation "Disable the
TLS v1.0 Protocol" for details.

SSLProtocol TLSv1.1 TLSv1.2

SSLProtocol TLSv1

Default Value:

SSLProtocol all

References:

1. https://www.us-cert.gov/ncas/alerts/TA14-290A
2. https://www.openssl.org/~bodo/ssl-poodle.pdf

112 | P a g e

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

113 | P a g e

7.5 Restrict Weak SSL/TLS Ciphers (Scored)

• Level 1

Description:

Disable weak SSL ciphers using the SSLCipherSuite, and SSLHonorCipherOrder directives.
The SSLCipherSuite directive specifies which ciphers are allowed in the negotiation with the
client. While the SSLHonorCipherOrder causes the server's preferred ciphers to be used instead
of the clients' specified preferences.

Rationale:

The SSL/TLS protocols support a large number of encryption ciphers including many weak
ciphers that are subject to man-in-the middle attacks and information disclosure. Some
implementations even support the NULL cipher which allows a TLS connection without any
encryption! Therefore, it is critical to ensure the configuration only allows strong ciphers greater
than or equal to 128-bit to be negotiated with the client. Stronger 256-bit ciphers should be
allowed and preferred. In addition, enabling the SSLHonorCipherOrder further protects the
client from man-in-the-middle downgrade attacks by ensuring the server's preferred ciphers will
be used rather than the clients' preferences.
In addition, the RC4 stream ciphers should be disabled, even though they are widely used and
have been recommended in previous Apache benchmarks as a means of mitigating attacks based
on CBC cipher vulnerabilities. The RC4 ciphers have known cryptographic weaknesses and are
no longer recommended. The IETF has published RFC 7465 standard [2] that would disallow
RC4 negotiation for all TLS versions. While the document is somewhat new (Feb 2015) it is
expected the RC4 cipher suites will begin to disappear from options in TLS deployments. In the
meantime, it is important to ensure that RC4-based cipher suites are disabled in the
configuration.

Audit:

Perform the following steps to determine if the recommended state is implemented:
The SSL protocols and ciphers supported can be easily tested by connecting to a running web
server with an up-to-date version of the sslscan tool. The tool is available on Kali Linux
https://www.kali.org/, or via github https://github.com/rbsec/sslscan The tool will color highlight
the following weak ciphers.

• Red Background NULL cipher (no encryption)
• Red Broken cipher (<= 40 bit), broken protocol (SSLv2 or SSLv3) or broken certificate

signing algorithm (MD5)
• Yellow Weak cipher (<= 56 bit or RC4) or weak certificate signing algorithm (SHA-1)
• Purple Anonymous cipher (ADH or AECDH)

Alternatively, the Qualys SSL Labs has a website that may be used for testing external servers.
https://www.ssllabs.com/

114 | P a g e

Alternatively, verify the SSLCipherSuite directive disables weak ciphers in the Apache server
level configuration and every virtual host that is SSL/TLS enabled.

Remediation:

Perform the following to implement the recommended state:
Add or modify the following line in the Apache server level configuration and every virtual host
that is SSL enabled:

SSLHonorCipherOrder On
SSLCipherSuite ALL:!EXP:!NULL:!LOW:!SSLv2:!MD5:!RC4:!aNULL

It is not recommended to add !SSLv3 to the directive even if the SSLv3 protocol is not in use.
Doing so disables ALL of the ciphers that may used with SSLv3, which includes the same
ciphers used with the TLS protocols. The !aNULL will disable both the ADH and AECDH
ciphers, so the !ADH is not required.

Default Value:

The following are the default values:
SSLCipherSuite default depends on OpenSSL version.
SSLHonorCipherOrder default is Off

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslciphersuite
2. https://tools.ietf.org/html/rfc7465
3. https://community.qualys.com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-broken-now-

what
4. https://github.com/rbsec/sslscan

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

115 | P a g e

7.6 Disable SSL Insecure Renegotiation (Scored)

• Level 1

Description:

A man-in-the-middle renegotiation attack was discovered in SSLv3 and TLSv1 in November,
2009 (CVE-2009-3555). First, a work around and then a fix was approved as an Internet
Standard as RFC 574, Feb 2010. The work around, which removes the renegotiation, is available
from OpenSSL as of version 0.9.8l and newer versions. For details:
https://www.openssl.org/news/secadv_20091111.txt The SSLInsecureRenegotiation directive
was added in Apache 2.2.15, for web servers linked with OpenSSL version 0.9.8m or later, to
provide backward compatibility to clients with the older, unpatched SSL implementations.

Rationale:

Enabling the SSLInsecureRenegotiation directive leaves the server vulnerable to man-in-the-
middle renegotiation attack. Therefore, the SSLInsecureRenegotiation directive should not be
enabled.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Search the Apache configuration files for the SSLInsecureRenegotiation directive and verify
that the directive is either not present or has a value of off.

Remediation:

Perform the following to implement the recommended state:
Search the Apache configuration files for the SSLInsecureRenegotiation directive. If the
directive is present modify the value to be off. If the directive is not present then no action is
required.

SSLInsecureRenegotiation off

Default Value:

SSLInsecureRenegotiation off

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslinsecurerenegotiation
2. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555
3. https://azure.microsoft.com/en-us/services/multi-factor-authentication/

116 | P a g e

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

117 | P a g e

7.7 Ensure SSL Compression is not Enabled (Scored)

• Level 1

Description:

The SSLCompression directive controls whether SSL compression is used by Apache when
serving content over HTTPS. It is recommended that the SSLCompression directive be set to
off.

Rationale:

If SSL compression is enabled, HTTPS communication between the client and the server may be
at increased risk to the CRIME attack. The CRIME attack increases a malicious actor's ability to
derive the value of a session cookie, which commonly contains an authenticator. If the
authenticator in a session cookie is derived, it can be used to impersonate the account associated
with the authenticator.

Audit:

Perform the following steps to determine if the recommended state is implemented:

1. Search the Apache configuration files for the SSLCompressiondirective.
2. Verify that the directive either does not exist or exists and is set to off.

Remediation:

Perform the following to implement the recommended state:

1. Search the Apache configuration files for the SSLCompression directive.
2. If the directive is present, set it to off.

Default Value:

In Apache versions >= 2.4.3, the SSLCompression directive is available and SSL compression is
implicitly disabled. In Apache 2.4 - 2.4.2, the SSLCompression directive is not available and
SSL compression is implicitly disabled.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcompression
2. https://en.wikipedia.org/wiki/CRIME_(security_exploit)

118 | P a g e

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

119 | P a g e

7.8 Restrict Medium Strength SSL/TLS Ciphers (Scored)

• Level 1

Description:

The SSLCipherSuite directive specifies which ciphers are allowed in the negotiation with the
client. Disable the medium strength ciphers such as Triple DES (3DES) and IDEA by adding
!3DES and !IDEA in the SSLCipherSuite directive.

Rationale:

Although Triple DES has been a trusted standard in the past, several vulnerabilities for it have
been published over the years and it is no longer considered secure. A somewhat recent
vulnerable against 3DES in CBC mode was nicknamed the SWEET32 attack, was published in
2016 as CVE-2016-2183. The IDEA cipher in CBC mode, is also vulnerable to the SWEET32
attack.

Audit:

Perform the following steps to determine if the recommended state is implemented:

• The SSL protocols and ciphers supported can be easily tested by connecting to a running
web server with an up-to-date version of the sslscan tool. The tool is available on Kali
Linux https://www.kali.org/, or via github https://github.com/rbsec/sslscan Use the
command below to detect 3DES and IDEA ciphers. No output means the ciphers are not
allowed.

$ sslscan --no-colour www.lugor.org | egrep 'IDEA|DES'
Accepted TLSv1.2 112 bits ECDHE-RSA-DES-CBC3-SHA Curve P-256
DHE 256
Accepted TLSv1.2 112 bits EDH-RSA-DES-CBC3-SHA DHE 2048 bits
Accepted TLSv1.2 112 bits DES-CBC3-SHA
Accepted TLSv1.1 112 bits ECDHE-RSA-DES-CBC3-SHA Curve P-256
DHE 256
Accepted TLSv1.1 112 bits EDH-RSA-DES-CBC3-SHA DHE 2048 bits
Accepted TLSv1.1 112 bits DES-CBC3-SHA

• Alternatively, the Qualys SSL Labs has a webiste that may be used for testing external
servers. https://www.ssllabs.com/

• Alternatively, verify the SSLCipherSuite directive includes the !3DES and the !IDEA to
disable the ciphers in the Apache server level configuration and every virtual host that is
SSL/TLS enabled.

120 | P a g e

Remediation:

Perform the following to implement the recommended state:
Add or modify the following line in the Apache server level configuration and every virtual host
that is SSL/TLS enabled:

SSLCipherSuite ALL:!EXP:!NULL:!LOW:!SSLv2:!MD5:!RC4:!aNULL:!3DES:!IDEA

Default Value:

The following are the default values: SSLCipherSuite default depends on OpenSSL version.

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslprotocol
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslciphersuite
3. https://sweet32.info/
4. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-2183
5. https://github.com/rbsec/sslscan
6. https://www.openssl.org/

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

121 | P a g e

7.9 Disable the TLS v1.0 Protocol (Scored)

• Level 2

Description:

The TLSv1.0 protocol should be disabled via the SSLProtocol directive, if possible, as it has
been shown to be vulnerable to information disclosure.

Rationale:

The TLSv1.0 protocol is vulnerable to the BEAST attack when used in CBC mode (October
2011). Unfortunately, the TLSv1.0 uses CBC modes for all of the block mode ciphers, which
only leaves the RC4 streaming cipher. The RC4 cipher is not vulnerable to the BEAST attack;
however, there is research that indicates it is also weak and is not recommended. Therefore, it is
recommended that the TLSv1.0 protocol be disabled if all TLS clients support the newer TLS
protocols. All major up-to-date browsers support TLSv1.1 and TLSv1.2; however, some older IE
browsers (8,9,10) may still have TLSv1.1 and TLSv1.2 disabled for some strange reason. While
Safari 6 does not support the newer TLS protocols. Review the Wikipedia reference for browser
support details. Ensuring that all user's browsers are configured to allow TLSv1.1 and TLSv1.2
is necessary before disabling TLSv1.0 on the Apache web server; therefore, this recommendation
is a level 2 rather than a level 1. Disabling TLSv1.0 on internal only websites is more easily
accomplished when access is limited to clients with browsers controlled by the organization
policies and procedures to allow and prefer TLSv1.1 and higher.
The NIST SP 800-52r1 guidelines for TLS configuration state that servers that support
government-only applications shall not support TLSv1.0 or any of the SSL protocols. While
Servers that support citizen or business-facing applications may be configured to support TLS
version 1.0 in order to enable interaction with citizens and businesses. Also, it is important to
note that Microsoft support for all older versions of IE ends January 12, 2016, and Apple ends
support for Safari 6 with the fall release if OS X 10.11. So, it is wise to plan for usage of
TLSv1.0 to be eliminated in 2016. Some organizations may find it helpful to implement a phased
transitional plan where TLSv1.0 is not disabled, but the web server will detect browsers which
do not have TLSv1.1 or newer enabled and redirect them to a web site that explains how to
enabled the newer TLS protocols. The redirect can be implemented using the mod_rewrite
which can detect the protocol used and rewrite the URL to the helpful website.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Search the Apache configuration files for the SSLProtocol directive and ensure it has the value
of TLSv1.1 TLSv1.2.

122 | P a g e

Remediation:

Perform the following to implement the recommended state:
Search the Apache configuration files for the SSLProtocol directive; add the directive, if not
present, or change the value to TLSv1.1 TLSv1.2.

Default Value:

SSLProtocol all

References:

1. https://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers- Browser
support and defaults for SSL/TLS protocols

2. https://community.qualys.com/blogs/securitylabs/2011/10/17/mitigating-the-beast-attack-
on-tls- Qualys - Ivan Ristic

3. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
4. https://support.microsoft.com/en-us/gp/microsoft-internet-explorer

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

123 | P a g e

7.10 Enable OCSP Stapling (Scored)

• Level 2

Description:

The OCSP (Online Certificate Status Protocol) provides the current revocation status of an X.509
certificate and allows for a certificate authority to revoke the validity of a signed certificate
before its expiration date. The URI for the OCSP server is included in the certificate and verified
by the browser. The Apache SSLUseStapling directive along with the SSLStaplingCache
directive are recommended to enable OCSP Stapling by the web server. If the client requests
OCSP stapling, then the web server can include the OCSP server response along with the web
server's X.509 certificate.

Rationale:

The OCSP protocol is a big improvement over CRLs (certificate revocation lists) for checking if
a certificate has been revoked. There are however some minor privacy and efficiency concerns
with OCSP. The fact that the browser has to check a third-party CA discloses that the browser is
configured for OCSP checking. Also, the already high overhead of making an SSL connection is
increased by the need for the OCSP requests and responses. The OCSP stapling improves the
situation by having the SSL server "staple" an OCSP response, signed by the OCSP server, to the
certificate it presents to the client. This obviates the need for the client to ask the OCSP server
for status information on the server certificate. However, the client will still need to make OCSP
requests on any intermediate CA certificates that are typically used to sign the server's certificate.

Audit:

Perform the following steps to determine if the recommended state is implemented. At the
Apache server level configuration and for every virtual host that is SSL enabled:

• Verify the SSLStaplingCache directive is present and not commented out. There are
three supported cache types, any of them are considered compliant.

• Verify the SSLUseStapling directive is enabled with a value of on

Remediation:

Perform the following to implement the recommended state:

Add or modify the SSLUseStapling directive to have a value of on in the Apache server level
configuration and every virtual host that is SSL enabled. Also ensure that SSLStaplingCache is
set to one of the three cache types similar to the examples below.

124 | P a g e

SSLUseStapling On
SSLStaplingCache "shmcb:logs/ssl_staple_cache(512000)"
- or-
SSLStaplingCache "dbm:logs/ssl_staple_cache.db"
- or -
SSLStaplingCache dc:UNIX:logs/ssl_staple_socket

Default Value:

SSLUseStapling Off SSLStaplingCache<no default value>

References:

1. https://en.wikipedia.org/wiki/OCSP_stapling - OCSP Stapling
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html- Apache SSL Directives

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

125 | P a g e

7.11 Enable HTTP Strict Transport Security (Scored)

• Level 2

Description:

HTTP Strict Transport Security (HSTS) is an optional web server security policy mechanism
specified by an HTTP Server header. The HSTS header allows a server declaration that only
HTTPS communication should be used rather than clear text HTTP communication.

Rationale:

Usage of HTTP Strict Transport Security (HSTS) helps protect HSTS compliant browsers and
other agents from HTTP downgrade attacks. Downgrade attacks include a variety of man-in-the-
middle attacks which leave the web communication vulnerable to disclosure and modification by
forcing the usage of HTTP rather than HTTPS communication. The sslstrip attack tool by
Moxie Marlinspike released in 2009 is one such attack, which works when the server allows both
HTTP and HTTPS communication. However, a man-in-the-middle HTTP-to-HTTPS proxy
would be effective in cases where the server required HTTPS, but did not publish an HSTS
policy to the browser. This attack would also be effective on browsers which were not compliant
with HSTS. All current up-to-date browsers support HSTS.
The HSTS header specifies a length of time in seconds that the browser / user agent should
access the server only using HTTPS. The header may also specify if all sub-domains should also
be included in the same policy. Once a compliant browser receives the HSTS Header it will not
allow access to the server via HTTP. Therefore, it is important that you ensure that there is no
portion of the web site or web application that requires HTTP prior to enabling the HSTS
protocol.
If all sub-domains are to be included via the includeSubDomains option, then carefully consider
all various host names, web applications and third-party services used to include any DNS
CNAME values that may be impacted. An overly broad includeSubDomains policy will disable
access to HTTP web sites for all websites with the same domain name. Also consider that the
access will be disabled for the number of seconds given in the max-age value, so in the event a
mistake is made, a large value, such as a year, could create significant support issues. An
optional flag of preload may be added if the web site name is to be submitted to be preloaded in
Chrome, Firefox and Safari browsers. See https://hstspreload.appspot.com/ for details.

Audit:

Perform either of the following steps to determine if the recommended state is implemented.

At the Apache server level configuration and for every virtual host that is SSL enabled, verify
there is a Header directive present that sets the Strict-Transport-Security header with a
max-age value of at least 480 seconds or more (8 minutes or more). For example:

Header always set Strict-Transport-Security "max-age=600"

126 | P a g e

As an alternative, the configuration may be validated by connecting to the HTTPS server and
verifying the presence of the header. Such as the openssl s_client command shown below:

openssl s_client -connect www.example.com:443
GET / HTTP1.1.
Host:www.example.com

HTTP/1.1 200 OK
Date: Mon, 08 Dec 2014 18:28:29 GMT
Server: Apache
X-Frame-Options: NONE
Strict-Transport-Security: max-age=600
Last-Modified: Mon, 19 Jun 2006 14:47:16 GMT
ETag: "152-41694d7a92500"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html

Remediation:

Perform the following to implement the recommended state:
Add a Header directive as shown below in the Apache server level configuration and every
virtual host that is SSL enabled. The includeSubDomains and preload flags may be included in
the header, but are not required.
Header always set Strict-Transport-Security "max-age=600”;
includeSubDomains; preload
- or -
Header always set Strict-Transport-Security "max-age=600"

Default Value:

The Strict Transport Security header is not present by default.

References:

1. https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
2. https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
3. https://moxie.org/software/sslstrip/
4. https://developer.mozilla.org/en-US/docs/Web/Security/HTTP_strict_transport_security
5. https://hstspreload.appspot.com/

CIS Controls:

14.2 Encrypt All Sensitive Information Over Less-trusted Networks
All communication of sensitive information over less-trusted networks should be
encrypted. Whenever information flows over a network with a lower trust level, the
information should be encrypted.

127 | P a g e

8 Information Leakage
Recommendations in this section intend to limit the disclosure of potentially sensitive
information.

8.1 Set ServerToken to 'Prod' (Scored)

• Level 1

Description:

Configure the Apache ServerTokens directive to provide minimal information. By setting the
value to Prod or ProductOnly. The only version information given in the server HTTP response
header will be Apache rather than providing detailed on modules and versions installed.

Rationale:

Information is power and identifying web server details greatly increases the efficiency of any
attack, as security vulnerabilities are extremely dependent upon specific software versions and
configurations. Excessive probing and requests may cause too much "noise" being generated and
may tip off an administrator. If an attacker can accurately target their exploits, the chances of
successful compromise prior to detection increase dramatically. Script Kiddies are constantly
scanning the Internet and documenting the version information openly provided by web servers.
The purpose of this scanning is to accumulate a database of software installed on those hosts,
which can then be used when new vulnerabilities are released.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify the ServerTokens directive is present in the Apache configuration and has a value of
Prod or ProductOnly.

Remediation:

Perform the following to implement the recommended state:

Add or modify the ServerTokens directive as shown below to have the value of Prod or
ProductOnly:

ServerTokens Prod

Default Value:

The default value is Full which provides the most detailed information.

References:

128 | P a g e

1. https://httpd.apache.org/docs/2.4/mod/core.html#servertokens

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

129 | P a g e

8.2 Set ServerSignature to 'Off' (Scored)

• Level 1

Description:

Disable the server signatures which generates a signature line as a trailing footer at the bottom of
server generated documents such as error pages.

Rationale:

Server signatures are helpful when the server is acting as a proxy, since it helps the user
distinguish errors from the proxy rather than the destination server, however in this context there
is no need for the additional information and we want to limit leakage of unnecessary
information.

Audit:

Verify the ServerSignature directive is either NOT present in the Apache configuration or has
a value of Off.

Remediation:

Perform the following to implement the recommended state:

Add or modify the ServerSignature directive as shown below to have the value of Off:

ServerSignature Off

Default Value:

The default value is Off for ServerSignature.

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#serversignature

CIS Controls:

18 Application Software Security
Application Software Security

130 | P a g e

8.3 Information Leakage via Default Apache Content (Scored)

• Level 2

Description:

In previous recommendations, we have removed default content such as the Apache manuals and
default CGI programs. However, if you want to further restrict information leakage about the
web server, it is important that default content such as icons are not left on the web server.

Rationale:

To identify the type of web servers and versions software installed it is common for attackers to
scan for icons or special content specific to the server type and version. A simple request like
http://example.com/icons/apache_pb2.png may tell the attacker that the server is Apache 2.4 as
shown below. The many icons are used primarily for auto indexing, which is also recommended
to be disabled.

Audit:

Perform the following step to determine if the recommended state is implemented:
Verify that there is no alias or directory access to the Apache icons directory in any of the
Apache configuration files.

Remediation:

Perform either of the following to implement the recommended state:

1. The default source build places the auto-index and icon configurations in the
extra/httpd-autoindex.conf file, so it can be disabled by leaving the include line
commented out in the main httpd.conffile as shown below.

Fancy directory listings
#Include conf/extra/httpd-autoindex.conf

2. Alternatively, the icon alias directive and the directory access control configuration can
be commented out as shown if present:

We include the /icons/ alias for FancyIndexed directory listings. If
you do not use FancyIndexing, you may comment this out.

#Alias /icons/ "/var/www/icons/"
#<Directory "/var/www/icons">
Options Indexes MultiViews FollowSymLinks
AllowOverride None
Order allow,deny
Allow from all
#</Directory>

131 | P a g e

Default Value:

The default source build does not enable access to the Apache icons.

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

132 | P a g e

8.4 Information Leakage via ETag (Scored)

• Level 2

Description:

The FileETag directive configures the file attributes that are used to create the ETag (entity tag)
response header field when the document is based on a static file. The ETag value is used in
cache management to save network bandwidth. The value returned may be based on
combinations of the file inode, the modification time, and the file size.

Rationale:

When the FileETag is configured to include the file inode number, remote attackers may be
able to discern the inode number from returned values. The inode is considered sensitive
information, as it could be useful in assisting in other attacks.

Audit:

Perform the following step to determine if the recommended state is implemented:
For the server and all virtual host and directory configurations verify that either

1. The FileETag directive is not present, or
2. The configured FileETag value does not contain any of the values all or inode or

+inode.

Remediation:

Perform the following to implement the recommended state:
Remove all instances of the FileETag directive. Alternatively, add or modify the FileETag
directive in the server and each virtual host configuration to have either the value None or MTime
Size.

Default Value:

The default value is MTime Size.

References:

1. http://httpd.apache.org/docs/2.4/mod/core.html#FileETag
2. https://nvd.nist.gov/vuln/detail/CVE-2003-1418

133 | P a g e

CIS Controls:

18.9 Sanitize Deployed Software Of Development Artifacts
For in-house developed applications, ensure that development artifacts (sample data and
scripts; unused libraries, components, debug code; or tools) are not included in the
deployed software, or accessible in the production environment.

134 | P a g e

9 Denial of Service Mitigations
Denial of Service (DoS) attacks intend to degrade a service's ability to process and respond to
service requests. Typically, DoS attacks attempt to exhaust the service's network-, CPU-, disk-,
and/or memory- related resources. Configuration states in this section may increase a server's
resiliency to DoS attacks.

9.1 Set TimeOut to 10 or less (Scored)

• Level 1

Description:

Denial of Service (DoS) is an attack technique with the intent of preventing a web site from
serving normal user activity. DoS attacks, which are normally applied to the network layer, are
also possible at the application layer. These malicious attacks can succeed by starving a system
of critical resources, vulnerability exploit, or abuse of functionality. Although there is no 100%
solution for preventing DoS attacks, the following recommendation uses the Timeout directive
to mitigate some of the risk, by requiring more effort for a successful DoS attack. Of course, DoS
attacks can happen in rather unintentional ways as well as intentional and these directives will
help in many of those situations as well.

Rationale:

One common technique for DoS is to initiate many connections to the server. By decreasing the
timeout for old connections and we allow the server to free up resources more quickly and be
more responsive. By making the server more efficient, it will be more resilient to DoS
conditions. The Timeout directive affects several timeout values for Apache, so review the
Apache document carefully. http://httpd.apache.org/docs/2.4/mod/core.html#timeout

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the Timeout directive is specified in the Apache configuration files to have a value of
10 seconds or shorter.

Remediation:

Perform the following to implement the recommended state:

Add or modify the Timeout directive in the Apache configuration to have a value of 10 seconds
or shorter.

Timeout 10

Default Value:

Timeout 60

135 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#timeout

Notes:

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

136 | P a g e

9.2 Set the KeepAlive directive to On (Scored)

• Level 1

Description:

The KeepAlive directive controls whether Apache will reuse the same TCP connection per client
to process subsequent HTTP requests from that client. It is recommended that the KeepAlive
directive be set to On.

Rationale:

Allowing per-client reuse of TCP sockets reduces the amount of system and network resources
required to serve requests. This efficiency gain may improve a server's resiliency to DoS attacks.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the KeepAlive directive in the Apache configuration to have a value of On, or is not
present. If the directive is not present the default value is On.

Remediation:

Perform the following to implement the recommended state:

Add or modify the KeepAlive directive in the Apache configuration to have a value of On, so
that KeepAlive connections are enabled.

KeepAlive On

Default Value:

KeepAlive On

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#keepalive

Notes:

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

137 | P a g e

9.3 Set MaxKeepAliveRequests to 100 or greater (Scored)

• Level 1

Description:

The MaxKeepAliveRequests directive limits the number of requests allowed per connection
when KeepAlive is on. If it is set to 0, unlimited requests will be allowed.

Rationale:

The MaxKeepAliveRequests directive is important to be used to mitigate the risk of Denial of
Service (DoS) attack technique by reducing the overhead imposed on the server. The KeepAlive
directive must be enabled before it is effective. Enabling KeepAlives allows for multiple HTTP
requests to be sent while keeping the same TCP connection alive. This reduces the overhead of
having to setup and tear down TCP connections for each request. By making the server more
efficient, it will be more resilient to DoS conditions.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the MaxKeepAliveRequests directive in the Apache configuration to have a value of
100 or more. If the directive is not present the default value is 100.

Remediation:

Perform the following to implement the recommended state:

Add or modify the MaxKeepAliveRequests directive in the Apache configuration to have a
value of 100 or more.

MaxKeepAliveRequests 100

Default Value:

MaxKeepAliveRequests 100

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#maxkeepaliverequests

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

138 | P a g e

9.4 Set KeepAliveTimeout Low to Mitigate Denial of Service (Scored)

• Level 1

Description:

The KeepAliveTimeout directive specifies the number of seconds Apache will wait for a
subsequent request before closing a connection that is being kept alive.

Rationale:

The KeepAliveTimeout directive is used mitigate some of the risk, by requiring more effort for
a successful DoS attack. By enabling KeepAlive and keeping the timeout relatively low for old
connections and we allow the server to free up resources more quickly and be more responsive.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the KeepAliveTimeout directive in the Apache configuration to have a value of 15 or
less. If the directive is not present the default value is 5 seconds.

Remediation:

Perform the following to implement the recommended state:

Add or modify the KeepAliveTimeout directive in the Apache configuration to have a value of
15 or less.

KeepAliveTimeout 15

Default Value:

KeepAliveTimeout 5

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

139 | P a g e

9.5 Set Timeout Limits for Request Headers (Scored)

• Level 1

Description:

The RequestReadTimeout directive allows configuration of timeout limits for client requests.
The header portion of the directive provides for an initial timeout value, a maximum timeout and
a minimum rate. The minimum rate specifies that after the initial timeout, the server will wait an
additional 1 second for each N bytes received. The recommended setting is to have a maximum
timeout of 40 seconds or less. Keep in mind that for SSL/TLS virtual hosts the time for the TLS
handshake must fit within the timeout.

Rationale:

Setting a request header timeout is vital for mitigating Denial of Service attacks based on slow
requests. The slow request attacks are particularly lethal and relative easy to perform, because
they require very little bandwidth and can easily be done through anonymous proxies. Starting in
June 2009 with the Slow Loris DoS attack, which used a slow GET request, was published by
Robert Hansen (RSnake) on his blog http://ha.ckers.org/slowloris/. Later in November 2010 at
the OWASP App Sec DC conference Wong Onn Chee demonstrated a slow POST request attack
which was even more effective. See
https://www.owasp.org/index.php/H.....t.....t....p.......p....o....s....t for details.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Locate any RequestReadTimeout directives and verify that they have a maximum header

request timeout of 40 seconds or less.
3. If the configuration does not contain any RequestReadTimeout directives, and the

mod_reqtimeout module is being loaded, then the default value of 40 seconds is
compliant with the benchmark recommendation.

RequestReadTimeout header=XXX-40,MinRate=XXX body=XXXXXXXXXX

Remediation:

1. Load the mod_requesttimeout module in the Apache configuration with the following
configuration.

LoadModule reqtimeout_module modules/mod_reqtimeout.so

2. Add a RequestReadTimeout directive similar to the one below with the maximum
request header timeout value of 40 seconds or less.

140 | P a g e

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

Default Value:

header=20-40,MinRate=500

References:

1. http://ha.ckers.org/slowloris/
2. https://www.owasp.org/index.php/H.....t.....t....p.......p....o....s....t
3. https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

141 | P a g e

9.6 Set Timeout Limits for the Request Body (Scored)

• Level 1

Description:

The RequestReadTimeout directive also allows setting timeout values for the body portion of a
request. The directive provides for an initial timeout value, and a maximum timeout and
minimum rate. The minimum rate specifies that after the initial timeout, the server will wait an
additional 1 second for each N bytes are received. The recommended setting is to have a
maximum timeout of 20 seconds or less. The default value is body=20,MinRate=500.

Rationale:

It is not sufficient to timeout only on the header portion of the request, as the server will still be
vulnerable to attacks like the OWASP Slow POST attack, which provide the body of the request
very slowly. Therefore, the body portion of the request must have a timeout as well. A timeout of
20 seconds or less is recommended.

Audit:

Perform the following to determine if the recommended state is implemented:

1. Locate the Apache configuration files and included configuration files.
2. Locate any RequestReadTimeout directives and verify the configuration has a maximum

body request timeout of 20 seconds or less.
3. If the configuration does not contain any RequestReadTimeout directives, and the

mod_reqtimeout module is being loaded, then the default value of 20 seconds is
compliant with the benchmark recommendation.

RequestReadTimeout header=XXXXXX body=20,MinRate=XXX

Remediation:

Load the mod_requesttimeout module in the Apache configuration with the following
configuration.

LoadModule reqtimeout_module modules/mod_reqtimeout.so

Add a RequestReadTimeout directive similar to the one below with the maximum request body
timeout value of 20 seconds or less.

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

Default Value:

body=20,MinRate=500

142 | P a g e

References:

1. https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

143 | P a g e

10 Request Limits
Recommendations in this section reduce the maximum allowed size of request parameters.
Doing so increases the likelihood of negatively impacting application and/or site functionality. It
is highly recommended that the configuration states described in this section be tested on test
servers prior deploying them to production servers.

10.1 Set the LimitRequestLine directive to 512 or less (Scored)

• Level 2

Description:

Buffer Overflow attacks attempt to exploit an application by providing more data than the
application buffer can contain. If the application allows copying data to the buffer to overflow
the boundaries of the buffer, then the application is vulnerable to a buffer overflow. The results
of Buffer overflow vulnerabilities vary, and may result in the application crashing, or may allow
the attacker to execute instructions provided in the data. The Apache LimitRequest* directives
allow the Apache web server to limit the sizes of requests and request fields and can be used to
help protect programs and applications processing those requests. Specifically, the
LimitRequestLine directive limits the allowed size of a client's HTTP request-line, which
consists of the HTTP method, URI, and protocol version.

Rationale:

The limiting of the size of request line is helpful so that the web server can prevent an
unexpectedly long or large request from being passed to a potentially vulnerable CGI program,
module or application that would have attempted to process the request. Of course, the
underlying dependency is that we need to set the limits high enough to not interfere with any one
application on the server, while setting them low enough to be of value in protecting the
applications. Since the configuration directive is available only at the server configuration level,
it is not possible to tune the value for different portions of the same web server. Please read the
Apache documentation carefully, as these requests may interfere with the expected functionality
of some web applications.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the LimitRequestline directive is in the Apache configuration and has a value of
512 or less.

Remediation:

Perform the following to implement the recommended state:

Add or modify the LimitRequestline directive in the Apache configuration to have a value of
512 or shorter.

144 | P a g e

LimitRequestline 512

Default Value:

LimitRequestline 8190

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestline

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

145 | P a g e

10.2 Set the LimitRequestFields directive to 100 or less (Scored)

• Level 2

Description:

The LimitRequestFields directive limits the number of fields allowed in an HTTP request.

Rationale:

The limiting of the number of fields is helpful so that the web server can prevent an
unexpectedly high number of fields from being passed to a potentially vulnerable CGI program,
module or application that would have attempted to process the request. Of course, the
underlying dependency is that we need to set the limits high enough to not interfere with any one
application on the server, while setting them low enough to be of value in protecting the
applications. Since the configuration directives are available only at the server configuration
level, it is not possible to tune the value for different portions of the same web server. Please read
the Apache documentation carefully, as these requests may interfere with the expected
functionality of some web applications.

Audit:

Verify that the LimitRequestFields directive is in the Apache configuration and has a value of
100 or less.

Remediation:

Perform the following to implement the recommended state:

Add or modify the LimitRequestFields directive in the Apache configuration to have a value
of 100 or less. If the directive is not present the default depends on a compile time configuration,
but defaults to a value of 100.

LimitRequestFields 100

Default Value:

LimitRequestFields 100

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfields

146 | P a g e

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

147 | P a g e

10.3 Set the LimitRequestFieldsize directive to 1024 or less (Scored)

• Level 2

Description:

The LimitRequestFieldSize limits the number of bytes that will be allowed in an HTTP
request header. It is recommended that the LimitRequestFieldSize directive be set to 1024 or
less.

Rationale:

By limiting of the size of request headers is helpful so that the web server can prevent an
unexpectedly long or large value from being passed to exploit a potentially vulnerable program.
Of course, the underlying dependency is that we need to set the limits high enough to not
interfere with any one application on the server, while setting them low enough to be of value in
protecting the applications. Since the configuration directives are available only at the server
configuration level, it is not possible to tune the value for different portions of the same web
server. Please read the Apache documentation carefully, as these requests may interfere with the
expected functionality of some web applications.

Audit:

Perform the following steps to determine if the recommended state is implemented:
Verify that the LimitRequestFieldsize directive is in the Apache configuration and has a
value of 1024 or less.

Remediation:

Perform the following to implement the recommended state:

Add or modify the LimitRequestFieldsize directive in the Apache configuration to have a
value of 1024 or less.

LimitRequestFieldsize 1024

Default Value:

LimitRequestFieldsize 8190

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize

148 | P a g e

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

149 | P a g e

10.4 Set the LimitRequestBody directive to 102400 or less (Scored)

• Level 2

Description:

The LimitRequestBody directive limits the number of bytes that are allowed in a request body.
Size of requests may vary greatly; for example, during a file upload the size of the file must fit
within this limit.

Rationale:

The limiting of the size of the request body is helpful so that the web server can prevent an
unexpectedly long or large request from being passed to a potentially vulnerable program. Of
course, the underlying dependency is that we need to set the limits high enough to not interfere
with any one application on the server, while setting them low enough to be of value in
protecting the applications. The LimitRequestBody may be configured on a per directory, or per
location context. Please read the Apache documentation carefully, as these requests may interfere
with the expected functionality of some web applications.

Audit:

Verify that the LimitRequestBody directive in the Apache configuration to have a value of
102400 (100K) or less.

Remediation:

Perform the following to implement the recommended state:

Add or modify the LimitRequestBody directive in the Apache configuration to have a value of
102400 (100K) or less. Please read the Apache documentation so that it is understood that this
directive will limit the size of file up-loads to the web server.

LimitRequestBody 102400

Default Value:

LimitRequestBody 0 (unlimited)

References:

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestbody

CIS Controls:

9 Limitation and Control of Network Ports, Protocols, and Services
Limitation and Control of Network Ports, Protocols, and Services

150 | P a g e

11 Enable SELinux to Restrict Apache Processes
Recommendations in this section provide mandatory access controls (MAC) using the SELinux
kernel module in targeted mode. SELinux provides additional enforced security which will
prevent access to resources, files and directories by the httpd processes even in cases where an
application or server vulnerability might allow inappropriate access. The SELinux controls are
advanced security controls that require significant effort to ensure they do not negatively impact
the application and/or site functionality. It is highly recommended that the configuration states
described in this section be tested thoroughly on test servers prior to deploying them to
production servers. SELinux and AppArmor provide similar controls, and it is not recommended
to use both SELinux and AppArmor on the same system. Depending on which Linux distribution
is in use either AppArmor or SELinux are likely to be already installed or readily available as
packages. AppArmor differs from SELinux in that it binds the controls to programs rather than
users and uses path names rather than labeled type enforcement.

11.1 Enable SELinux in Enforcing Mode (Scored)

• Level 2

Description:

SELinux (Security-Enhanced Linux) is a Linux kernel security module that provides mandatory
access control security policies with type enforcement that are checked after the traditional
discretionary access controls. It was created by the US National Security Agency and can
enforce rules on files and processes in a Linux system, and restrict actions, based on defined
policies.

Rationale:

Web applications and services continue to be one of the leading attack vectors for black-hat
criminals to gain access to information and servers. The threat is high because web servers are
often externally accessible and typically have the greatest share of server-side vulnerabilities.
The SELinux mandatory access controls provide a much stronger security model which can be
used to implement a deny-by-default model which only allows what is explicitly permitted.

Audit:

Perform the following steps to determine if the recommended state is implemented:

Use the sestatus command to check that SELinux is enabled and that both the current mode
and the configured mode are set to enforcing.

$ sestatus | grep -i mode
Current mode: enforcing
Mode from config file: enforcing	

151 | P a g e

Remediation:

Perform the following to implement the recommended state:

If SELinux is not enabled in the configuration file, edit the file /etc/selinux/config and set
the value of SELINUX as enforcing and reboot the system for the new configuration to be
effective.

SELINUX=enforcing

If the current mode is not enforcing, and an immediate reboot is not possible, the current mode
can be set to enforcing with the setenable command shown below.

setenforce 1

Default Value:

SELinux is not enabled by default.

References:

1. https://en.wikipedia.org/wiki/Security-Enhanced_Linux

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

152 | P a g e

11.2 Run Apache Processes in the httpd_t Confined Context (Scored)

• Level 2

Description:

SELinux includes customizable targeted policies that may be used to confine the Apache httpd
server to enforce least privileges so that the httpd server has only the minimal access to specified
directories, files and network ports. Access is controlled by process types (domains) defined for
the httpd process. There are over a hundred individual httpd related types defined in a default
Apache SELinux policy which includes many of the common Apache add-ons and applications
such as php, nagios, smokeping and many others. The default SELinux policies work well for a
default Apache installation, but implementation of SELinux targeted polices on a complex or
highly customized web server requires a rather significant development and testing effort which
comprehends both the workings of SELinux and the detailed operations and requirements of the
web application. All directories and files to be accessed by the web server process must have
security labels with appropriate types. The following types are a sample of the most commonly
used:

• http_port_t - Network ports allowed for listening
• httpd_sys_content_t - Read access to directories and files with web content
• httpd_log_t - Directories and files to be used for writable log data
• httpd_sys_script_exec_t - Directories and files for executable content.

Rationale:

With the proper implementation of SELinux, vulnerabilities in the web application may be
prevented from being exploited due to the additional restrictions. For example, a vulnerability
that allows an attacker to read inappropriate system files may be prevented from execution by
SELinux because the inappropriate files are not labeled as httpd_sys_content_t. Likewise
writing to an unexpected directory or execution of unexpected content can be prevented by
similar mandatory security labels enforced by SELinux.

Audit:

Check that all of the Apache httpd processes are confined to the httpd_t SELinux context. The
type (the third colon separated field) for each process should be httpd_t. Note that on some
platforms, such as Ubuntu, the Apache executable is named apache2 instead of httpd.

$ ps -eZ | grep httpd
unconfined_u:system_r:httpd_t:s0 1366 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 1368 ? 00:00:00 httpd
. . .	

153 | P a g e

Remediation:

If the running httpd processes are not confined to the httpd_t SELinux context. Then check the
context for the httpd binary and the apachectl binary and set the httpd binary to have a context
of httpd_exec_t and the apachectl executable should have a context of initrc_exec_t as
shown below. Also note that on some platforms such as Ubuntu, the Apache executable is named
apache2 instead of httpd. Also note that on some platforms such as Ubuntu, the Apache
executable is named apache2 instead of httpd.

ls -alZ /usr/sbin/httpd /usr/sbin/httpd.* /usr/sbin/apachectl
-rwxr-xr-x. root root system_u:object_r:initrc_exec_t:s0 /usr/sbin/apachectl
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.worker
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.event

If the executable files are not labeled correctly, they may be relabeled with the chcon command,
as shown, however the file system labeling is based on the SELinux file context polices and the
file systems will on some occasions be relabeled according to the policy.

chcon -t initrc_exec_t /usr/sbin/apachectl
chcon -t httpd_exec_t /usr/sbin/httpd /usr/sbin/httpd.*

Since the file system may be relabeled based on SELinux policy, it's best to check the SELinux
policy with semanage fcontext -l option. If the policy is not present, then add the pattern to
the policy using the -a option. The restorecon command shown below will restore the file
context label according to the current policy, which is required if a pattern was added.

Check the Policy
semanage fcontext -l | fgrep 'apachectl'
/usr/sbin/apachectl regular file system_u:object_r:initrc_exec_t:s0
semanage fcontext -l | fgrep '/usr/sbin/httpd'
/usr/sbin/httpd regular file system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.worker regular file system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.event regular file system_u:object_r:httpd_exec_t:s0
Add to the policy, if not present
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd'
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd.worker'
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd.event'
semanage fcontext -f -- -a -t initrc_exec_t /usr/sbin/apachectl

Restore the file labeling accord to the SELinux policy
restorecon -v /usr/sbin/httpd /usr/sbin/httpd.* /usr/sbin/apachectl

Default Value:

SELinux is not enabled by default.

154 | P a g e

References:

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/chap-Security-
Enhanced_Linux-Targeted_Policy.html

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share,
claims, application, or database specific access control lists. These controls will enforce the
principle that only authorized individuals should have access to the information based on
their need to access the information as a part of their responsibilities.

155 | P a g e

11.3 Ensure the httpd_t Type is Not in Permissive Mode (Scored)

• Level 2

Description:

In addition to setting the entire SELinux configuration in permissive mode, it is possible to set
individual process types (domains) such as httpd_t into a permissive mode as well. The
permissive mode will not prevent any access or actions, instead, any actions that would have
been denied are simply logged.

Rationale:

Usage of the permissive mode is helpful for testing and ensuring that SELinux will not prevent
access that is necessary for the proper function of a web application. However, all access is
allowed in permissive mode by SELinux.

Audit:

Check that the httpd_t process type (domain) is not in permissive mode with the semodule
command. There should be no output if the type is not set to permissive.

semodule -l | grep permissive_httpd_t

Remediation:

Perform the following to implement the recommended state:

If the httpd_t type is in permissive mode; the customized permissive mode should be deleted
with the following semanage command.

semanage permissive -d httpd_t

Default Value:

The httpd_t type is not in permissive mode by default.

References:

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Fixing_Problems-Permissive_Domains.html

156 | P a g e

CIS Controls:

14.4 Protect Information With Access Control Lists
All information stored on systems shall be protected with file system, network share, claims,
application, or database specific access control lists. These controls will enforce the principle
that only authorized individuals should have access to the information based on their need to
access the information as a part of their responsibilities.

157 | P a g e

11.4 Ensure Only the Necessary SELinux Booleans are Enabled (Not
Scored)

• Level 2

Description:

SELinux booleans allow or disallow behavior specific to the Apache web server. Common
examples include whether CGI execution is allowed, or if the httpd server is allowed to
communicate with the current terminal (tty). Communication with the terminal, may be
necessary for entering a passphrase during start up to decrypt a private key.

Rationale:

Enabling only the necessary httpd related booleans provides a defense in depth approach, that
will deny actions that are not in use or expected.

Audit:

Review the SELinux httpd booleans that are enabled to ensure only the necessary booleans are
enabled for the current and the configured state. Due to the variety and complexity of web server
usages and organizational needs, a preset recommendation of enabled booleans is not practical.
Run either of the two commands below to show only the enabled httpd related booleans. The
getsebool command is installed with the core SELinux, while the semanage command is an
optional package, however the semanage output includes descriptive text.

getsebool -a | grep httpd_ | grep '> on'
httpd_builtin_scripting --> on
httpd_dbus_avahi --> on
httpd_tty_comm --> on
httpd_unified --> on

Alternative using the semanage command.

semanage boolean -l | grep httpd_ | grep -v '(off , off)'
httpd_enable_cgi (on , on) Allow httpd cgi support
httpd_dbus_avahi (on , on) Allow Apache to communicate with avahi service
via dbus
httpd_unified (on , on) Unify HTTPD handling of all content files.
httpd_builtin_scripting (on , on) Allow httpd to use built in scripting
(usually php)
httpd_tty_comm (on , on) Unify HTTPD to communicate with the terminal...

158 | P a g e

Remediation:

To disable the SELinux httpd booleans that are determined to be unnecessary, use the setsebool
command as shown below with the -P option to make the change persistent.

setsebool -P httpd_enable_cgi off
getsebool httpd_enable_cgi
httpd_enable_cgi --> off

Default Value:

SELinux is not enabled by default.

References:

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Working_with_SELinux-Booleans.html

CIS Controls:

18 Application Software Security
Application Software Security

159 | P a g e

12 Enable AppArmor to Restrict Apache Processes
Recommendations in this section provide mandatory access controls (MAC) using the
AppArmor kernel module. AppArmor provides additional enforced security which will prevent
access to resources, files and directories by the apache2 processes even in cases where an
application or server vulnerability might allow inappropriate access. The AppArmor controls are
advanced security controls that require significant effort to ensure they do not negatively impact
the application and/or site functionality. It is highly recommended that the configuration states
described in this section be tested thoroughly on test servers prior to deploying them to
production servers. AppArmor and SELinux provide similar controls, and it is not recommended
to use both SELinux and AppArmor on the same system. Depending on which Linux distribution
is in use either AppArmor or SELinux are likely to be already installed or readily available as
packages. AppArmor differs from SELinux in that it binds the controls to programs rather than
users and uses path names rather than labeled type enforcement.

12.1 Enable the AppArmor Framework (Scored)

• Level 2

Description:

AppArmor is a Linux kernel security module that provides a named based mandatory access
control with security policies. AppArmor can enforce rules on programs for file access and
network connections and restrict actions based on defined policies.

Rationale:

Web applications and web services continue to be one of the leading attack vectors for black-hat
criminals to gain access to information and servers. The threat is high because web servers are
often externally accessible and typically have the greatest share of server-side vulnerabilities.
The AppArmor mandatory access controls provide a much stronger security model which can be
used to implement a deny-by-default model which only allows what is explicitly permitted.

Audit:

Perform the following steps to determine if the recommended state is implemented:

Use the aa-status command with the --enabled option to check that AppArmor is enabled. If
AppArmor is enabled the command will return a zero (0) exit code for success. The && echo
Enabled is added to the command below to provide positive feedback. If no text is echoed, then
AppArmor is not enabled.

aa-status --enabled && echo Enabled
Enabled	

160 | P a g e

Remediation:

Perform the following to implement the recommended state:

• If the aa-status command is not found, then the AppArmor package is not installed and
needs to be installed using the appropriate the Linux distribution package management.
For example:

apt-get install apparmor
apt-get install libapache2-mod-apparmor

• To enable the AppArmor framework run the init.d script as shown below.

/etc/init.d/apparmor start

Default Value:

AppArmor is enabled by default.

References:

1. https://help.ubuntu.com/community/AppArmor

CIS Controls:

2.2 Deploy Application Whitelisting
Deploy application whitelisting technology that allows systems to run software only if it is
included on the whitelist and prevents execution of all other software on the system. The
whitelist may be very extensive (as is available from commercial whitelist vendors), so that
users are not inconvenienced when using common software. Or, for some special-purpose
systems (which require only a small number of programs to achieve their needed business
functionality), the whitelist may be quite narrow.

161 | P a g e

12.2 Customize the Apache AppArmor Profile (Not Scored)

• Level 2

Description:

AppArmor includes customizable profiles that may be used to confine the Apache web server to
enforce least privileges so that the server has only the minimal access to specified directories,
files and network ports. Access is controlled by a profile defined for the apache2 process. The
default AppArmor profile is typically a very permissive profile that allows read-write access to
all system files. Therefore, it's important that the default profile be customized to enforce least
privileges. The AppArmor utilities such as aa-autodep, aa-complain, and aa-logprof can be
used to generate an initial profile based on actual usage. However thorough testing, review and
customization will be necessary to ensure that the Apache profile restrictions allow necessary
functionality while implementing least privilege.

Rationale:

With the proper implementation of AppArmor profile, vulnerabilities in the web application may
be prevented from being exploited due to the additional restrictions. For example, a vulnerability
that allows an attacker to read an inappropriate system files may be prevented from execution by
AppArmor because the inappropriate files are not allowed by the profile. Likewise writing to an
unexpected directory or execution of unexpected content can be prevented by similar mandatory
security controls enforced by AppArmor.

Audit:

Perform the following steps to determine if the recommended state is implemented:

• Find the Apache AppArmor profile typically found in
/etc/apparmor.d/usr.sbin.apache2 along with any files included by the profile such
as /etc/apparmor.d/apache2.d/* and files in the /etc/apparmor.d/abstractions/
directory.

• Review the capabilities and permissions granted to ensure that the profile implements
least privileges for the web application. Wild-card paths such as /**, which grant access
to all files and directories starting with the root level directory, should not be present in
the profile. Instead read only access to specific necessary system files such /etc/group
and to the web content files such as /var/www/html/** should be given. Refer to the
apparmor.d man page for additional details. Shown below are some possible example
capabilities and path permissions.

capability dac_override,
capability dac_read_search,
capability net_bind_service,
capability setgid,
capability setuid,
capability kill,

162 | P a g e

capability sys_tty_config,
. . .

/usr/sbin/apache2 mr,
/etc/gai.conf r,
/etc/group r,
/etc/apache2/** r,
/var/www/html/** r,
/run/apache2/** rw,
/run/lock/apache2/** rw,
/var/log/apache2/** rw,
/etc/mime.types r,

Remediation:

Perform the following to implement the recommended state:

• Stop the Apache server

service apache2 stop

• Create a mostly empty apache2 profile based on program dependencies.

aa-autodep apache2
Writing updated profile for /usr/sbin/apache2.

• Set the apache2 profile in complain mode so that access violations will be allowed and
logged.

aa-complain apache2
Setting /usr/sbin/apache2 to complain mode.

• Start the apache2 service

service apache2 start

• Thoroughly test the web application attempting to exercise all intended functionality so
that AppArmor will generate the necessary logs of all resources accessed. The logs are
sent via the system syslog utility and are typically found in either the /var/log/syslog
or /var/log/messages files. Also stop and restart the web server as part of the testing
process.

• Use aa-logprof to update the profile based on logs generated during the testing. The
tool will prompt for suggested modifications to the profile, based on the logs. The logs
may also be reviewed manually in order to update the profile.

aa-logprof

• Review and edit the profile, removing any inappropriate content, and adding appropriate
access rules. Directories with multiple files accessed with the same permission can be

163 | P a g e

simplified with the usage of wild-cards when appropriate. Reload the updated profile
using the apparmor_parser command.

apparmor_parser -r /etc/apparmor.d/usr.sbin.apache2

• Test the new updated profile again and check for any new AppArmor denied logs
generated. Update and reload the profile as necessary. Repeat the application tests, until
no new AppArmor deny logs are created, except for access which should be prohibited.

tail -f /var/log/syslog

• Set the apache2 profile to enforce mode, reload apparmor, and then test the web site
functionality again.

aa-enforce /usr/sbin/apache2
/etc/init.d/apparmor reload

Default Value:

The default Apache profile is very permissive.

References:

1. https://wiki.ubuntu.com/AppArmor

CIS Controls:

2 Inventory of Authorized and Unauthorized Software
Inventory of Authorized and Unauthorized Software

164 | P a g e

12.3 Ensure Apache AppArmor Profile is in Enforce Mode (Scored)

• Level 2

Description:

AppArmor profiles may be in one of three modes: disabled, complain or enforce. In the complain
mode, any violations of the access controls are logged but the restrictions are not enforced. Also,
once a profile mode has been changed, it is recommended to restart the Apache server, otherwise
the currently running process may not be confined by the policy.

Rationale:

The complain mode is useful for testing and debugging a profile, but is not appropriate for
production. Only the confined process running in enforce mode will prevent attacks that violate
the configured access controls.

Audit:

Perform the following steps to determine if the recommended state is implemented:

Use the aa-unconfined command to check that the apache2 policy is enforced, and that the
currently running apache2 processes are confined. The output should include both confined by
and (enforce)

aa-unconfined --paranoid | grep apache2
1899 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
1902 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
1903 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
. . .

Note that non-compliant results may include not confined or (complain) such as the
following:

3304 /usr/sbin/apache2 not confined
2502 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (complain)'
4004 /usr/sbin/apache2 confined by
'/usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (complain)'

Remediation:

Perform the following to implement the recommended state:

• Set the profile state to enforce mode.

aa-enforce apache2
Setting /usr/sbin/apache2 to enforce mode.

165 | P a g e

• Stop the Apache server and confirm that is it not running. In some cases, the AppArmor
controls may prevent the web server from stopping properly, and it may be necessary to
stop the process manually or even reboot the server.

service apache2 stop
 * Stopping web server apache2
service apache2 status
 * apache2 is not running

• Restart the Apache service.

service apache2 start
 * Starting web server apache2

Default Value:

The default mode is enforce.

CIS Controls:

2.2 Deploy Application Whitelisting
Deploy application whitelisting technology that allows systems to run software only if it is
included on the whitelist and prevents execution of all other software on the system. The
whitelist may be very extensive (as is available from commercial whitelist vendors), so that
users are not inconvenienced when using common software. Or, for some special-purpose
systems (which require only a small number of programs to achieve their needed business
functionality), the whitelist may be quite narrow.

166 | P a g e

Appendix: Summary Table
Control Set

Correctly
Yes No

1 Planning and Installation
1.1 Pre-Installation Planning Checklist (Not Scored) o o
1.2 Do Not Install a Multi-Use System (Not Scored) o o
1.3 Installing Apache (Not Scored) o o
2 Minimize Apache Modules
2.1 Enable Only Necessary Authentication and Authorization

Modules (Not Scored) o o

2.2 Enable the Log Config Module (Scored) o o
2.3 Disable WebDAV Modules (Scored) o o
2.4 Disable Status Module (Scored) o o
2.5 Disable Autoindex Module (Scored) o o
2.6 Disable Proxy Modules (Scored) o o
2.7 Disable User Directories Modules (Scored) o o
2.8 Disable Info Module (Scored) o o
3 Principles, Permissions, and Ownership
3.1 Run the Apache Web Server as a non-root user (Scored) o o
3.2 Give the Apache User Account an Invalid Shell (Scored) o o
3.3 Lock the Apache User Account (Scored) o o
3.4 Set Ownership on Apache Directories and Files (Scored) o o
3.5 Set Group Id on Apache Directories and Files (Scored) o o
3.6 Restrict Other Write Access on Apache Directories and Files

(Scored) o o

3.7 Secure Core Dump Directory (Scored) o o
3.8 Secure the Lock File (Scored) o o
3.9 Secure the Pid File (Scored) o o
3.10 Secure the ScoreBoard File (Scored) o o
3.11 Restrict Group Write Access for the Apache Directories and Files

(Scored) o o

3.12 Restrict Group Write Access for the Document Root Directories
and Files (Scored) o o

4 Apache Access Control
4.1 Deny Access to OS Root Directory (Scored) o o
4.2 Allow Appropriate Access to Web Content (Not Scored) o o
4.3 Restrict Override for the OS Root Directory (Scored) o o
4.4 Restrict Override for All Directories (Scored) o o
5 Minimize Features, Content and Options
5.1 Restrict Options for the OS Root Directory (Scored) o o
5.2 Restrict Options for the Web Root Directory (Scored) o o

167 | P a g e

5.3 Minimize Options for Other Directories (Scored) o o
5.4 Remove Default HTML Content (Scored) o o
5.5 Remove Default CGI Content printenv (Scored) o o
5.6 Remove Default CGI Content test-cgi (Scored) o o
5.7 Limit HTTP Request Methods (Scored) o o
5.8 Disable HTTP TRACE Method (Scored) o o
5.9 Restrict HTTP Protocol Versions (Scored) o o
5.10 Restrict Access to .ht* files (Scored) o o
5.11 Restrict File Extensions (Scored) o o
5.12 Deny IP Address Based Requests (Scored) o o
5.13 Restrict Listen Directive (Scored) o o
5.14 Restrict Browser Frame Options (Scored) o o
6 Operations - Logging, Monitoring and Maintenance
6.1 Configure the Error Log (Scored) o o
6.2 Configure a Syslog Facility for Error Logging (Scored) o o
6.3 Configure the Access Log (Scored) o o
6.4 Log Storage and Rotation (Scored) o o
6.5 Apply Applicable Patches (Scored) o o
6.6 Install and Enable ModSecurity (Scored) o o
6.7 Install and Enable OWASP ModSecurity Core Rule Set (Scored) o o
7 SSL/TLS Configuration
7.1 Install mod_ssl and/or mod_nss (Scored) o o
7.2 Install a Valid Trusted Certificate (Scored) o o
7.3 Protect the Server's Private Key (Scored) o o
7.4 Disable the SSL v3.0 Protocol (Scored) o o
7.5 Restrict Weak SSL/TLS Ciphers (Scored) o o
7.6 Disable SSL Insecure Renegotiation (Scored) o o
7.7 Ensure SSL Compression is not Enabled (Scored) o o
7.8 Restrict Medium Strength SSL/TLS Ciphers (Scored) o o
7.9 Disable the TLS v1.0 Protocol (Scored) o o
7.10 Enable OCSP Stapling (Scored) o o
7.11 Enable HTTP Strict Transport Security (Scored) o o
8 Information Leakage
8.1 Set ServerToken to 'Prod' (Scored) o o
8.2 Set ServerSignature to 'Off' (Scored) o o
8.3 Information Leakage via Default Apache Content (Scored) o o
8.4 Information Leakage via ETag (Scored) o o
9 Denial of Service Mitigations
9.1 Set TimeOut to 10 or less (Scored) o o
9.2 Set the KeepAlive directive to On (Scored) o o
9.3 Set MaxKeepAliveRequests to 100 or greater (Scored) o o
9.4 Set KeepAliveTimeout Low to Mitigate Denial of Service

(Scored) o o

168 | P a g e

9.5 Set Timeout Limits for Request Headers (Scored) o o
9.6 Set Timeout Limits for the Request Body (Scored) o o
10 Request Limits
10.1 Set the LimitRequestLine directive to 512 or less (Scored) o o
10.2 Set the LimitRequestFields directive to 100 or less (Scored) o o
10.3 Set the LimitRequestFieldsize directive to 1024 or less (Scored) o o
10.4 Set the LimitRequestBody directive to 102400 or less (Scored) o o
11 Enable SELinux to Restrict Apache Processes
11.1 Enable SELinux in Enforcing Mode (Scored) o o
11.2 Run Apache Processes in the httpd_t Confined Context (Scored) o o
11.3 Ensure the httpd_t Type is Not in Permissive Mode (Scored) o o
11.4 Ensure Only the Necessary SELinux Booleans are Enabled (Not

Scored) o o

12 Enable AppArmor to Restrict Apache Processes
12.1 Enable the AppArmor Framework (Scored) o o
12.2 Customize the Apache AppArmor Profile (Not Scored) o o
12.3 Ensure Apache AppArmor Profile is in Enforce Mode (Scored) o o

169 | P a g e

Appendix: Change History
Date Version Changes for this version
Dec 30, 2012 1.0.0 Initial Release
Dec 3, 2013 1.1.0 Updated to cover Apache 2.4.6
Dec 3, 2013 1.1.0 Ticket #79: Correct Typos
Dec 3, 2013 1.1.0 Ticket #78: 1.6.3 Establish Log

Monitoring
Dec 3, 2013 1.1.0 Ticket #77: 1.6.5 Monitor Vulnerability

Lists
Dec 3, 2013 1.1.0 Ticket #76: no recommendation to

prevent apache from writing to web root
Dec 3, 2013 1.1.0 Ticket #75: 1.3.4 Set Ownership on

Apache Directories and Files
Dec 5, 2014 1.2.0 Ticket #93: Update "Apache Directory

and File Permissions" per discussion on
unix domain socket file permissions.

Dec 5, 2014 1.2.0 Ticket #87: Update SSL Cipher
Recommendations not allow RC4
Apache 2.4

Dec 5, 2014 1.2.0 Ticket #86: Update Protocol
Recommendations to Mitigate both
POODLE and BEAST Apache 2.4

Dec 9, 2014 1.2.0 Ticket #91: Add recommendation for
HTTP Strict Transport Security header
BM 2.4

Dec 9, 2014 1.2.0 Ticket #94: Consider adding
recommendations for OCSP Stapling

Dec 10, 2014 1.2.0 Ticket #97: Use code block format for
UID output information in
Recommendation 1.3.1.

Dec 10, 2014 1.2.0 Ticket #96: Consider making
Recommendation 1.7.2 "Install a Valid
Trusted Certificate" scored.

Dec 10, 2014 1.2.0 Ticket #95: Consider mentioning
apachectl or apache2ctl to Overview of
Section 1

Apr 23, 2015 1.2.1 Informational update to 1.7.8 Disable
the TLS v1.0 Protocol

170 | P a g e

Apr 23, 2015 1.2.1 Informational update to 1.7.9 Enable
HTTP Strict Transport Security

Apr 23, 2015 1.2.1 Ticket #99: Typos in corrections neeed
in "Enable HTTP Strict Transport
Security" 3.4 BM

May 31, 2016 1.3.0 Ticket #108: Add recommendations for
using AppArmor with Apache

May 31, 2016 1.3.0 Ticket #107: Add recommendations for
using SELinux in Targeted mode

May 31, 2016 1.3.0 Ticket #106: Disable proxy modules
May 31, 2016 1.3.0 Ticket #105: Adjust log level

configuration to include Not Found
Errors

May 31, 2016 1.3.0 Ticket #104: Added recommendations
for using ModSecurity and the OWASP
Core Rule Set

May 31, 2016 1.3.0 Ticket #99: Corrected typos in
recommendation 3.4

May 31, 2016 1.3.0 Ticket #112: Correct SSLStaplingCache
in Recommendation 1.7.9

May 31, 2016 1.3.0 Ticket #111: Correct TLS1.2 to TLSv1.2
in recommendation 1.7.8

May 31, 2016 1.3.0 Ticket #109: Update restrict Weak SSL
ciphers to reflect recent issues

Sep 14, 2016 1.3.1 Ticket #115: Proposal to remove
"Recommendations" sub-section and
place all sections contained within at the
Benchmark Root.

Dec 21, 2017 1.4.0 Ticket #5452: 7.5 Restrict Weak SSL
Ciphers - Do no disable SSLv3 ciphers

Dec 21, 2017 1.4.0 Ticket #5453: Disable 3DES ciphers
Feb 21, 2018 1.4.0 Ticket #5963: Correct default value in

"Ensure SSL Compression is not
Enabled"

Feb 21, 2018 1.4.0 Ticket #6006: Disable anonymous (No
Authentication) cipher suites

Feb 21, 2018 1.4.0 Ticket #6039: Recommend SSL Scan
for Audit Procedure.

Feb 21, 2018 1.4.0 Ticket #6037: Add disable RC4 cipher
rational to reflect RFC 7465

Mar 20, 2018 1.4.0 Ticket #6072: ETag Header Information
Disclosure - Added recommendation 8.4
Information Leakage via ETag

