
	

	

	

	 	

	

CIS	Apache	HTTP	Server	2.4	Benchmark	

v1.3.1	-	08-17-2017																																																											

	

1	|	P a g e 	
	

This	work	is	licensed	under	a	Creative	Commons	Attribution-
NonCommercial-ShareAlike	4.0	International	Public	License.	The	
link	to	the	license	terms	can	be	found	
at	https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode	
	
To	further	clarify	the	Creative	Commons	license	related	to	CIS	
Benchmark	content,	you	are	authorized	to	copy	and	redistribute	the	
content	for	use	by	you,	within	your	organization	and	outside	your	
organization	for	non-commercial	purposes	only,	provided	that	(i)	
appropriate	credit	is	given	to	CIS,	(ii)	a	link	to	the	license	is	
provided.	Additionally,	if	you	remix,	transform	or	build	upon	the	CIS	
Benchmark(s),	you	may	only	distribute	the	modified	materials	if	
they	are	subject	to	the	same	license	terms	as	the	original	Benchmark	
license	and	your	derivative	will	no	longer	be	a	CIS	Benchmark.	
Commercial	use	of	CIS	Benchmarks	is	subject	to	the	prior	approval	
of	the	Center	for	Internet	Security.	 	

	

2	|	P a g e 	
	

Table	of	Contents	
Overview	..	6	

Intended	Audience	..	6	

Consensus	Guidance	...	6	

Typographical	Conventions	..	7	

Scoring	Information	..	7	

Profile	Definitions	..	8	

Acknowledgements	...	9	

Recommendations	...	10	

1	Planning	and	Installation	...	10	

1.1	Pre-Installation	Planning	Checklist	(Not	Scored)	..	10	

1.2	Do	Not	Install	a	Multi-use	System	(Not	Scored)	...	11	

1.3	Installing	Apache	(Not	Scored)	..	13	

2	Minimize	Apache	Modules	..	15	

2.1	Enable	Only	Necessary	Authentication	and	Authorization	Modules	(Not	Scored)
	...	15	

2.2	Enable	the	Log	Config	Module	(Scored)	..	17	

2.3	Disable	WebDAV	Modules	(Scored)	..	19	

2.4	Disable	Status	Module	(Scored)	..	21	

2.5	Disable	Autoindex	Module	(Scored)	..	23	

2.6	Disable	Proxy	Modules	(Scored)	...	25	

2.7	Disable	User	Directories	Modules	(Scored)	...	27	

2.8	Disable	Info	Module	(Scored)	...	29	

3	Principles,	Permissions,	and	Ownership	..	31	

3.1	Run	the	Apache	Web	Server	as	a	non-root	user	(Scored)..	31	

3.2	Give	the	Apache	User	Account	an	Invalid	Shell	(Scored)	...	34	

3.3	Lock	the	Apache	User	Account	(Scored)	...	35	

3.4	Set	Ownership	on	Apache	Directories	and	Files	(Scored)	...	36	

3.5	Set	Group	Id	on	Apache	Directories	and	Files	(Scored)	..	37	

3.6	Restrict	Other	Write	Access	on	Apache	Directories	and	Files	(Scored)	38	

	

3	|	P a g e 	
	

3.7	Secure	Core	Dump	Directory	(Scored)	...	39	

3.8	Secure	the	Lock	File	(Scored)	...	41	

3.9	Secure	the	Pid	File	(Scored)	..	43	

3.10	Secure	the	ScoreBoard	File	(Scored)	..	45	

3.11	Restrict	Group	Write	Access	for	the	Apache	Directories	and	Files	(Scored)	47	

3.12	Restrict	Group	Write	Access	for	the	Document	Root	Directories	and	Files	
(Scored)	...	48	

4	Apache	Access	Control	..	49	

4.1	Deny	Access	to	OS	Root	Directory	(Scored)	...	49	

4.2	Allow	Appropriate	Access	to	Web	Content	(Not	Scored)	...	52	

4.3	Restrict	Override	for	the	OS	Root	Directory	(Scored)	...	55	

4.4	Restrict	Override	for	All	Directories	(Scored)	..	57	

5	Minimize	Features,	Content	and	Options	...	59	

5.1	Restrict	Options	for	the	OS	Root	Directory	(Scored)	...	59	

5.2	Restrict	Options	for	the	Web	Root	Directory	(Scored)	...	61	

5.3	Minimize	Options	for	Other	Directories	(Scored)	...	63	

5.4	Remove	Default	HTML	Content	(Scored)	..	65	

5.5	Remove	Default	CGI	Content	printenv	(Scored)	..	69	

5.6	Remove	Default	CGI	Content	test-cgi	(Scored)	...	71	

5.7	Limit	HTTP	Request	Methods	(Scored)	...	73	

5.8	Disable	HTTP	TRACE	Method	(Scored)	...	76	

5.9	Restrict	HTTP	Protocol	Versions	(Scored)	...	78	

5.10	Restrict	Access	to	.ht*	files	(Scored)	...	80	

5.11	Restrict	File	Extensions	(Scored)	...	82	

5.12	Deny	IP	Address	Based	Requests	(Scored)	..	84	

5.13	Restrict	Listen	Directive	(Scored)	...	86	

5.14	Restrict	Browser	Frame	Options	(Scored)	..	88	

6	Operations	-	Logging,	Monitoring	and	Maintenance	...	90	

6.1	Configure	the	Error	Log	(Scored)	...	90	

6.2	Configure	a	Syslog	Facility	for	Error	Logging	(Scored)	...	93	

6.3	Configure	the	Access	Log	(Scored)...	95	

	

4	|	P a g e 	
	

6.4	Log	Storage	and	Rotation	(Scored)	..	97	

6.5	Apply	Applicable	Patches	(Scored)	...	100	

6.6	Install	and	Enable	ModSecurity	(Scored)	...	102	

6.7	Install	and	Enable	OWASP	ModSecurity	Core	Rule	Set	(Scored)	104	

7	SSL/TLS	Configuration	..	108	

7.1	Install	mod_ssl	and/or	mod_nss	(Scored)	..	108	

7.2	Install	a	Valid	Trusted	Certificate	(Scored)	...	110	

7.3	Protect	the	Server's	Private	Key	(Scored)	...	114	

7.4	Disable	the	SSL	v3.0	Protocol	(Scored)	...	116	

7.5	Restrict	Weak	SSL	Ciphers	(Scored)	...	118	

7.6	Disable	SSL	Insecure	Renegotiation	(Scored)	..	120	

7.7	Ensure	SSL	Compression	is	not	Enabled	(Scored)	...	122	

7.8	Disable	the	TLS	v1.0	Protocol	(Scored)	..	124	

7.9	Enable	OCSP	Stapling	(Scored)	...	126	

7.10	Enable	HTTP	Strict	Transport	Security	(Scored)	...	128	

8	Information	Leakage	...	131	

8.1	Set	ServerToken	to	'Prod'	(Scored)	..	131	

8.2	Set	ServerSignature	to	'Off'	(Scored)	...	133	

8.3	Information	Leakage	via	Default	Apache	Content	(Scored)	134	

9	Denial	of	Service	Mitigations	..	136	

9.1	Set	TimeOut	to	10	or	less	(Scored)	...	136	

9.2	Set	the	KeepAlive	directive	to	On	(Scored)	...	138	

9.3	Set	MaxKeepAliveRequests	to	100	or	greater	(Scored)	...	139	

9.4	Set	KeepAliveTimeout	Low	to	Mitigate	Denial	of	Service	(Scored)	140	

9.5	Set	Timeout	Limits	for	Request	Headers	(Scored)	...	141	

9.6	Set	Timeout	Limits	for	the	Request	Body	(Scored)	...	143	

10	Request	Limits	..	145	

10.1	Set	the	LimitRequestLine	directive	to	512	or	less	(Scored)	145	

10.2	Set	the	LimitRequestFields	directive	to	100	or	less	(Scored)	147	

10.3	Set	the	LimitRequestFieldsize	directive	to	1024	or	less	(Scored)	149	

	

5	|	P a g e 	
	

10.4	Set	the	LimitRequestBody	directive	to	102400	or	less	(Scored)	151	

11	Enable	SELinux	to	Restrict	Apache	Processes	..	153	

11.1	Enable	SELinux	in	Enforcing	Mode	(Scored)	...	153	

11.2	Run	Apache	Processes	in	the	httpd_t	Confined	Context	(Scored)	155	

11.3	Ensure	the	httpd_t	Type	is	Not	in	Permissive	Mode	(Scored)	158	

11.4	Ensure	Only	the	Necessary	SELinux	Booleans	are	Enabled	(Not	Scored)	160	

12	Enable	AppArmor	to	Restrict	Apache	Processes	...	162	

12.1	Enable	the	AppArmor	Framework	(Scored)	..	162	

12.2	Customize	the	Apache	AppArmor	Profile	(Not	Scored)	..	164	

12.3	Ensure	Apache	AppArmor	Profile	is	in	Enforce	Mode	(Scored)	167	

Appendix:	Summary	Table	...	169	

Appendix:	Change	History	..	172	

	

	

	 	

	

6	|	P a g e 	
	

Overview	
This	document,	CIS	Apache	2.4	Benchmark,	provides	prescriptive	guidance	for	establishing	
a	secure	configuration	posture	for	Apache	Web	Server	versions	2.4	running	on	Linux.	This	
guide	was	tested	against	Apache	Web	Server	2.4.3	-	2.4.6	as	built	from	source	httpd-
2.4.x.tar.gz	from	http://httpd.apache.org/	on	Linux.	To	obtain	the	latest	version	of	this	
guide,	please	visit	http://benchmarks.cisecurity.org.	If	you	have	questions,	comments,	or	
have	identified	ways	to	improve	this	guide,	please	write	us	at	feedback@cisecurity.org.	

	

Intended	Audience	

This	document	is	intended	for	system	and	application	administrators,	security	specialists,	
auditors,	help	desk,	and	platform	deployment	personnel	who	plan	to	develop,	deploy,	
assess,	or	secure	solutions	that	incorporate	Apache	HTTP	Server	2.4	running	on	Linux.	

	

Consensus	Guidance	

This	benchmark	was	created	using	a	consensus	review	process	comprised	of	subject	
matter	experts.	Consensus	participants	provide	perspective	from	a	diverse	set	of	
backgrounds	including	consulting,	software	development,	audit	and	compliance,	security	
research,	operations,	government,	and	legal.		

Each	CIS	benchmark	undergoes	two	phases	of	consensus	review.	The	first	phase	occurs	
during	initial	benchmark	development.	During	this	phase,	subject	matter	experts	convene	
to	discuss,	create,	and	test	working	drafts	of	the	benchmark.	This	discussion	occurs	until	
consensus	has	been	reached	on	benchmark	recommendations.	The	second	phase	begins	
after	the	benchmark	has	been	published.	During	this	phase,	all	feedback	provided	by	the	
Internet	community	is	reviewed	by	the	consensus	team	for	incorporation	in	the	
benchmark.	If	you	are	interested	in	participating	in	the	consensus	process,	please	visit	
https://community.cisecurity.org.	

	 	

	

7	|	P a g e 	
	

Typographical	Conventions	

The	following	typographical	conventions	are	used	throughout	this	guide:	

Convention	 Meaning	

Stylized Monospace font	 Used	for	blocks	of	code,	command,	and	script	examples.	
Text	should	be	interpreted	exactly	as	presented.	

Monospace	font	 Used	for	inline	code,	commands,	or	examples.	Text	should	
be	interpreted	exactly	as	presented.		

<italic	font	in	brackets>	 Italic	texts	set	in	angle	brackets	denote	a	variable	
requiring	substitution	for	a	real	value.	

Italic	font	 Used	to	denote	the	title	of	a	book,	article,	or	other	
publication.	

Note	 Additional	information	or	caveats	

	

Scoring	Information	

A	scoring	status	indicates	whether	compliance	with	the	given	recommendation	impacts	the	
assessed	target's	benchmark	score.	The	following	scoring	statuses	are	used	in	this	
benchmark:	

Scored	

Failure	to	comply	with	"Scored"	recommendations	will	decrease	the	final	benchmark	score.	
Compliance	with	"Scored"	recommendations	will	increase	the	final	benchmark	score.	

Not	Scored	

Failure	to	comply	with	"Not	Scored"	recommendations	will	not	decrease	the	final	
benchmark	score.	Compliance	with	"Not	Scored"	recommendations	will	not	increase	the	
final	benchmark	score.	

	

	 	

	

8	|	P a g e 	
	

Profile	Definitions		

The	following	configuration	profiles	are	defined	by	this	Benchmark:	

• Level	1	

Items	in	this	profile	intend	to:	

o be	practical	and	prudent;	
o provide	a	clear	security	benefit;	and	
o not	inhibit	the	utility	of	the	technology	beyond	acceptable	means.	

• Level	2	

This	profile	extends	the	"Level	1"	profile.	Items	in	this	profile	exhibit	one	or	more	of	
the	following	characteristics:	

o are	intended	for	environments	or	use	cases	where	security	is	paramount	
o acts	as	defense	in	depth	measure	
o may	negatively	inhibit	the	utility	or	performance	of	the	technology.	

	

	 	

	

9	|	P a g e 	
	

	

Acknowledgements	

This	benchmark	exemplifies	the	great	things	a	community	of	users,	vendors,	and	subject	matter	
experts	can	accomplish	through	consensus	collaboration.	The	CIS	community	thanks	the	entire	
consensus	team	with	special	recognition	to	the	following	individuals	who	contributed	greatly	to	
the	creation	of	this	guide:	

	
Author	
Ralph	Durkee	CISSP,	GSEC,	GCIH,	GSNA,	GPEN,	C|EH,	Durkee	Consulting,	Inc.	
	
Contributor	
Ahmed	Adel	
Ryan	Barnett	
Quan	Bui	
Lawrence	Grim		
Adam	Montville		
Eduardo	Petazze		
Vytautas	Vysniauskas	
Roger	Kennedy	Linux	Systems	Engineer	
Christian	Folini		
Tim	Harrison	CISSP,	ICP,	Center	for	Internet	Security	

	

	 	

	

10	|	P a g e 	
	

Recommendations	
1	Planning	and	Installation	

This	section	contains	recommendations	for	the	planning	and	installation	of	an	Apache	
HTTP	Server.	

1.1	Pre-Installation	Planning	Checklist	(Not	Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Review	and	implement	the	following	items	as	appropriate:	

• Reviewed	and	implemented	company's	security	policies	as	they	relate	to	web	
security.	

• Implemented	a	secure	network	infrastructure	by	controlling	access	to/from	your	
web	server	by	using	firewalls,	routers	and	switches.	

• Harden	the	underlying	Operating	System	of	the	web	server,	by	minimizing	listening	
network	services,	applying	proper	patches	and	hardening	the	configurations	as	
recommended	in	the	appropriate	Center	for	Internet	Security	benchmark	for	the	
platform.	

• Implement	central	log	monitoring	processes.	
• Implemented	a	disk	space	monitoring	process	and	log	rotation	mechanism.	
• Educate	developers,	architects	and	testers	about	developing	secure	applications,	

and	integrate	security	into	the	software	development	lifecycle.	
https://www.owasp.org/	http://www.webappsec.org/		

• Ensure	the	WHOIS	Domain	information	registered	for	our	web	presence	does	not	
reveal	sensitive	personnel	information,	which	may	be	leveraged	for	Social	
Engineering	(Individual	POC	Names),	War	Dialing	(Phone	Numbers)	and	Brute	
Force	Attacks	(Email	addresses	matching	actual	system	usernames).	

• Ensure	your	Domain	Name	Service	(DNS)	servers	have	been	properly	secured	to	
prevent	attacks,	as	recommended	in	the	CIS	BIND	DNS	Benchmark.	

• Implemented	a	Network	Intrusion	Detection	System	to	monitor	attacks	against	the	
web	server.	

References:	

1. Open	Web	Application	Security	Project	-	https://www.OWASP.org/			
2. Web	Application	Security	Consortium	-	http://www.webappsec.org/		

	

11	|	P a g e 	
	

1.2	Do	Not	Install	a	Multi-Use	System	(Not	Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Default	server	configurations	often	expose	a	wide	variety	of	services	unnecessarily	
increasing	the	risk	to	the	system.	Just	because	a	server	can	perform	many	services	doesn't	
mean	it	is	wise	to	do	so.	The	number	of	services	and	daemons	executing	on	the	Apache	
Web	server	should	be	limited	to	those	necessary,	with	the	Web	server	being	the	only	
primary	function	of	the	server.	

Rationale:	

Maintaining	a	server	for	a	single	purpose	increases	the	security	of	your	application	and	
system.	The	more	services	which	are	exposed	to	an	attacker,	the	more	potential	vectors	an	
attacker	has	to	exploit	the	system	and	therefore	the	higher	the	risk	for	the	server.	A	Web	
server	should	function	as	only	a	web	server	and	if	possible	should	not	be	mixed	with	other	
primary	functions	such	as	mail,	DNS,	database	or	middleware.	

Audit:	

Leverage	the	package	or	services	manager	for	your	OS	to	list	enabled	services	and	review	
with	documented	business	needs	of	the	server.	On	Red	Hat	systems,	the	following	will	
produce	the	list	of	current	services	enabled:	

chkconfig --list | grep ':on'

Remediation:	

Leverage	the	package	or	services	manager	for	your	OS	to	uninstall	or	disable	unneeded	
services.	On	Red	Hat	systems,	the	following	will	disable	a	given	service:	

chkconfig <servicename> off

Default	Value:	

Depends	on	OS	Platform	

	 	

	

12	|	P a g e 	
	

CIS	Controls:	

9.5	Operate	Critical	Services	on	Dedicated	Hosts	(i.e.	DNS,	Mail,	Web,	Database)	
Operate	critical	services	on	separate	physical	or	logical	host	machines,	such	as	DNS,	file,	
mail,	web,	and	database	servers.	

	

13	|	P a g e 	
	

1.3	Installing	Apache	(Not	Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	CIS	Apache	Benchmark	recommends	using	the	Apache	binary	provided	by	your	vendor	
for	most	situations	in	order	to	reduce	the	effort	and	increase	the	effectiveness	of	
maintenance	and	security	patches.	However,	to	keep	the	benchmark	as	generic	and	
applicable	to	all	Unix/Linux	platforms	as	possible,	a	default	source	build	has	been	used	for	
this	benchmark.	

Important	Note:	There	is	a	major	difference	between	source	builds	and	most	vendor	
packages	that	is	very	important	to	highlight.	The	default	source	build	of	Apache	is	fairly	
conservative	and	minimalist	in	the	modules	included	and	therefore	starts	off	in	a	fairly	
strong	security	state,	while	most	vendor	binaries	are	typically	very	well	loaded	with	most	
of	the	functionality	that	one	may	be	looking	for.	Therefore,	it	is	important	that	you	don't	
assume	the	default	value	shown	in	the	benchmark	will	match	default	values	in	your	
installation.	You	should	always	test	any	new	installation	in	your	environment	before	
putting	it	into	production.	Also	keep	in	mind	you	can	install	and	run	a	new	version	
alongside	the	old	one	by	using	a	different	Apache	prefix	and	a	different	IP	address	or	port	
number	in	the	Listen directive.	

Rationale:	

The	benefits	of	using	the	vendor	supplied	binaries	include:	

• Ease	of	installation	as	it	will	just	work,	straight	out	of	the	box.	
• It	is	customized	for	your	OS	environment.	
• It	will	be	tested	and	have	gone	through	QA	procedures.	
• Everything	you	need	is	likely	to	be	included,	probably	including	some	third-party	

modules.	For	example,	many	OS	vendors	ship	Apache	with	mod_ssl	and	OpenSSL,	
PHP,	mod_perl,	and	ModSecurity.	

• Your	vendor	will	tell	you	about	security	issues	so	you	have	to	look	in	fewer	places.	
• Updates	to	fix	security	issues	will	be	easy	to	apply.	The	vendor	will	have	already	

verified	the	problem,	checked	the	signature	on	the	Apache	download,	worked	out	
the	impact	and	so	on.	

• You	may	be	able	to	get	the	updates	automatically,	reducing	the	window	of	risk.	

	 	

	

14	|	P a g e 	
	

Remediation:	

Installation	depends	on	the	operating	system	platform.	For	a	source	build,	consult	the	
Apache	2.4	documentation	on	compiling	and	installing	
https://httpd.apache.org/docs/2.4/install.html	for	a	Red	Hat	Enterprise	Linux	5	or	6,	the	
following	yum	command	could	be	used.	

yum install httpd

References:	

1. Apache	Compiling	and	Installation	https://httpd.apache.org/docs/2.4/install.html		

CIS	Controls:	

2	Inventory	of	Authorized	and	Unauthorized	Software	

	

15	|	P a g e 	
	

2	Minimize	Apache	Modules	

It's	crucial	to	have	a	minimal	and	compact	Apache	installation	based	on	documented	
business	requirements.	This	section	covers	specific	modules	that	should	be	reviewed	and	
disabled	if	not	required	for	business	purposes.	However,	it's	very	important	that	the	review	
and	analysis	of	which	modules	are	required	for	business	purposes	not	be	limited	to	the	
modules	explicitly	listed.	

2.1	Enable	Only	Necessary	Authentication	and	Authorization	Modules	
(Not	Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	2.4	modules	for	authentication	and	authorization	are	grouped	and	named	to	
provide	both	granularity,	and	a	consistent	naming	convention	to	simplify	configuration.	
The	authn_*	modules	provide	authentication,	while	the	authz_*	modules	provide	
authorization.	Apache	provides	two	types	of	authentication	-	basic	and	digest.	Review	the	
Apache	Authentication	and	Authorization	how-to	documentation	
https://httpd.apache.org/docs/2.4/howto/auth.html		and	enable	only	the	modules	that	are	
required.	

Rationale:	

Authentication	and	authorization	are	the	front	doors	to	the	protected	information	in	your	
web	site.	Most	installations	only	need	a	small	subset	of	the	modules	available.	By	
minimizing	the	enabled	modules	to	those	that	are	actually	used,	we	reduce	the	number	of	
"doors"	and	have	therefore	reduce	the	attack	surface	of	the	web	site.	Likewise,	having	
fewer	modules	means	less	software	that	could	have	vulnerabilities.	

	 	

	

16	|	P a g e 	
	

Audit:	

1. Use	the	httpd -M	option	as	root	to	check	which	auth*modules	are	loaded.		

httpd -M | egrep 'auth._'

2. Also	use	the	httpd -Moption	as	root	to	check	for	any	LDAP	modules	which	don't	
follow	the	same	naming	convention.		

httpd -M | egrep 'ldap'

The	above	commands	should	generate	a	list	of	modules	installed	to	stdout.	

Remediation:	

Consult	Apache	module	documentation	for	descriptions	of	each	module	in	order	to	
determine	the	necessary	modules	for	the	specific	installation.	
https://httpd.apache.org/docs/2.4/mod/		The	unnecessary	static	compiled	modules	are	
disabled	through	compile	time	configuration	options	as	documented	in	
https://httpd.apache.org/docs/2.4/programs/configure.html.	The	dynamically	loaded	
modules	are	disabled	by	commenting	out	or	removing	the	LoadModule	directive	from	the	
Apache	configuration	files	(typically	httpd.conf).	Some	modules	may	be	separate	
packages,	and	may	be	removed.	

Default	Value:	

The	following	modules	are	loaded	by	a	default	source	build:	authn_file_module (shared)
authn_core_module (shared) authz_host_module (shared) authz_groupfile_module
(shared) authz_user_module (shared) authz_core_module (shared)	

References:	

1. https://httpd.apache.org/docs/2.4/howto/auth.html		
2. https://httpd.apache.org/docs/2.4/mod/		
3. https://httpd.apache.org/docs/2.4/programs/configure.html		

CIS	Controls:	

16	Account	Monitoring	and	Control	
	

	

17	|	P a g e 	
	

2.2	Enable	the	Log	Config	Module	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	log_config	module	provides	for	flexible	logging	of	client	requests,	and	provides	for	
the	configuration	of	the	information	in	each	log.	

Rationale:	

Logging	is	critical	for	monitoring	usage	and	potential	abuse	of	your	web	server.	This	
module	is	required	to	configure	web	server	logging	using	the	log_format	directive.	

Audit:	

Perform	the	following	to	determine	if	the	log_config	has	been	loaded:	

Use	the	httpd -M	option	as	root	to	check	that	the	module	is	loaded.	

httpd -M | grep log_config

	
Note:	If	the	module	is	correctly	enabled,	the	output	will	include	the	module	name	and	
whether	it	is	loaded	statically	or	as	a	shared	module	

Remediation:	

Perform	either	one	of	the	following:	

• For	source	builds	with	static	modules,	run	the	Apache	./configure	script	without	
including	the	--disable-log-config	script	options.		

$ cd $DOWNLOAD_HTTPD
$./configure

• For	dynamically	loaded	modules,	add	or	modify	the	LoadModule	directive	so	that	it	is	
present	in	the	apache	configuration	as	below	and	not	commented	out:		

LoadModule log_config_module modules/mod_log_config.so

Default	Value:	

The	log_config	module	is	loaded	by	default.	

	

18	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html			

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting		
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	
Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

19	|	P a g e 	
	

2.3	Disable	WebDAV	Modules	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	mod_dav	and	mod_dav_fs	modules	support	WebDAV	('Web-based	Distributed	
Authoring	and	Versioning')	functionality	for	Apache.	WebDAV	is	an	extension	to	the	HTTP	
protocol	which	allows	clients	to	create,	move,	and	delete	files	and	resources	on	the	web	
server.	

Rationale:	

Disabling	WebDAV	modules	will	improve	the	security	posture	of	the	web	server	by	
reducing	the	amount	of	potentially	vulnerable	code	paths	exposed	to	the	network	and	
reducing	potential	for	unauthorized	access	to	files	via	misconfigured	WebDAV	access	
controls.	

Audit:	

Perform	the	following	to	determine	if	the	WebDAV	modules	are	enabled.	

Run	the	httpd	server	with	the	-M	option	to	list	enabled	modules:	

httpd -M | grep ' dav_[[:print:]]+module'

	
Note:	If	the	WebDav	modules	are	correctly	disabled,	there	will	be	no	output	when	
executing	the	above	command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	WebDAV	module:	

1. For	source	builds	with	static	modules	run	the	Apache	./configure	script	without	
including	the	mod_dav,	and	mod_dav_fs	in	the	--enable-modules=configure	script	
options.		

$ cd $DOWNLOAD_HTTPD
$./configure

	 	

	

20	|	P a g e 	
	

2. For	dynamically	loaded	modules	comment	out	or	remove	the	LoadModule	directive	
for	mod_dav,	and	mod_dav_fs	modules	the	from	the	httpd.conf	file.		

##LoadModule dav_module modules/mod_dav.so
##LoadModule dav_fs_module modules/mod_dav_fs.so

Default	Value:	

The	WebDav	modules	are	not	enabled	with	a	default	source	build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_dav.html		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

21	|	P a g e 	
	

2.4	Disable	Status	Module	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	mod_status	module	provides	current	server	performance	statistics.	

Rationale:	

When	mod_status	is	loaded	into	the	server,	its	handler	capability	is	available	in	all	
configuration	files,	including	per-directory	files	(e.g.,	.htaccess).	The	mod_status	module	
may	provide	an	adversary	with	information	that	can	be	used	to	refine	exploits	that	depend	
on	measuring	server	load.	

Audit:	

Perform	the	following	to	determine	if	the	Status	module	is	enabled.	

Run	the	httpd	server	with	the	-M	option	to	list	enabled	modules:	

httpd -M | egrep 'status_module'

	
Note:	If	the	modules	are	correctly	disabled,	there	will	be	no	output	when	executing	the	
above	command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	the	mod_status	module:	

1. For	source	builds	with	static	modules,	run	the	Apache	./configure	script	with	the	-
-disable-status configure	script	options.		

$ cd $DOWNLOAD_HTTPD
$./configure --disable-status

2. For	dynamically	loaded	modules,	comment	out	or	remove	the	LoadModule	directive	
for	the	mod_status	module	from	the	httpd.conf	file.		

##LoadModule status_module modules/mod_status.so

	 	

	

22	|	P a g e 	
	

Default	Value:	

The	mod_status	module	IS	enabled	with	a	default	source	build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_status.html		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

23	|	P a g e 	
	

2.5	Disable	Autoindex	Module	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	autoindex	module	automatically	generates	web	page	listing	the	contents	of	
directories	on	the	server,	typically	used	so	that	an	index.html	does	not	have	to	be	
generated.	

Rationale:	

Automated	directory	listings	should	not	be	enabled	as	it	will	also	reveal	information	helpful	
to	an	attacker	such	as	naming	conventions	and	directory	paths.	Directory	listings	may	also	
reveal	files	that	were	not	intended	to	be	revealed.	

Audit:	

Perform	the	following	to	determine	if	the	module	is	enabled.	

Run	the	httpd	server	with	the	-M	option	to	list	enabled	modules:	

httpd -M | grep autoindex_module

	
Note:	If	the	module	is	correctly	disabled,	there	will	be	no	output	when	executing	the	above	
command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	the	mod_autoindex	module:	

1. For	source	builds	with	static	modules,	run	the	Apache	./configure	script	with	the	-
-disable-autoindex	configure	script	options		

$ cd $DOWNLOAD_HTTPD
$./configure -disable-autoindex

2. For	dynamically	loaded	modules,	comment	out	or	remove	the	LoadModule	directive	
for	mod_autoindex	from	the	httpd.conf	file.		

LoadModule autoindex_module modules/mod_autoindex.so

	 	

	

24	|	P a g e 	
	

Default	Value:	

The	mod_autoindex	module	IS	enabled	with	a	default	source	build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_autoindex.html		

CIS	Controls:	

18	Application	Software	Security	

	

25	|	P a g e 	
	

2.6	Disable	Proxy	Modules	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	proxy	modules	allow	the	server	to	act	as	a	proxy	(either	forward	or	reverse	
proxy)	of	HTTP	and	other	protocols	with	additional	proxy	modules	loaded.	If	the	Apache	
installation	is	not	intended	to	proxy	requests	to	or	from	another	network	then	the	proxy	
module	should	not	be	loaded.	

Rationale:	

Proxy	servers	can	act	as	an	important	security	control	when	properly	configured,	however	
a	secure	proxy	server	is	not	within	the	scope	of	this	benchmark.	A	web	server	should	be	
primarily	a	web	server	or	a	proxy	server	but	not	both,	for	the	same	reasons	that	other	
multi-use	servers	are	not	recommended.	Scanning	for	web	servers	that	will	also	proxy	
requests	is	a	very	common	attack,	as	proxy	servers	are	useful	for	anonymizing	attacks	on	
other	servers,	or	possibly	proxying	requests	into	an	otherwise	protected	network.	

Audit:	

Perform	the	following	to	determine	if	the	modules	are	enabled.	

Run	the	httpd	server	with	the	-Moption	to	list	enabled	modules:	

httpd -M | grep proxy_

	

Note:	If	the	modules	are	correctly	disabled,	there	will	be	no	output	when	executing	the	
above	command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	the	proxy	module:	

1. For	source	builds	with	static	modules,	run	the	Apache	./configure	script	without	
including	the	mod_proxy	in	the	--enable-modules=configure	script	options.		

$ cd $DOWNLOAD_HTTPD
$./configure

	

26	|	P a g e 	
	

2. For	dynamically	loaded	modules,	comment	out	or	remove	the	LoadModule	directive	
for	mod_proxy	module	and	all	other	proxy	modules	from	the	httpd.conf	file.		

##LoadModule proxy_module modules/mod_proxy.so
##LoadModule proxy_connect_module modules/mod_proxy_connect.so
##LoadModule proxy_ftp_module modules/mod_proxy_ftp.so
##LoadModule proxy_http_module modules/mod_proxy_http.so
##LoadModule proxy_fcgi_module modules/mod_proxy_fcgi.so
##LoadModule proxy_scgi_module modules/mod_proxy_scgi.so
##LoadModule proxy_ajp_module modules/mod_proxy_ajp.so
##LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
##LoadModule proxy_express_module modules/mod_proxy_express.so
##LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so
##LoadModule proxy_fdpass_module modules/mod_proxy_fdpass.so

Default	Value:	

The	mod_proxy	module	and	other	proxy	modules	are	NOT	enabled	with	a	default	source	
build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_proxy.html		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

27	|	P a g e 	
	

2.7	Disable	User	Directories	Modules	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	UserDir	directive	must	be	disabled	so	that	user	home	directories	are	not	accessed	via	
the	web	site	with	a	tilde	(~)	preceding	the	username.	The	directive	also	sets	the	path	name	
of	the	directory	that	will	be	accessed.	For	example:	

• http://example.com/~ralph/	might	access	a	public_html	sub-directory	of	ralph	
user's	home	directory.	

• The	directive	UserDir ./	might	map	/~root	to	the	root	directory	(/).	

Rationale:	

The	user	directories	should	not	be	globally	enabled	since	it	allows	anonymous	access	to	
anything	users	may	want	to	share	with	other	users	on	the	network.	Also	consider	that	
every	time	a	new	account	is	created	on	the	system,	there	is	potentially	new	content	
available	via	the	web	site.	

Audit:	

Perform	the	following	to	determine	if	the	modules	are	enabled.	

Run	the	httpd	server	with	the	-M	option	to	list	enabled	modules:	

httpd -M | grep userdir_

	

Note:	If	the	modules	are	correctly	disabled,	there	will	be	no	output	when	executing	the	
above	command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	the	user	directories	module:	

1. For	source	builds	with	static	modules,	run	the	Apache	./configure	script	with	the	-
-disable-userdir configure	script	options.		

$ cd $DOWNLOAD_HTTPD
$./configure --disable-userdir

	

28	|	P a g e 	
	

2. For	dynamically	loaded	modules,	comment	out	or	remove	the	LoadModule	directive	
for	mod_userdir	module	from	the	httpd.conf	file.		

##LoadModule userdir_module modules/mod_userdir.so

Default	Value:	

The	mod_userdir	module	is	not	enabled	with	a	default	source	build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_userdir.html				

CIS	Controls:	

18	Application	Software	Security	
	

	

29	|	P a g e 	
	

2.8	Disable	Info	Module	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	mod_info	module	provides	information	on	the	server	configuration	via	access	
to	a	/server-info	URL	location.	

Rationale:	

While	having	server	configuration	information	available	as	a	web	page	may	be	convenient	
it's	recommended	that	this	module	NOT	be	enabled.	

Once	mod_info	is	loaded	into	the	server,	its	handler	capability	is	available	in	per-directory	
.htaccess	files	and	can	leak	sensitive	information	from	the	configuration	directives	of	
other	Apache	modules	such	as	system	paths,	usernames/passwords,	database	names,	etc.	

Audit:	

Perform	the	following	to	determine	if	the	Info	module	is	enabled.	

Run	the	httpd	server	with	the	-M	option	to	list	enabled	modules:	

httpd -M | egrep 'info_module'

	

Note:	If	the	module	is	correctly	disabled,	there	will	be	no	output	when	executing	the	above	
command.	

Remediation:	

Perform	either	one	of	the	following	to	disable	the	mod_info	module:	

1. For	source	builds	with	static	modules,	run	the	Apache	./configure	script	without	
including	the	mod_info	in	the	--enable-modules= configure	script	options.		

$ cd $DOWNLOAD_HTTPD
$./configure

	 	

	

30	|	P a g e 	
	

2. For	dynamically	loaded	modules,	comment	out	or	remove	the	LoadModule	directive	
for	the	mod_info	module	from	the	httpd.conf	file.		

##LoadModule info_module modules/mod_info.so

Default	Value:	

The	mod_info	module	is	not	enabled	with	a	default	source	build.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_info.html		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

31	|	P a g e 	
	

3	Principles,	Permissions,	and	Ownership	

This	section	provides	recommendations	for	configuring	identities	(users	and	groups)	that	
Apache	leverages,	permissions	on	Apache-related	filesystem	resources,	and	ownership	of	
Apache-related	filesystem	resources.	

3.1	Run	the	Apache	Web	Server	as	a	non-root	user	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Although	Apache	is	typically	started	with	root	privileges	in	order	to	listen	on	port	80	and	
443,	it	can	and	should	run	as	another	non-root	user	in	order	to	perform	the	web	services.	
The	Apache	User	and	Group	directives	are	used	to	designate	the	user	and	group	that	the	
Apache	worker	processes	will	assume.	

Rationale:	

One	of	the	best	ways	to	reduce	your	exposure	to	attack	when	running	a	web	server	is	to	
create	a	unique,	unprivileged	user	and	group	for	the	server	application.	The	nobody	or	
daemon	user	and	group	that	comes	default	on	Unix	variants	should	NOT	be	used	to	run	the	
web	server,	since	the	account	is	commonly	used	for	other	separate	daemon	services.	
Instead,	an	account	used	only	by	the	apache	software	so	as	to	not	give	unnecessary	access	
to	other	services.	Also,	the	identifier	used	for	the	apache	user	should	be	a	unique	system	
account.	System	user	accounts	UID	numbers	have	lower	values	which	are	reserved	for	the	
special	system	accounts	not	used	by	regular	users,	such	as	discussed	in	User	Accounts	
section	of	the	CIS	Red	Hat	benchmark.	Typically,	system	accounts	numbers	range	from	1-
999,	or	1-499	and	are	defined	in	the	/etc/login.defs	file.	

As	an	even	more	secure	alternative,	if	the	Apache	web	server	can	be	run	on	high	
unprivileged	ports,	then	it	is	not	necessary	to	start	Apache	as	root,	and	all	of	the	Apache	
processes	may	be	run	as	the	Apache	specific	user	as	described	below.	

Audit:	

Ensure	the	apache	account	is	unique	and	has	been	created	with	a	UID	less	than	the	
minimum	normal	user	account	with	the	apache	group	and	configured	in	the	httpd.conf	
file.	

	

32	|	P a g e 	
	

1. Ensure	the	User	and	Group	directives	are	present	in	the	Apache	configuration	and	
not	commented	out:		

grep -i '^User' $APACHE_PREFIX/conf/httpd.conf
User apache
grep -i '^Group' $APACHE_PREFIX/conf/httpd.conf
Group apache

2. Ensure	the	apache	account	UID	is	correct:		

grep '^UID_MIN' /etc/login.defs
id apache

The	UID	must	be	less	than	the	UID_MIN	value	in	/etc/login.defs,	and	group	of	
apache	similar	to	the	following	entries:		

UID_MIN 1000
uid=48(apache) gid=48(apache) groups=48(apache)

3. While	the	web	server	is	running,	check	the	user	id	for	the	httpdprocesses.	The	user	
name	should	match	the	configuration	file.		

ps axu | grep httpd | grep -v '^root'

Remediation:	

Perform	the	following:	

1. If	the	apache	user	and	group	do	not	already	exist,	create	the	account	and	group	as	a	
unique	system	account:		

groupadd -r apache
useradd apache -r -g apache -d /var/www -s /sbin/nologin

2. Configure	the	Apache	user	and	group	in	the	Apache	configuration	file	httpd.conf:		

User apache
Group apache

Default	Value:	

The	default	Apache	user	and	group	are	configured	as	daemon.	

	 	

	

33	|	P a g e 	
	

CIS	Controls:	

5.1	Minimize	and	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	
and	monitor	for	anomalous	behavior.	

	

34	|	P a g e 	
	

3.2	Give	the	Apache	User	Account	an	Invalid	Shell	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	apache	account	must	not	be	used	as	a	regular	login	account,	and	should	be	assigned	an	
invalid	or	nologin	shell	to	ensure	that	the	account	cannot	be	used	to	login.	

Rationale:	

Service	accounts	such	as	the	apache	account	represent	a	risk	if	they	can	be	used	to	get	a	
login	shell	to	the	system.	

Audit:	

Check	the	apache	login	shell	in	the	/etc/passwd	file:	

grep apache /etc/passwd

	
The	apache	account	shell	must	be	/sbin/nologin	or	/dev/null	similar	to	the	following:	
/etc/passwd:apache:x:48:48:Apache:/var/www:/sbin/nologin	

Remediation:	

Change	the	apache	account	to	use	the	nologin	shell	or	an	invalid	shell	such	as	/dev/null:	

chsh -s /sbin/nologin apache

Default	Value:	

The	default	Apache	user	account	is	daemon.	The	daemon	account	may	have	a	valid	login	
shell	or	a	shell	of	/sbin/nologin	depending	on	the	operating	system	distribution	version.	

CIS	Controls:	

16	Account	Monitoring	and	Control	
	

	

35	|	P a g e 	
	

3.3	Lock	the	Apache	User	Account	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	user	account	under	which	Apache	runs	should	not	have	a	valid	password,	but	should	
be	locked.	

Rationale:	

As	a	defense-in-depth	measure	the	Apache	user	account	should	be	locked	to	prevent	logins,	
and	to	prevent	a	user	from	su'ing	to	apache	using	the	password.	In	general,	there	shouldn't	
be	a	need	for	anyone	to	have	to	su	as	apache,	and	when	there	is	a	need,	then	sudo	should	be	
used	instead,	which	would	not	require	the	apache	account	password.	

Audit:	

Ensure	the	apache	account	is	locked	using	the	following:	

passwd -S apache

The	results	will	be	similar	to	the	following:	

apache LK 2010-01-28 0 99999 7 -1 (Password locked.)

- or -

apache L 07/02/2012 -1 -1 -1 -1

Remediation:	

Use	the	passwd	command	to	lock	the	apache	account:	

passwd -l apache

Default	Value:	

The	default	user	is	daemon	and	the	account	is	typically	locked.	

CIS	Controls:	

16	Account	Monitoring	and	Control	

	

36	|	P a g e 	
	

3.4	Set	Ownership	on	Apache	Directories	and	Files	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	directories	and	files	should	be	owned	by	root.	This	applies	to	all	of	the	Apache	
software	directories	and	files	installed.	

Rationale:	

Restricting	ownership	of	the	Apache	files	and	directories	will	reduce	the	probability	of	
unauthorized	modifications	to	those	resources.	

Audit:	

Identify	files	in	the	Apache	directory	that	are	not	owned	by	root:	

find $APACHE_PREFIX \! -user root -ls

Remediation:	

Perform	the	following:	

Set	ownership	on	the	$APACHE_PREFIX	directories	such	as	/usr/local/apache2:	

$ chown -R root $APACHE_PREFIX

Default	Value:	

Default	ownership	and	group	is	a	mixture	of	the	user:group	that	built	the	software	and	
root:root.	

CIS	Controls:	

5.1	Minimize	and	Sparingly	Use	Administrative	Privileges	
Minimize	administrative	privileges	and	only	use	administrative	accounts	when	they	are	
required.	Implement	focused	auditing	on	the	use	of	administrative	privileged	functions	
and	monitor	for	anomalous	behavior.	

	

37	|	P a g e 	
	

3.5	Set	Group	Id	on	Apache	Directories	and	Files	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	directories	and	files	should	be	set	to	have	a	group	Id	of	root,	(or	a	root	
equivalent)	group.	This	applies	to	all	of	the	Apache	software	directories	and	files	installed.	
The	only	expected	exception	is	that	the	Apache	web	document	root	
($APACHE_PREFIX/htdocs)	is	likely	to	need	a	designated	group	to	allow	web	content	to	be	
updated	(such	as	webupdate)	through	a	change	management	process.	

Rationale:	

Securing	Apache	files	and	directories	will	reduce	the	probability	of	unauthorized	
modifications	to	those	resources.	

Audit:	

Identify	files	in	the	Apache	directories	other	than	htdocs	with	a	group	other	than	root:	

find $APACHE_PREFIX -path $APACHE_PREFIX/htdocs -prune -o \! -group root -
ls

Remediation:	

Perform	the	following:	

Set	ownership	on	the	$APACHE_PREFIX	directories	such	as	/usr/local/apache2:	

$ chgrp -R root $APACHE_PREFIX

Default	Value:	

Default	ownership	and	group	is	a	mixture	of	the	user:group	that	built	the	software	and	
root:root.	

CIS	Controls:	

5	Controlled	Use	of	Administration	Privileges	

	

38	|	P a g e 	
	

3.6	Restrict	Other	Write	Access	on	Apache	Directories	and	Files	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Permissions	on	Apache	directories	should	generally	be	rwxr-xr-x	(755)	and	file	
permissions	should	be	similar	except	not	executable	if	executable	is	not	appropriate.	This	
applies	to	all	of	the	Apache	software	directories	and	files	installed	with	the	possible	
exception	of	the	web	document	root	$APACHE_PREFIX/htdocs.	The	directories	and	files	in	
the	web	document	root	may	have	a	designated	group	with	write	access	to	allow	web	
content	to	be	updated.	In	summary,	the	minimum	recommendation	is	to	not	allow	write	
access	by	other.	

Rationale:	

None	of	the	Apache	files	and	directories,	including	the	Web	document	root	must	allow	
other	write	access.	Other	write	access	is	likely	to	be	very	useful	for	unauthorized	
modification	of	web	content,	configuration	files	or	software	for	malicious	attacks.	

Audit:	

Identify	files	or	directories	in	the	Apache	directory	with	other	write	access,	excluding	
symbolic	links:	

find -L $APACHE_PREFIX \! -type l -perm /o=w -ls

Remediation:	

Perform	the	following	to	remove	other	write	access	on	the	$APACHE_PREFIX	directories.	

chmod -R o-w $APACHE_PREFIX

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

39	|	P a g e 	
	

3.7	Secure	Core	Dump	Directory	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	CoreDumpDirectory	directive	is	used	to	specify	the	directory	Apache	attempts	to	
switch	to	before	creating	the	core	dump.	Core	dumps	will	be	disabled	if	the	directory	is	not	
writable	by	the	Apache	user.	Also,	core	dumps	will	be	disabled	if	the	server	is	started	as	
root	and	switches	to	a	non-root	user,	as	is	typical.	It	is	recommended	that	the	
CoreDumpDirectory	directive	be	set	to	a	directory	that	is	owned	by	the	root	user,	owned	
by	the	group	the	Apache	HTTPD	process	executes	as,	and	be	unaccessible	to	other	users.	

Rationale:	

Core	dumps	are	snapshots	of	memory	and	may	contain	sensitive	information	that	should	
not	be	accessible	by	other	accounts	on	the	system.	

Audit:	

Verify	that	either	the	CoreDumpDirectory	directive	is	not	enabled	in	any	of	the	Apache	
configuration	files	or	that	the	configured	directory	meets	the	following	requirements:	

1. CoreDumpDirectory	is	not	within	the	Apache	web	document	root	
($APACHE_PREFIX/htdocs)	

2. Must	be	owned	by	root	and	have	a	group	ownership	of	the	Apache	group	(as	defined	
via	the	Group	directive)	

3. Must	have	no	read-write-search	access	permission	for	other	users.	(e.g.	o=rwx)	

Remediation:	

Either	remove	the	CoreDumpDirectory	directive	from	the	Apache	configuration	files	or	
ensure	that	the	configured	directory	meets	the	following	requirements.	

1. CoreDumpDirectory	is	not	to	be	within	the	Apache	web	document	root	
($APACHE_PREFIX/htdocs)	
	

2. Must	be	owned	by	root	and	have	a	group	ownership	of	the	Apache	group	(as	defined	
via	the	Group	directive)		

chown root:apache /var/log/httpd

	

40	|	P a g e 	
	

3. Must	have	no	read-write-search	access	permission	for	other	users.		

chmod o-rwx /var/log/httpd

Default	Value:	

The	default	core	dump	directory	is	the	ServerRoot	directory.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#coredumpdirectory		

CIS	Controls:	

18.9	Sanitize	Deployed	Software	of	Development	Artifacts	
For	in-house	developed	applications,	ensure	that	development	artifacts	(sample	data	and	
scripts;	unused	libraries,	components,	debug	code;	or	tools)	are	not	included	in	the	
deployed	software,	or	accessible	in	the	production	environment.	

	

41	|	P a g e 	
	

3.8	Secure	the	Lock	File	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Mutex	directive	sets	the	locking	mechanism	used	to	serialize	access	to	resources.	It	
may	be	used	to	specify	that	a	lock	file	is	to	be	used	as	a	mutex	mechanism	and	may	provide	
the	path	to	the	lock	file	to	be	used	with	the	fcntl(2)	or	flock(2)	system	calls.	Most	Linux	
systems	will	default	to	using	semaphores	instead,	so	the	directive	may	not	apply.	However,	
in	the	event	a	lock	file	is	used,	it	is	important	for	the	lock	file	to	be	in	a	local	directory	that	is	
not	writable	by	other	users.	

Rationale:	

If	the	lock	file	to	be	used	as	a	mutex	is	placed	in	a	writable	directory,	other	accounts	could	
create	a	denial	of	service	attack	and	prevent	the	server	from	starting	by	creating	a	lock	file	
with	the	same	name.	

Audit:	

Verify	the	configuration	does	NOT	include	a	Mutex	directive	with	the	mechanism	of	fcntl,	
flock	or	file.	

If	one	of	the	file	locking	mechanisms	is	configured,	then	find	the	directory	in	which	the	lock	
file	would	be	created.	The	default	value	is	the	ServerRoot/logs	directory.	

1. Verify	that	the	lock	file	directory	is	not	a	directory	within	the	Apache	DocumentRoot		
2. Verify	that	the	ownership	and	group	of	the	directory	is	root:root	(or	the	user	

under	which	Apache	initially	starts	up	if	not	root).	
3. Verify	the	permissions	on	the	directory	are	only	writable	by	root	(or	the	startup	

user	if	not	root),	
4. Check	that	the	lock	file	directory	is	on	a	locally	mounted	hard	drive	rather	than	an	

NFS	mounted	file	system	

Remediation:	

Find	the	directory	path	in	which	the	lock	file	would	be	created.	The	default	value	is	the	
ServerRoot/logs	directory.	

1. Modify	the	directory	if	the	path	is	a	directory	within	the	Apache	DocumentRoot		
2. Change	the	ownership	and	group	to	be	root:root,	if	not	already.	

	

42	|	P a g e 	
	

3. Change	the	permissions	so	that	the	directory	is	only	writable	by	root,	or	the	user	
under	which	Apache	initially	starts	up	(default	is	root),	

4. Check	that	the	lock	file	directory	is	on	a	locally	mounted	hard	drive	rather	than	an	
NFS	mounted	file	system.	

Default	Value:	

The	default	mechanism	for	the	Mutexdirective	is	platform	specific	and	may	be	determined	
by	running	httpd -V.	The	default	path	is	the	ServerRoot/logs	directory.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#mutex		

CIS	Controls:	

18	Application	Software	Security	
	

	

43	|	P a g e 	
	

3.9	Secure	the	Pid	File	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	PidFile	directive	sets	the	file	path	to	the	process	ID	file	to	which	the	server	records	
the	process	id	of	the	server,	which	is	useful	for	sending	a	signal	to	the	server	process	or	for	
checking	on	the	health	of	the	process.	

Rationale:	

If	the	PidFile	is	placed	in	a	writable	directory,	other	accounts	could	create	a	denial	of	
service	attack	and	prevent	the	server	from	starting	by	creating	a	pid	file	with	the	same	
name.	

Audit:	

1. Find	the	directory	in	which	the	PidFile	would	be	created.	The	default	value	is	the	
ServerRoot/logs	directory.	

2. Verify	that	the	process	ID	file	directory	is	not	a	directory	within	the	Apache	
DocumentRoot		

3. Verify	that	the	ownership	and	group	of	the	directory	is	root:root	(or	the	user	
under	which	Apache	initially	starts	up	if	not	root).	

4. Verify	the	permissions	on	the	directory	are	only	writable	by	root	(or	the	startup	
user	if	not	root).	

Remediation:	

1. Find	the	directory	in	which	the	PidFile	would	be	created.	The	default	value	is	the	
ServerRoot/logs	directory.	

2. Modify	the	directory	if	the	PidFile	is	in	a	directory	within	the	Apache	
DocumentRoot.	

3. Change	the	ownership	and	group	to	be	root:root,	if	not	already.	
4. Change	the	permissions	so	that	the	directory	is	only	writable	by	root,	or	the	user	

under	which	Apache	initially	starts	up	(default	is	root).	

Default	Value:	

The	default	process	ID	file	is	logs/httpd.pid.	

	 	

	

44	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#pidfile	

CIS	Controls:	

18	Application	Software	Security	

	

45	|	P a g e 	
	

3.10	Secure	the	ScoreBoard	File	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	ScoreBoardFile	directive	sets	a	file	path	which	the	server	will	use	for	inter-process	
communication	(IPC)	among	the	Apache	processes.	On	most	Linux	platforms,	shared	
memory	will	be	used	instead	of	a	file	in	the	file	system,	so	this	directive	is	not	generally	
needed	and	does	not	need	to	be	specified.	However,	if	the	directive	is	specified,	then	
Apache	will	use	the	configured	file	for	the	inter-process	communication.	Therefore,	if	it	is	
specified,	it	needs	to	be	located	in	a	secure	directory.	

Rationale:	

If	the	ScoreBoardFile	is	placed	in	a	writable	directory,	other	accounts	could	create	a	denial	
of	service	attack	and	prevent	the	server	from	starting	by	creating	a	file	with	the	same	
name,	and	or	users	could	monitor	and	disrupt	the	communication	between	the	processes	
by	reading	and	writing	to	the	file.	

Audit:	

1. Check	to	see	if	the	ScoreBoardFile	is	specified	in	any	of	the	Apache	configuration	
files.	If	it	is	not	present,	the	configuration	is	compliant.	

2. Find	the	directory	in	which	the	ScoreBoardFile	would	be	created.	The	default	value	
is	the	ServerRoot/logs	directory.	

3. Verify	that	the	scoreboard	file	directory	is	not	a	directory	within	the	Apache	
DocumentRoot		

4. Verify	that	the	ownership	and	group	of	the	directory	is	root:root	(or	the	user	
under	which	Apache	initially	starts	up	if	not	root).	

5. Change	the	permissions	so	that	the	directory	is	only	writable	by	root	(or	the	startup	
user	if	not	root).	

6. Check	that	the	scoreboard	file	directory	is	on	a	locally	mounted	hard	drive	rather	
than	an	NFS	mounted	file	system.	

Remediation:	

1. Check	to	see	if	the	ScoreBoardFile	is	specified	in	any	of	the	Apache	configuration	
files.	If	it	is	not	present	no	changes	are	required.	

2. If	the	directive	is	present,	find	the	directory	in	which	the	ScoreBoardFile	would	be	
created.	The	default	value	is	the	ServerRoot/logs	directory.	

	

46	|	P a g e 	
	

3. Modify	the	directory	if	the	ScoreBoardFile	is	in	a	directory	within	the	Apache	
DocumentRoot		

4. Change	the	ownership	and	group	to	be	root:root,	if	not	already.	
5. Change	the	permissions	so	that	the	directory	is	only	writable	by	root,	or	the	user	

under	which	apache	initially	starts	up	(default	is	root),	
6. Check	that	the	scoreboard	file	directory	is	on	a	locally	mounted	hard	drive	rather	

than	an	NFS	mounted	file	system.	

Default	Value:	

The	default	scoreboard	file	is	logs/apache_status.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#scoreboardfile		

CIS	Controls:	

18	Application	Software	Security	

	

47	|	P a g e 	
	

3.11	Restrict	Group	Write	Access	for	the	Apache	Directories	and	Files	
(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Group	permissions	on	Apache	directories	should	generally	be	r-x	and	file	permissions	
should	be	similar	except	not	executable	if	executable	is	not	appropriate.	This	applies	to	all	
of	the	Apache	software	directories	and	files	installed	with	the	possible	exception	of	the	web	
document	root	$DOCROOT	defined	by	Apache	DocumentRoot	and	defaults	to	
$APACHE_PREFIX/htdocs.	The	directories	and	files	in	the	web	document	root	may	have	a	
designated	web	development	group	with	write	access	to	allow	web	content	to	be	updated.	

Rationale:	

Restricting	write	permissions	on	the	Apache	files	and	directories	can	help	mitigate	attacks	
that	modify	web	content	to	provide	unauthorized	access,	or	to	attack	web	clients.	

Audit:	

Identify	files	or	directories	in	the	Apache	directory	with	group	write	access,	excluding	
symbolic	links:	

find -L $APACHE_PREFIX \! -type l -perm /g=w -ls

Remediation:	

Perform	the	following	to	remove	group	write	access	on	the	$APACHE_PREFIX	directories.	

chmod -R g-w $APACHE_PREFIX

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

48	|	P a g e 	
	

3.12	Restrict	Group	Write	Access	for	the	Document	Root	Directories	and	
Files	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Group	permissions	on	Apache	Document	Root	directories	$DOCROOT	may	need	to	be	
writable	by	an	authorized	group	such	as	development,	support,	or	a	production	content	
management	tool.	However,	it	is	important	that	the	Apache	group	used	to	run	the	server	
does	not	have	write	access	to	any	directories	or	files	in	the	document	root.	

Rationale:	

Preventing	Apache	from	writing	to	the	web	document	root	helps	mitigate	risk	associated	
with	web	application	vulnerabilities	associated	with	file	uploads	or	command	execution.	
Typically,	if	an	application	hosted	by	Apache	needs	to	write	to	directory,	it	is	best	practice	
to	have	that	directory	live	outside	the	web	root.	

Audit:	

Identify	files	or	directories	in	the	Apache	Document	Root	directory	with	Apache	group	
write	access.	

Define $GRP to be the Apache group configured
GRP=$(grep '^Group' $APACHE_PREFIX/conf/httpd.conf | cut -d' ' -f2)
find -L $DOCROOT -group $GRP -perm /g=w -ls

Remediation:	

Perform	the	following	to	remove	group	write	access	on	the	$DOCROOT	directories	and	files	
with	the	apache	group.	

find -L $DOCROOT -group $GRP -perm /g=w -print | xargs chmod g-w

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

49	|	P a g e 	
	

4	Apache	Access	Control	

Recommendations	in	this	section	pertain	to	configurable	access	control	mechanisms	that	
are	available	in	Apache	HTTP	server.	

4.1	Deny	Access	to	OS	Root	Directory	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	Directory	directive	allows	for	directory	specific	configuration	of	access	
controls	and	many	other	features	and	options.	One	important	usage	is	to	create	a	default	
deny	policy	that	does	not	allow	access	to	Operating	system	directories	and	files,	except	for	
those	specifically	allowed.	This	is	done	by	denying	access	to	the	OS	root	directory.	

Rationale:	

One	aspect	of	Apache,	which	is	occasionally	misunderstood,	is	the	feature	of	default	access.	
That	is,	unless	you	take	steps	to	change	it,	if	the	server	can	find	its	way	to	a	file	through	
normal	URL	mapping	rules,	it	can	and	will	serve	it	to	clients.	Having	a	default	deny	is	a	
predominate	security	principal,	and	then	helps	prevent	the	unintended	access,	and	we	do	
that	in	this	case	by	denying	access	to	the	OS	root	directory	using	either	of	two	methods	but	
not	both:	

1. Using	the	Apache	Deny	directive	along	with	an	Order	directive.	
2. Using	the	Apache	Require	directive.	

Either	method	is	effective.	The	Order/Deny/Allow	combination	are	now	deprecated;	they	
provide	three	passes	where	all	the	directives	are	processed	in	the	specified	order.	In	
contrast,	the	Require	directive	works	on	the	first	match	similar	to	firewall	rules.	The	
Require	directive	is	the	default	for	Apache	2.4	and	is	demonstrated	in	the	remediation	
procedure	as	it	may	be	less	likely	to	be	misunderstood.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	<Directory>	element.	

2. Ensure	that	either	one	of	the	following	two	methods	are	configured:	

	

50	|	P a g e 	
	

Using	the	deprecated	Order/Deny/Allow	method:	

1. Ensure	there	is	a	single	Order	directive	with	the	value	of	deny, allow		
2. Ensure	there	is	a	Deny	directive,	and	with	the	value	of	from all.	
3. Ensure	there	are	no	Allow	or	Require	directives	in	the	root	<Directory>	

element.	

Using	the	Require	method:	

4. Ensure	there	is	a	single	Require	directive	with	the	value	of	all denied		
5. Ensure	there	are	no	Allow	or	Deny	directives	in	the	root	<Directory>	

element.	

The	following	may	be	useful	in	extracting	root	directory	elements	from	the	Apache	
configuration	for	auditing.	

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	<Directory>	element.	

2. Add	a	single	Require	directive	and	set	the	value	to	all denied		
3. Remove	any	Deny	and	Allow	directives	from	the	root	<Directory>	element.		

<Directory>
 . . .
 Require all denied
 . . .
</Directory>

Default	Value:	

The	following	is	the	default	root	directory	configuration:	

<Directory>
 . . .
 Require all denied
 . . .
</Directory>

	 	

	

51	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#directory	
2. https://httpd.apache.org/docs/2.4/mod/mod_authz_host.html		

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.		

	

52	|	P a g e 	
	

4.2	Allow	Appropriate	Access	to	Web	Content	(Not	Scored)	

Profile	Applicability:	

• Level	1	

Description:	

In	order	to	serve	Web	content,	either	the	Apache	Allow	directive	or	the	Require	directive	
will	need	to	be	used	to	allow	for	appropriate	access	to	directories,	locations	and	virtual	
hosts	that	contain	web	content.	

Rationale:	

Either	the	Allow	or	Require	directives	may	be	used	within	a	directory,	a	location	or	other	
context	to	allow	appropriate	access.	Access	may	be	allowed	to	all,	or	to	specific	networks,	
or	hosts,	or	users	as	appropriate.	The	Allow/Deny/Order directives	are	deprecated	and	
should	be	replaced	by	the	Require	directive.	It	is	also	recommended	that	either	the	Allow	
directive	or	the	Require	directive	be	used,	but	not	both	in	the	same	context.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	all	<Directory>	elements.	

2. Ensure	that	either	one	of	the	following	two	methods	are	configured:		
Use	the	deprecated	Order/Deny/Allow	method:		

1. Ensure	there	is	a	single	Order directive	with	the	value	of	Deny,Allow for	
each.		

2. Ensure	the	Allow	and	Deny	directives,	have	values	that	are	appropriate	for	
the	purposes	of	the	directory.		

Use	the	Require	method:		

1. Ensure	that	the	Order/Deny/Allow	directives	are	NOT	used	for	the	directory.	
2. Ensure	the	Require	directives	have	values	that	are	appropriate	for	the	

purposes	of	the	directory.	

	 	

	

53	|	P a g e 	
	

The	following	command	may	be	useful	to	extract	<Directory>	and	<Location>	elements	
and	Allow	directives	from	the	Apache	configuration	files.	

perl -ne 'print if /^ *<Directory */i .. //<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf
perl -ne 'print if /^ *<Location */i .. //<\/Location/i'
$APACHE_PREFIX/conf/httpd.conf $APACHE_PREFIX/conf.d/*.conf
grep -i -C 6 -i 'Allow[[:space:]]from' $APACHE_PREFIX/conf/httpd.conf
$APACHE_PREFIX/conf.d/*.conf

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	all	<Directory>	and	<Location>	elements.	There	should	be	one	for	the	
document	root	and	any	special	purpose	directories	or	locations.	There	are	likely	to	
be	other	access	control	directives	in	other	contexts,	such	as	virtual	hosts	or	special	
elements	like	<Proxy>.	

2. Include	the	appropriate	Require	directives,	with	values	that	are	appropriate	for	the	
purposes	of	the	directory.	

The	configurations	below	are	just	a	few	possible	examples.	

<Directory "/var/www/html/">
 Require ip 192.169.
</Directory>
<Directory "/var/www/html/">
 Require all granted
</Directory>
<Location /usage>
 Require local
</Location>
<Location /portal>
 Requirevalid-user
</Location>

Default	Value:	

The	following	is	the	default	Web	root	directory	configuration:	

<Directory "/usr/local/apache2/htdocs">
 . . .
 Require all granted
 . . .
</Directory>

	 	

	

54	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#directory	
2. https://httpd.apache.org/docs/2.4/mod/mod_authz_host.html	
3. https://httpd.apache.org/docs/2.4/mod/mod_authz_core.html	
4. https://httpd.apache.org/docs/2.4/mod/mod_access_compat.html	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

55	|	P a g e 	
	

4.3	Restrict	Override	for	the	OS	Root	Directory	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	AllowOverRide	directive	and	the	new	AllowOverrideList	directive	allow	for	
.htaccess	files	to	be	used	to	override	much	of	the	configuration,	including	authentication,	
handling	of	document	types,	auto	generated	indexes,	access	control,	and	options.	When	the	
server	finds	an	.htaccess	file	(as	specified	by	AccessFileName)	it	needs	to	know	which	
directives	declared	in	that	file	can	override	earlier	access	information.	When	this	directive	
is	set	to	None,	then	.htaccess	files	are	completely	ignored.	In	this	case,	the	server	will	not	
even	attempt	to	read	.htaccess	files	in	the	filesystem.	When	this	directive	is	set	to	All,	
then	any	directive	which	has	the	.htaccess	Context	is	allowed	in	the	.htaccess	files.	

Rationale:	

While	the	functionality	of	htaccess	files	is	sometimes	convenient,	usage	decentralizes	the	
access	controls	and	increases	the	risk	of	configurations	being	changed	or	viewed	
inappropriately	by	an	unintended	or	rogue	.htaccess	file.	Consider	also	that	some	of	the	
more	common	vulnerabilities	in	web	servers	and	web	applications	allow	the	web	files	to	be	
viewed	or	to	be	modified,	then	it	is	wise	to	keep	the	configuration	out	of	the	web	server	
from	being	placed	in	.htaccess	files.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	element.	

2. Ensure	there	is	a	single	AllowOverride	directive	with	the	value	of	None.	
3. Ensure	there	are	no	AllowOverrideList	directives	present.	

The	following	may	be	useful	for	extracting	root	directory	elements	from	the	Apache	
configuration	for	auditing.	

$ perl -ne 'print if /^ *<Directory *\//i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

	 	

	

56	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	<Directory>	element.	

2. Remove	any	AllowOverrideList	directives	found.	
3. Add	a	single	AllowOverride	directive	if	there	is	none.	
4. Set	the	value	for	AllowOverride	to	None.		

<Directory />
 . . .
 AllowOverride None
 . . .
</Directory>

Default	Value:	

The	following	is	the	default	root	directory	configuration:	

<Directory />
 . . .
 AllowOverride None
 . . .
</Directory>

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverride		
2. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverridelist	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

57	|	P a g e 	
	

4.4	Restrict	Override	for	All	Directories	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	AllowOverride	directive	and	the	new	AllowOverrideList	directive	allow	for	
.htaccess	files	to	be	used	to	override	much	of	the	configuration,	including	authentication,	
handling	of	document	types,	auto	generated	indexes,	access	control,	and	options.	When	the	
server	finds	an	.htaccess	file	(as	specified	by	AccessFileName)	it	needs	to	know	which	
directives	declared	in	that	file	can	override	earlier	access	information.	When	this	directive	
is	set	to	None,	then	.htaccess	files	are	completely	ignored.	In	this	case,	the	server	will	not	
even	attempt	to	read	.htaccess	files	in	the	filesystem.	When	this	directive	is	set	to	All,	
then	any	directive	which	has	the	.htaccess	context	is	allowed	in	.htaccess	files.	

Rationale:	

.htaccess	files	decentralizes	access	control	and	increases	the	risk	of	server	configuration	
being	changed	inappropriately.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	any	AllowOverride	directives.	

2. Ensure	there	the	value	for	AllowOverride	is	None.		

grep -i AllowOverride $APACHE_PREFIX/conf/httpd.conf

3. Ensure	there	are	no	AllowOverrideList	directives	present.	

Remediation	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	AllowOverride	directives.	

	 	

	

58	|	P a g e 	
	

2. Set	the	value	for	all	AllowOverride	directives	to	None.		

. . .
AllowOverride None
. . .

3. Remove	any	AllowOverrideList	directives	found.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverride		
2. https://httpd.apache.org/docs/2.4/mod/core.html#allowoverridelist	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

59	|	P a g e 	
	

5	Minimize	Features,	Content	and	Options	

Recommendations	in	this	section	intend	to	reduce	the	effective	attack	surface	of	Apache	
HTTP	server.	

5.1	Restrict	Options	for	the	OS	Root	Directory	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	Options	directive	allows	for	specific	configuration	of	options,	including	
execution	of	CGI,	following	symbolic	links,	server	side	includes,	and	content	negotiation.	

Rationale:	

The	Options	directive	for	the	root	OS	level	is	used	to	create	a	default	minimal	options	
policy	that	allows	only	the	minimal	options	at	the	root	directory	level.	Then	for	specific	
web	sites	or	portions	of	the	web	site,	options	may	be	enabled	as	needed	and	appropriate.	
No	options	should	be	enabled	and	the	value	for	the	Options	directive	should	be	None.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	<Directory>	element.	

2. Ensure	there	is	a	single	Options	directive	with	the	value	of	None.	

The	following	may	be	useful	for	extracting	root	directory	elements	from	the	Apache	
configuration	for	auditing.	

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	a	root	<Directory>	element.	

2. Add	a	single	Options	directive	if	there	is	none.	

	

60	|	P a g e 	
	

3. Set	the	value	for	Options	to	None.		

<Directory />
 . . .
 Options None
 . . .
</Directory>

Default	Value:	

The	default	value	for	the	root	directory's	Option	directive	is	Indexes FollowSymLinks.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#options	

CIS	Controls:	

18	Application	Software	Security	

	

61	|	P a g e 	
	

5.2	Restrict	Options	for	the	Web	Root	Directory	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	Options	directive	allows	for	specific	configuration	of	options,	including:	

• Execution	of	CGI	
• Following	symbolic	links	
• Server	side	includes	
• Content	negotiation	

Rationale:	

The	Options	directive	at	the	web	root	or	document	root	level	also	needs	to	be	restricted	to	
the	minimal	options	required.	A	setting	of	None	is	highly	recommended,	however	it	is	
recognized	that	this	level	content	negotiation	may	be	needed	if	multiple	languages	are	
supported.	No	other	options	should	be	enabled.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	the	document	root	<Directory>	elements.	

2. Ensure	there	is	a	single	Options	directive	with	the	value	of	None	or	Multiviews.	

The	following	may	be	useful	in	extracting	directory	elements	from	the	Apache	
configuration	for	auditing.	

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	the	document	root	<Directory>	element.	

	 	

	

62	|	P a g e 	
	

2. Add	or	modify	any	existing	Options	directive	to	have	a	value	of	None	or	Multiviews,	
if	multiviews	are	needed.		

<Directory "/usr/local/apache2/htdocs">
 . . .
 Options None
 . . .
</Directory>

Default	Value:	

The	default	value	for	the	web	root	directory's	Option	directive	is	FollowSymLinks.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#options	

CIS	Controls:	

18	Application	Software	Security	

	

63	|	P a g e 	
	

5.3	Minimize	Options	for	Other	Directories	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	Options	directive	allows	for	specific	configuration	of	options,	including	
execution	of	CGI,	following	symbolic	links,	server	side	includes,	and	content	negotiation.	

Rationale:	

Likewise,	the	options	for	other	directories	and	hosts	needs	to	be	restricted	to	the	minimal	
options	required.	A	setting	of	None	is	recommended,	however	it	is	recognized	that	other	
options	may	be	needed	in	some	cases:	

• Multiviews	-	Is	appropriate	if	content	negotiation	is	required,	such	as	when	
multiple	languages	are	supported.	

• ExecCGI	-	Is	only	appropriate	for	special	directories	dedicated	to	executable	content	
such	as	a	cgi-bin/	directory.	That	way	you	will	know	what	is	executed	on	the	
server.	It	is	possible	to	enable	CGI	script	execution	based	on	file	extension	or	
permission	settings,	however	this	makes	script	control	and	management	almost	
impossible	as	developers	may	install	scripts	without	your	knowledge.	This	may	
become	a	factor	in	a	hosting	environment.	

• FollowSymLinks	&	SymLinksIfOwnerMatch	-	The	following	of	symbolic	links	is	not	
recommended	and	should	be	disabled	if	possible.	The	usage	of	symbolic	links	opens	
up	additional	risk	for	possible	attacks	that	may	use	inappropriate	symbolic	links	to	
access	content	outside	of	the	document	root	of	the	web	server.	Also	consider	that	it	
could	be	combined	with	a	vulnerability	that	allowed	an	attacker	or	insider	to	create	
an	inappropriate	link.	The	option	SymLinksIfOwnerMatch	is	much	safer	in	that	the	
ownership	must	match	in	order	for	the	link	to	be	used,	however	keep	in	mind	there	
is	additional	overhead	created	by	requiring	Apache	to	check	the	ownership.	

• Includes	&	IncludesNOEXEC	-	The	IncludesNOEXEC	option	should	only	be	needed	
when	server	side	includes	are	required.	The	full	Includes	option	should	not	be	used	
as	it	also	allows	execution	of	arbitrary	shell	commands.	See	Apache	Mod	Include	for	
details	https://httpd.apache.org/docs/2.4/mod/mod_include.html			

• Indexes	-	The	Indexes	option	causes	automatic	generation	of	indexes,	if	the	default	
index	page	is	missing,	and	should	be	disabled	unless	required.	

	 	

	

64	|	P a g e 	
	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	the	all	Directory	elements.	

2. Ensure	that	the	Options	directives	do	not	enable	Includes.	

The	following	may	be	useful	for	extracting	Directory	elements	from	the	Apache	
configuration	for	auditing.	

perl -ne 'print if /^ *<Directory */i .. /<\/Directory/i'
$APACHE_PREFIX/conf/httpd.conf

or	

grep -i -A 12 '<Directory[[:space:]]' $APACHE_PREFIX/conf/httpd.conf

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	(httpd.conf	and	any	included	configuration	
files)	to	find	all	<Directory>	elements.	

2. Add	or	modify	any	existing	Options	directive	to	NOT	have	a	value	of	Includes.	
Other	options	may	be	set	if	necessary	and	appropriate	as	described	above.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#options		

CIS	Controls:	

18	Application	Software	Security	
	

	

65	|	P a g e 	
	

5.4	Remove	Default	HTML	Content	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Apache	installations	have	default	content	that	is	not	needed	or	appropriate	for	production	
use.	The	primary	function	for	these	sample	content	is	to	provide	a	default	web	site,	provide	
user	manuals	or	to	demonstrate	special	features	of	the	web	server.	All	content	that	is	not	
needed	should	be	removed.	

Rationale:	

Historically	these	sample	content	and	features	have	been	remotely	exploited	and	can	
provide	different	levels	of	access	to	the	server.	In	the	Microsoft	arena,	Code	Red	exploited	a	
problem	with	the	index	service	provided	by	the	Internet	Information	Service.	Usually	these	
routines	are	not	written	for	production	use	and	consequently	little	thought	was	given	to	
security	in	their	development.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	the	document	root	directory	and	the	configuration	files	do	not	provide	for	
default	index.html	or	welcome	page,	

2. Ensure	the	Apache	User	Manual	content	is	not	installed	by	checking	the	
configuration	files	for	manual	location	directives.	

3. Verify	the	Apache	configuration	files	do	not	have	the	Server	Status	handler	
configured.	

4. Verify	that	the	Server	Information	handler	is	not	configured.	
5. Verify	that	any	other	handler	configurations	such	as	perl-status	is	not	enabled.	

Remediation:	

Review	all	pre-installed	content	and	remove	content	which	is	not	required.	In	particular	
look	for	the	unnecessary	content	which	may	be	found	in	the	document	root	directory,	a	
configuration	directory	such	as	conf/extra	directory,	or	as	a	Unix/Linux	package	

	 	

	

66	|	P a g e 	
	

1. Remove	the	default	index.html	or	welcome	page,	if	it	is	a	separate	package	or	
comment	out	the	configuration	if	it	is	part	of	main	Apache	httpd	package	such	as	it	
is	on	Red	Hat	Linux.	Removing	a	file	such	as	the	welcome.conf	shown	below	is	not	
recommended	as	it	may	get	replaced	if	the	package	is	updated.		

This configuration file enables the default "Welcome"
page if there is no default index page present for
the root URL. To disable the Welcome page, comment
out all the lines below.

##<LocationMatch "^/+$">
Options -Indexes
ErrorDocument 403 /error/noindex.html
##</LocationMatch>

2. Remove	the	Apache	user	manual	content	or	comment	out	configurations	
referencing	the	manual		

yum erase httpd-manual

3. Remove	or	comment	out	any	Server	Status	handler	configuration.		

Allow server status reports generated by mod_status,
with the URL of http://servername/server-status
Change the ".example.com" to match your domain to enable.

##<Location /server-status>
SetHandler server-status
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

4. Remove	or	comment	out	any	Server	Information	handler	configuration.		

Allow remote server configuration reports, with the URL of
http://servername/server-info (requires that mod_info.c be loaded).
Change the ".example.com" to match your domain to enable.

##<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

	 	

	

67	|	P a g e 	
	

5. Remove	or	comment	out	any	other	handler	configuration	such	as	perl-status.		

This will allow remote server configuration reports, with the URL of
http://servername/perl-status
Change the ".example.com" to match your domain to enable.

##<Location /perl-status>
SetHandler perl-script
PerlResponseHandler Apache2::Status
Order deny,allow
Deny from all
Allow from .example.com
##</Location>

Default	Value:	

The	default	source	build	provides	extra	content	available	in	the	
/usr/local/apache2/conf/extra/	directory,	but	the	configuration	of	most	of	the	extra	
content	is	commented	out	by	default.	In	particular,	the	include	of	conf/extra/proxy-
html.conf	is	not	commented	out	in	the	httpd.conf.	

Server-pool management (MPM specific)
#Include conf/extra/httpd-mpm.conf
Multi-language error messages
#Include conf/extra/httpd-multilang-errordoc.conf
Fancy directory listings
#Include conf/extra/httpd-autoindex.conf
Language settings
#Include conf/extra/httpd-languages.conf
User home directories
#Include conf/extra/httpd-userdir.conf
Real-time info on requests and configuration
#Include conf/extra/httpd-info.conf
Virtual hosts
#Include conf/extra/httpd-vhosts.conf
Local access to the Apache HTTP Server Manual
#Include conf/extra/httpd-manual.conf
Distributed authoring and versioning (WebDAV)
#Include conf/extra/httpd-dav.conf
Various default settings
#Include conf/extra/httpd-default.conf
Configure mod_proxy_html to understand HTML4/XHTML1
<IfModule proxy_html_module>
Include conf/extra/proxy-html.conf
</IfModule>
Secure (SSL/TLS) connections
#Include conf/extra/httpd-ssl.conf

	
Also,	the	only	other	default	content	is	a	minimal	barebones	index.html	in	the	document	
root	which	contains.	

<html>
 <body>
 <h1>It works!</h1>
 </body>
</html>

	

68	|	P a g e 	
	

CIS	Controls:	

18.9	Sanitize	Deployed	Software	of	Development	Artifacts	
For	in-house	developed	applications,	ensure	that	development	artifacts	(sample	data	and	
scripts;	unused	libraries,	components,	debug	code;	or	tools)	are	not	included	in	the	
deployed	software,	or	accessible	in	the	production	environment.	

	

69	|	P a g e 	
	

5.5	Remove	Default	CGI	Content	printenv	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Most	Web	Servers,	including	Apache	installations	have	default	CGI	content	which	is	not	
needed	or	appropriate	for	production	use.	The	primary	function	for	these	sample	programs	
is	to	demonstrate	the	capabilities	of	the	web	server.	One	common	default	CGI	content	for	
Apache	installations	is	the	script	printenv.	This	script	will	print	back	to	the	requester	all	of	
the	CGI	environment	variables	which	includes	many	server	configuration	details	and	
system	paths.	

Rationale:	

CGI	programs	have	a	long	history	of	security	bugs	and	problems	associated	with	
improperly	accepting	user-input.	Since	these	programs	are	often	targets	of	attackers,	we	
need	to	make	sure	that	there	are	no	unnecessary	CGI	programs	that	could	potentially	be	
used	for	malicious	purposes.	Usually	these	programs	are	not	written	for	production	use	
and	consequently	little	thought	was	given	to	security	in	their	development.	The	printenv	
script	in	particular	will	disclose	inappropriate	information	about	the	web	server	including	
directory	paths	and	detailed	version	and	configuration	information.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	cgi-bin	files	and	directories	enabled	in	the	Apache	configuration	via	Script,	
ScriptAlias	or	ScriptAliasMatch	or	ScriptInterpreterSource	directives.	

2. Ensure	the	printenv	CGI	is	not	installed	in	any	configured	cgi-bin	directory.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Locate	cgi-bin	files	and	directories	enabled	in	the	Apache	configuration	via	Script,	
ScriptAlias,	ScriptAliasMatch,	or	ScriptInterpreterSource	directives.	

2. Remove	the	printenvdefault	CGI	in	cgi-bin	directory	if	it	is	installed.		

rm $APACHE_PREFIX/cgi-bin/printenv

	 	

	

70	|	P a g e 	
	

Default	Value:	

The	default	source	installation	includes	the	printenv	script.	However,	this	script	is	not	
executable	by	default.	

CIS	Controls:	

18	Application	Software	Security	

	

71	|	P a g e 	
	

5.6	Remove	Default	CGI	Content	test-cgi	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Most	Web	Servers,	including	Apache	installations	have	default	CGI	content	which	is	not	
needed	or	appropriate	for	production	use.	The	primary	function	for	these	sample	programs	
is	to	demonstrate	the	capabilities	of	the	web	server.	A	common	default	CGI	content	for	
Apache	installations	is	the	script	test-cgi.	This	script	will	print	back	to	the	requester	CGI	
environment	variables	which	includes	many	server	configuration	details.	

Rationale:	

CGI	programs	have	a	long	history	of	security	bugs	and	problems	associated	with	
improperly	accepting	user-input.	Since	these	programs	are	often	targets	of	attackers,	we	
need	to	make	sure	that	there	are	no	unnecessary	CGI	programs	that	could	potentially	be	
used	for	malicious	purposes.	Usually	these	programs	are	not	written	for	production	use	
and	consequently	little	thought	was	given	to	security	in	their	development.	The	test-cgi	
script	in	particular	will	disclose	inappropriate	information	about	the	web	server	including	
directory	paths	and	detailed	version	and	configuration	information.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	cgi-bin	files	and	directories	enabled	in	the	Apache	configuration	via	Script,	
ScriptAlias	or	ScriptAliasMatch	other	ScriptInterpreterSource	directives.	

2. Ensure	the	test-cgi	script	is	not	installed	in	any	configured	cgi-bin	directory.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Locate	cgi-bin	files	and	directories	enabled	in	the	Apache	configuration	via	Script,	
ScriptAlias,	ScriptAliasMatch,	or	ScriptInterpreterSource	directives.	

2. Remove	the	test-cgi default	CGI	in	cgi-bin	directory	if	it	is	installed.		

rm $APACHE_PREFIX/cgi-bin/test-cgi

	 	

	

72	|	P a g e 	
	

Default	Value:	

The	default	source	installation	includes	the	test-cgi	script.	However,	this	script	is	not	
executable	by	default.	

CIS	Controls:	

18.9	Sanitize	Deployed	Software	of	Development	Artifacts	
For	in-house	developed	applications,	ensure	that	development	artifacts	(sample	data	and	
scripts;	unused	libraries,	components,	debug	code;	or	tools)	are	not	included	in	the	
deployed	software,	or	accessible	in	the	production	environment.	

	

73	|	P a g e 	
	

5.7	Limit	HTTP	Request	Methods	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Use	the	Apache	<LimitExcept>	directive	to	restrict	unnecessary	HTTP	request	methods	of	
the	web	server	to	only	accept	and	process	the	GET,	HEAD,	POST	and	OPTIONS	HTTP	request	
methods.	

Rationale:	

The	HTTP	1.1	protocol	supports	several	request	methods	which	are	rarely	used	and	
potentially	high	risk.	For	example,	methods	such	as	PUT	and	DELETE	are	rarely	used	and	
should	be	disabled	in	keeping	with	the	primary	security	principal	of	minimize	features	and	
options.	Also	since	the	usage	of	these	methods	is	typically	to	modify	resources	on	the	web	
server,	they	should	be	explicitly	disallowed.	For	normal	web	server	operation,	you	will	
typically	need	to	allow	only	the	GET,	HEAD	and	POST	request	methods.	This	will	allow	for	
downloading	of	web	pages	and	submitting	information	to	web	forms.	The	OPTIONS	request	
method	will	also	be	allowed	as	it	used	to	request	which	HTTP	request	methods	are	
allowed.	Unfortunately,	the	Apache	<LimitExcept>	directive	does	not	deny	the	TRACE	
request	method.	The	TRACE	request	method	will	be	disallowed	in	another	benchmark	
recommendation	with	the	TraceEnable	directive.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Search	for	all	<Directory>	directives	other	than	the	on	the	OS	root	directory.	
3. Ensure	that	either	one	of	the	following	two	methods	are	configured:	

Using	the	deprecated	Order/Deny/Allow	method:	

1. Ensure	that	group	contains	a	single	Order	directive	within	the	<Directory>	
directive	with	a	value	of	deny, allow		

2. Verify	the	<LimitExcept>	directive	does	not	include	any	HTTP	methods	
other	than	GET,	POST,	and	OPTIONS.	(It	may	contain	fewer	methods.)	

	 	

	

74	|	P a g e 	
	

Using	the	Require	method:	

3. Ensure	there	is	a	single	Require	directive	with	the	value	of	all denied		
4. Ensure	there	are	no	Allow	or	Deny	directives	in	the	root	element.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Search	for	the	directive	on	the	document	root	directory	such	as:		

<Directory "/usr/local/apache2/htdocs">
 . . .
</Directory>

3. Add	a	directive	as	shown	below	within	the	group	of	document	root	directives.		

Limit HTTP methods to standard methods. Note: Does not limit TRACE
<LimitExcept GET POST OPTIONS>
 Require all denied
</LimitExcept>

4. Search	for	other	directives	in	the	Apache	configuration	files	other	than	the	OS	root	
directory,	and	add	the	same	directives	to	each.	It	is	very	important	to	understand	
that	the	directives	are	based	on	the	OS	file	system	hierarchy	as	accessed	by	Apache	
and	not	the	hierarchy	of	the	locations	within	web	site	URLs.		

<Directory "/usr/local/apache2/cgi-bin">
 . . .
 # Limit HTTP methods
 <LimitExcept GET POST OPTIONS>
 Require all denied
 </LimitExcept>
</Directory>

Default	Value:	

No	Limits	on	HTTP	methods.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitexcept	
2. https://www.ietf.org/rfc/rfc2616.txt	

	 	

	

75	|	P a g e 	
	

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

76	|	P a g e 	
	

5.8	Disable	HTTP	TRACE	Method	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Use	the	Apache	TraceEnable	directive	to	disable	the	HTTP	TRACE	request	method.	

Rationale:	

The	HTTP	1.1	protocol	requires	support	for	the	TRACE	request	method	which	reflects	the	
request	back	as	a	response	and	was	intended	for	diagnostics	purposes.	The	TRACE	method	
is	not	needed	and	is	easily	subjected	to	abuse	and	should	be	disabled.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Verify	there	is	a	single	TraceEnable	directive	configured	with	a	value	of	off.		

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Locate	the	main	Apache	configuration	file	such	as	httpd.conf.	
2. Add	a	TraceEnable	directive	to	the	server	level	configuration	with	a	value	of	off.	

Server	level	configuration	is	the	top-level	configuration,	not	nested	within	any	other	
directives	like	<Directory>	or	<Location>.	

Default	Value:	

The	TRACE	method	is	enabled.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#traceenable	
2. https://www.ietf.org/rfc/rfc2616.txt		

	 	

	

77	|	P a g e 	
	

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

78	|	P a g e 	
	

5.9	Restrict	HTTP	Protocol	Versions	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	modules	mod_rewrite	or	mod_security	can	be	used	to	disallow	old	and	invalid	
HTTP	protocols	versions.	The	HTTP	version	1.1	RFC	is	dated	June	1999,	and	has	been	
supported	by	Apache	since	version	1.2.	It	should	no	longer	be	necessary	to	allow	ancient	
versions	of	HTTP	such	as	1.0	and	prior.	

Rationale:	

Many	malicious	automated	programs,	vulnerability	scanners	and	fingerprinting	tools	will	
send	abnormal	HTTP	protocol	versions	to	see	how	the	web	server	responds.	These	
requests	are	usually	part	of	the	attacker's	enumeration	process	and	therefore	it	is	
important	that	we	respond	by	denying	these	requests.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Verify	there	is	a	rewrite	condition	within	the	global	server	context	that	disallows	

requests	that	do	not	include	the	HTTP/1.1	header	as	shown	below.		

RewriteEngine On
RewriteCond %{THE_REQUEST} !HTTP/1\.1$
RewriteRule .* - [F]

3. Verify	the	following	directives	are	included	in	each	section	so	that	the	main	server	
settings	will	be	inherited.		

RewriteEngine On
RewriteOptions Inherit

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Load	the	mod_rewrite module	for	Apache	by	doing	either	one	of	the	following:		
a. Build	Apache	with	mod_rewrite	statically	loaded	during	the	build,	by	adding	

the	--enable-rewrite	option	to	the	./configure	script.		

	

79	|	P a g e 	
	

./configure --enable-rewrite

b. Or,	dynamically	loading	the	module	with	the	LoadModule	directive	in	the	
httpd.conf	configuration	file.		

LoadModule rewrite_module modules/mod_rewrite.so

2. Locate	the	main	Apache	configuration	file	such	as	httpd.conf	and	add	the	following	
rewrite	condition	to	match	HTTP/1.1	and	the	rewrite	rule	to	the	global	server	level	
configuration	to	disallow	other	protocol	versions.		

RewriteEngine On
RewriteCond %{THE_REQUEST} !HTTP/1\.1$
RewriteRule .* - [F]

3. By	default,	mod_rewrite	configuration	settings	from	the	main	server	context	are	not	
inherited	by	virtual	hosts.	Therefore,	it	is	also	necessary	to	add	the	following	
directives	in	each	section	to	inherit	the	main	server	settings.		

RewriteEngine On
RewriteOptions Inherit

Default	Value:	

The	default	value	for	the	RewriteEngine directive	is	off.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_rewrite.html		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

80	|	P a g e 	
	

5.10	Restrict	Access	to	.ht*	files	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Restrict	access	to	any	files	beginning	with	.ht	using	the	FilesMatch	directive.	

Rationale:	

The	default	name	for	access	filename	which	allows	files	in	web	directories	to	override	the	
Apache	configuration	is	.htaccess.	The	usage	of	access	files	should	not	be	allowed,	but	as	a	
defense	in	depth	a	FilesMatch	directive	is	recommended	to	prevent	web	clients	from	
viewing	those	files	in	case	they	are	created.	Also	a	common	name	for	web	password	and	
group	files	are	.htpasswd	and	.htgroup.	Neither	of	these	files	should	be	placed	in	the	
document	root,	but,	in	the	event	they	are,	the	FilesMatch	directive	can	be	used	to	prevent	
them	from	being	viewed	by	web	clients.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Verify	that	a	FilesMatch	directive	similar	to	the	one	below	is	present	in	the	apache	
configuration	and	not	commented	out.	The	deprecated	Deny from All	directive	may	be	
used	instead	of	the	Require	directive.	

<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

Add	or	modify	the	following	lines	in	the	apache	configuration	at	the	server	configuration	
level.	

<FilesMatch "^\.ht">
 Require all denied
</FilesMatch>

Default	Value:	

.ht*	files	are	not	accessible.	

	

81	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#filesmatch	

CIS	Controls:	

18.3	Sanitize	Input	for	In-house	Software	
For	in-house	developed	software,	ensure	that	explicit	error	checking	is	performed	and	
documented	for	all	input,	including	for	size,	data	type,	and	acceptable	ranges	or	formats.	

	

82	|	P a g e 	
	

5.11	Restrict	File	Extensions	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

Restrict	access	to	inappropriate	file	extensions	that	are	not	expected	to	be	a	legitimate	part	
of	web	sites	using	the	FilesMatch	directive.	

Rationale:	

There	are	many	files	that	are	often	left	within	the	web	server	document	root	that	could	
provide	an	attacker	with	sensitive	information.	Most	often	these	files	are	mistakenly	left	
behind	after	installation,	trouble-shooting,	or	backing	up	files	before	editing.	Regardless	of	
the	reason	for	their	creation,	these	files	can	still	be	served	by	Apache	even	when	there	is	no	
hyperlink	pointing	to	them.	The	web	administrators	should	use	the	FilesMatch	directive	to	
restrict	access	to	only	those	file	extensions	that	are	appropriate	for	the	web	server.	Rather	
than	create	a	list	of	potentially	inappropriate	file	extensions	such	as	.bak,	.config,	.old,	
etc,	it	is	recommended	instead	that	a	white	list	of	the	appropriate	and	expected	file	
extensions	for	the	web	server	be	created,	reviewed	and	restricted	with	a	FilesMatch	
directive.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	that	the	FilesMatch	directive	that	denies	access	to	all	files	is	present	as	
shown	in	step	3	of	the	remediation.	

2. Verify	that	there	is	another	FilesMatch	directive	similar	to	the	one	in	step	4	of	the	
remediation,	with	an	expression	that	matches	the	approved	file	extensions.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Compile	a	list	of	existing	file	extension	on	the	web	server.	The	following	find/awk	
command	may	be	useful,	but	is	likely	to	need	some	customization	according	to	the	
appropriate	webroot	directories	for	your	web	server.	Please	note	that	the	find	
command	skips	over	any	files	without	a	dot	(.)	in	the	file	name,	as	these	are	not	
expected	to	be	appropriate	web	content.		

find */htdocs -type f -name '*.*' | awk -F. '{print $NF }' | sort -u

	

83	|	P a g e 	
	

2. Review	the	list	of	existing	file	extensions,	for	appropriate	content	for	the	web	
server,	remove	those	that	are	inappropriate	and	add	any	additional	file	extensions	
expected	to	be	added	to	the	web	server	in	the	near	future.	

3. Add	the	FilesMatch	directive	below	which	denies	access	to	all	files	by	default.		

Block all files by default, unless specifically allowed.
<FilesMatch "^.*$">
 Require all denied
</FilesMatch>

4. Add	another	a	FilesMatch	directive	that	allows	access	to	those	file	extensions	
specifically	allowed	from	the	review	process	in	step	2.	An	example	FilesMatch	
directive	is	below.	The	file	extensions	in	the	regular	expression	should	match	your	
approved	list,	and	not	necessarily	the	expression	below.		

Allow files with specifically approved file extensions
Such as (css, htm; html; js; pdf; txt; xml; xsl; ...),
images (gif; ico; jpeg; jpg; png; ...), multimedia
<FilesMatch "^.*\.(css|html?|js|pdf|txt|xml|xsl|gif|ico|jpe?g|png)$">
 Require all granted
</FilesMatch>

Default	Value:	

There	are	no	restrictions	on	file	extensions	in	the	default	configuration.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#filesmatch	

CIS	Controls:	

18.3	Sanitize	Input	for	In-house	Software	
For	in-house	developed	software,	ensure	that	explicit	error	checking	is	performed	and	
documented	for	all	input,	including	for	size,	data	type,	and	acceptable	ranges	or	formats.	

	

84	|	P a g e 	
	

5.12	Deny	IP	Address	Based	Requests	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	Apache	module	mod_rewrite	can	be	used	to	disallow	access	for	requests	that	use	an	IP	
address	instead	of	a	host	name	for	the	URL.	Most	normal	access	to	the	website	from	
browsers	and	automated	software	will	use	a	host	name,	and	will	therefore	include	the	host	
name	in	the	HTTP	HOST	header.	

Rationale:	

A	common	malware	propagation	and	automated	network	scanning	technique	is	to	use	IP	
addresses	rather	than	host	names	for	web	requests,	since	it's	much	simpler	to	automate.	By	
denying	IP	based	web	requests,	these	automated	techniques	will	be	denied	access	to	the	
website.	Of	course,	malicious	web	scanning	techniques	continue	to	evolve,	and	many	are	
now	using	hostnames,	however	denying	access	to	the	IP	based	requests	is	still	a	
worthwhile	defense.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Verify	there	is	a	rewrite	condition	within	the	global	server	context	that	disallows	IP	

based	requests	by	requiring	a	HTTP	HOST	header	similar	to	the	example	shown	
below.		

RewriteCond %{HTTP_HOST} !^www\.example\.com [NC]
RewriteCond %{REQUEST_URI} !^/error [NC]
RewriteRule ^.(.*) - [L,F]

	 	

	

85	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Load	the	mod_rewrite module	for	Apache	by	doing	either	one	of	the	following:	
	

a. Build	Apache	with	mod_rewrite	statically	loaded	during	the	build,	by	adding	
the	--enable-rewrite	option	to	the	./configure	script.	

./configure --enable-rewrite

b. Or	dynamically	loading	the	module	with	the	LoadModule	directive	in	the	
httpd.conf	configuration	file.	

LoadModule rewrite_module modules/mod_rewrite.so

2. Add	the	RewriteEngine	directive	to	the	configuration	within	the	global	server	
context	with	the	value	of	on	so	that	the	rewrite	engine	is	enabled.		

RewriteEngine On

3. Locate	the	Apache	configuration	file	such	as	httpd.conf	and	add	the	following	
rewrite	condition	to	match	the	expected	host	name	of	the	top	server	level	
configuration.		

RewriteCond %{HTTP_HOST} !^www\.example\.com [NC]
RewriteCond %{REQUEST_URI} !^/error [NC]
RewriteRule ^.(.*) - [L,F]

Default	Value:	

RewriteEngine off	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_rewrite.html	

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

86	|	P a g e 	
	

5.13	Restrict	Listen	Directive	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	Apache	Listen	directive	specifies	the	IP	addresses	and	port	numbers	the	Apache	web	
server	will	listen	for	requests.	Rather	than	be	unrestricted	to	listen	on	all	IP	addresses	
available	to	the	system,	the	specific	IP	address	or	addresses	intended	should	be	explicitly	
specified.	Specifically,	a	Listen	directive	with	no	IP	address	specified,	or	with	an	IP	address	
of	zeros	should	not	be	used.	

Rationale:	

Having	multiple	interfaces	on	web	servers	is	fairly	common,	and	without	explicit	Listen	
directives,	the	web	server	is	likely	to	be	listening	on	an	inappropriate	IP	address	/	interface	
that	was	not	intended	for	the	web	server.	Single	homed	system	with	a	single	IP	addressed	
are	also	required	to	have	an	explicit	IP	address	in	the	Listen	directive,	in	case	additional	
interfaces	are	added	to	the	system	at	a	later	date.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Verify	that	no	Listen	directives	are	in	the	Apache	configuration	file	with	no	IP	address	
specified,	or	with	an	IP	address	of	all	zero's.	

	 	

	

87	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Find	any	Listendirectives	in	the	Apache	configuration	file	with	no	IP	address	
specified,	or	with	an	IP	address	of	all	zeros	similar	to	the	examples	below.	Keep	in	
mind	there	may	be	both	IPv4	and	IPv6	addresses	on	the	system.		

Listen 80
Listen 0.0.0.0:80
Listen [::ffff:0.0.0.0]:80

2. Modify	the	Listen	directives	in	the	Apache	configuration	file	to	have	explicit	IP	
addresses	according	to	the	intended	usage.	Multiple	Listendirectives	may	be	
specified	for	each	IP	address	&	Port.		

Listen 10.1.2.3:80
Listen 192.168.4.5:80
Listen [2001:db8::a00:20ff:fea7:ccea]:80

Default	Value:	

Listen 80	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mpm_common.html#listen		

CIS	Controls:	

9.1	Limit	Open	Ports,	Protocols,	and	Services	
Ensure	that	only	ports,	protocols,	and	services	with	validated	business	needs	are	running	
on	each	system.	

	

88	|	P a g e 	
	

5.14	Restrict	Browser	Frame	Options	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	Header	directive	allows	server	HTTP	response	headers	to	be	added,	replaced	or	
merged.	We	will	use	the	directive	to	add	a	server	HTTP	response	header	to	tell	browsers	to	
restrict	all	of	the	web	pages	from	being	framed	by	other	web	sites.	

Rationale:	

Using	iframes	and	regular	web	frames	to	embed	malicious	content	along	with	expected	
web	content	has	been	a	favored	attack	vector	for	attacking	web	clients	for	a	long	time.	This	
can	happen	when	the	attacker	lures	the	victim	to	a	malicious	web	site,	which	using	frames	
to	include	the	expected	content	from	the	legitimate	site.	The	attack	can	also	be	performed	
via	XSS	(either	reflected,	DOM	or	stored	XSS)	to	add	the	malicious	content	to	the	legitimate	
web	site.	To	combat	this	vector,	an	HTTP	Response	header,	X-Frame-Options,	has	been	
introduced	that	allows	a	server	to	specify	whether	a	web	page	may	be	loaded	in	any	frame	
(DENY)	or	those	frames	that	share	the	pages	origin	(SAMEORIGIN).	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Ensure	a	Header	directive	for	X-Frame-Options	is	present	in	the	Apache	configuration	and	
has	the	condition	always,	an	action	of	append	and	a	value	of	SAMEORIGIN	or	DENY,	as	shown	
below:	

grep -i X-Frame-Options $APACHE_PREFIX/conf/httpd.conf
Header always append X-Frame-Options SAMEORIGIN

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

Add	or	modify	the	Header	directive	for	the	X-Frames-Options	header	in	the	Apache	
configuration	to	have	the	condition	always,	an	action	of	append	and	a	value	of	SAMEORIGIN	
or	DENY,	as	shown	below.	

Header always append X-Frame-Options SAMEORIGIN

	 	

	

89	|	P a g e 	
	

Default	Value:	

The	X-Frame-Options	HTTP	response	header	is	not	generated	by	default.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_headers.html#header		
2. https://developer.mozilla.org/en/The_X-FRAME-OPTIONS_response_header/	
3. https://blogs.msdn.com/b/ie/archive/2009/01/27/ie8-security-part-vii-

clickjacking-defenses.aspx	

CIS	Controls:	

18	Application	Software	Security	

	

90	|	P a g e 	
	

6	Operations	-	Logging,	Monitoring	and	Maintenance	

Operational	procedures	of	logging,	monitoring	and	maintenance	are	vital	to	protecting	
your	web	servers	as	well	as	the	rest	of	the	infrastructure.	

6.1	Configure	the	Error	Log	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	LogLevel	directive	is	used	to	configure	the	severity	level	for	the	error	logs.	While	the	
ErrorLog	directive	configures	the	error	log	file	name.	The	log	level	values	are	the	standard	
syslog	levels	of	emerg,	alert,	crit,	error,	warn,	notice,	info	and	debug.	The	recommended	
level	is	notice	for	most	modules,	so	that	all	errors	from	the	emerg	level	through	notice	
level	will	be	logged.	The	recommend	setting	for	the	core	module	is	info	so	that	any	not
found	requests	will	be	included	in	the	error	logs.	

Rationale:	

The	server	error	logs	are	invaluable	because	they	can	also	be	used	to	spot	any	potential	
problems	before	they	become	serious.	Most	importantly,	they	can	be	used	to	watch	for	
anomalous	behavior	such	as	a	lot	of	not found	or	unauthorized	errors	may	be	an	
indication	that	an	attack	is	pending	or	has	occurred.	Starting	with	Apache	2.4	the	error	log	
does	not	include	the	not found	errors	except	at	the	info	logging	level.	Therefore,	it	is	
important	that	the	log	level	be	set	to	info	for	the	core	module.	The	not found	requests	
need	to	be	included	in	the	error	log	for	both	forensics	investigation	and	host	intrusion	
detection	purposes.	Monitoring	the	access	logs	may	not	be	practical	for	many	web	servers	
with	high	volume	traffic.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	the	LogLevel	in	the	Apache	server	configuration	has	a	value	of	info	or	lower	
for	the	core	module	and	notice	or	lower	for	other	modules.	Note	that	it	is	also	
compliant	to	have	a	value	of	info	or	debug	if	there	is	a	need	for	a	more	verbose	log	
and	the	storage	and	monitoring	processes	are	capable	of	handling	the	extra	load.	
The	recommended	value	is	notice core:info.	

2. Verify	the	ErrorLog	directive	is	configured	to	an	appropriate	log	file	or	syslog	
facility.	

	

91	|	P a g e 	
	

3. Verify	there	is	a	similar	ErrorLog	directive	for	each	virtual	host	configured	if	the	
virtual	host	will	have	different	people	responsible	for	the	web	site.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Add	or	modify	the	LogLevel	in	the	Apache	configuration	to	have	a	value	of	info	or	
lower	for	the	core	module,	and	notice	or	lower	for	all	other	modules.	Note	that	is	it	
is	compliant	to	have	a	value	of	info	or	debug	if	there	is	a	need	for	a	more	verbose	log	
and	the	storage	and	monitoring	processes	are	capable	of	handling	the	extra	load.	
The	recommended	value	is	notice core:info.		

LogLevel notice core:info

2. Add	an	ErrorLogdirective	if	not	already	configured.	The	file	path	may	be	relative	or	
absolute,	or	the	logs	may	be	configured	to	be	sent	to	a	syslog	server.		

ErrorLog "logs/error_log"

3. Add	a	similar	ErrorLog	directive	for	each	virtual	host	configured	if	the	virtual	host	
will	have	different	people	responsible	for	the	web	site.	Each	responsible	individual	
or	organization	needs	access	to	their	own	web	logs,	and	needs	the	
skills/training/tools	for	monitoring	the	logs.	

Default	Value:	

The	following	is	the	default	configuration:	

LogLevel warn
ErrorLog "logs/error_log"

References:	

1. https://httpd.apache.org/docs/2.4/logs.html		
2. https://httpd.apache.org/docs/2.4/mod/core.html#loglevel	
3. https://httpd.apache.org/docs/2.4/mod/core.html#errorlog		

	 	

	

92	|	P a g e 	
	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	
Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

93	|	P a g e 	
	

6.2	Configure	a	Syslog	Facility	for	Error	Logging	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	ErrorLog	directive	should	be	configured	to	send	logs	to	a	syslog	facility	so	that	the	
logs	can	be	processed	and	monitored	along	with	the	system	logs.	

Rationale:	

It	is	easy	for	the	web	server	error	logs	to	be	overlooked	in	the	log	monitoring	process,	and	
yet	the	application	level	attacks	have	become	the	most	common	and	are	extremely	
important	for	detecting	attacks	early,	as	well	as	detecting	non-malicious	problems	such	as	a	
broken	link,or	internal	errors.	By	including	the	Apache	error	logs	with	the	system	logging	
facility,	the	application	logs	are	more	likely	to	be	included	in	the	established	log	monitoring	
process.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	that	the	ErrorLog	in	the	Apache	server	configuration	has	a	value	of	
syslog:facility	where	facility	can	be	any	of	the	syslog	facility	values	such	as	
local1.	

2. Verify	there	is	a	similar	ErrorLog	directive	is	either	configured	or	inherited	for	each	
virtual	host.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Add	an	ErrorLog	directive	if	not	already	configured.	Any	appropriate	syslog	facility	
may	be	used	in	place	of	local1.		

ErrorLog "syslog:local1"

2. Add	a	similar	ErrorLog	directive	for	each	virtual	host	if	necessary.	

	 	

	

94	|	P a g e 	
	

Default	Value:	

The	following	is	the	default	configuration:	

ErrorLog "logs/error_log"

References:	

1. https://httpd.apache.org/docs/2.4/logs.html		
2. https://httpd.apache.org/docs/2.4/mod/core.html#loglevel			
3. https://httpd.apache.org/docs/2.4/mod/core.html#errorlog		

CIS	Controls:	

6.6	Deploy	A	SIEM	OR	Log	Analysis	Tools	for	Aggregation	and	Correlation/Analysis	
Deploy	a	SIEM	(Security	Information	and	Event	Management)	or	log	analytic	tools	for	log	
aggregation	and	consolidation	from	multiple	machines	and	for	log	correlation	and	
analysis.	Using	the	SIEM	tool,	system	administrators	and	security	personnel	should	devise	
profiles	of	common	events	from	given	systems	so	that	they	can	tune	detection	to	focus	on	
unusual	activity,	avoid	false	positives,	more	rapidly	identify	anomalies,	and	prevent	
overwhelming	analysts	with	insignificant	alerts.	

	

95	|	P a g e 	
	

6.3	Configure	the	Access	Log	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	LogFormat	directive	defines	the	format	and	information	to	be	included	in	the	access	log	
entries.	The	CustomLog	directive	specifies	the	log	file,	syslog	facility	or	piped	logging	utility.	

Rationale:	

The	server	access	logs	are	also	invaluable	for	a	variety	of	reasons.	They	can	be	used	to	
determine	what	resources	are	being	used	most.	Most	importantly,	they	can	be	used	to	
investigate	anomalous	behavior	that	may	be	an	indication	that	an	attack	is	pending	or	has	
occurred.	If	the	server	only	logs	errors,	and	does	not	log	successful	access,	then	it	is	very	
difficult	to	investigate	incidents.	You	may	see	that	the	errors	stop,	and	wonder	if	the	
attacker	gave	up,	or	was	the	attack	successful.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	the	LogFormat	directive	in	the	Apache	server	configuration	has	the	
recommended	information	parameters.	

2. Verify	the	CustomLog	directive	is	configured	to	an	appropriate	log	file,	syslog	facility,	
or	piped	logging	utility	and	uses	the	combined	format.	

3. Verify	there	is	a	similar	CustomLog	directives	for	each	virtual	host	configured	if	the	
virtual	host	will	have	different	people	responsible	for	the	web	site.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Add	or	modify	the	LogFormat	directives	in	the	Apache	configuration	to	use	the	
standard	and	recommended	combinedformat	show	as	shown	below.	

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-
agent}i\"" combined

2. Add	or	modify	the	CustomLogdirectives	in	the	Apache	configuration	to	use	the	
combined	format	with	an	appropriate	log	file,	syslog	facility	or	piped	logging	utility.	

CustomLog log/access_log combined

	

96	|	P a g e 	
	

3. Add	a	similar	CustomLog	directives	for	each	virtual	host	configured	if	the	virtual	host	
will	have	different	people	responsible	for	the	web	site.	Each	responsible	individual	
or	organization	needs	access	to	their	own	web	logs,	and	needs	the	
skills/training/tools	for	monitor	the	logs.	

The	format	string	tokens	provide	the	following	information:	

o %h	=	Remote	hostname	or	IP	address	if	HostnameLookups	is	set	to	Off,	which	
is	the	default.	

o %l	=Remote	logname	/	identity.	
o %u	=Remote	user,	if	the	request	was	authenticated.	
o %t	=	Time	the	request	was	received,	
o %r	=	First	line	of	request.	
o %>s	=	Final	status.	
o %b	=	Size	of	response	in	bytes.	
o %{Referer}i	=	Variable	value	for	Referer	header.	
o %{User-agent}i	=	Variable	value	for	User	Agent	header.	

Default	Value:	

The	following	are	the	default	log	configuration:	

LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"
combined
LogFormat "%h %l %u %t \"%r\" %>s %b" common
CustomLog "logs/access_log" common

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html#customlog	
2. https://httpd.apache.org/docs/2.4/mod/mod_log_config.html#formats	

CIS	Controls:	

6.2	Ensure	Audit	Log	Settings	Support	Appropriate	Log	Entry	Formatting	
Validate	audit	log	settings	for	each	hardware	device	and	the	software	installed	on	it,	
ensuring	that	logs	include	a	date,	timestamp,	source	addresses,	destination	addresses,	and	
various	other	useful	elements	of	each	packet	and/or	transaction.	Systems	should	record	
logs	in	a	standardized	format	such	as	syslog	entries	or	those	outlined	by	the	Common	
Event	Expression	initiative.	If	systems	cannot	generate	logs	in	a	standardized	format,	log	
normalization	tools	can	be	deployed	to	convert	logs	into	such	a	format.	

	

97	|	P a g e 	
	

6.4	Log	Storage	and	Rotation	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

It	is	important	that	there	is	adequate	disk	space	on	the	partition	that	will	hold	all	the	log	
files,	and	that	log	rotation	is	configured	to	retain	at	least	3	months	or	13	weeks	if	central	
logging	is	not	used	for	storage.	

Rationale:	

Keep	in	mind	that	the	generation	of	logs	is	under	a	potential	attacker's	control.	So,	do	not	
hold	any	Apache	log	files	on	the	root	partition	of	the	OS.	This	could	result	in	a	denial	of	
service	against	your	web	server	host	by	filling	up	the	root	partition	and	causing	the	system	
to	crash.	For	this	reason,	it	is	recommended	that	the	log	files	should	be	stored	on	a	
dedicated	partition.	Likewise	consider	that	attackers	sometimes	put	information	into	your	
logs	which	is	intended	to	attack	your	log	collection	or	log	analysis	processing	software.	So,	
it	is	important	that	they	are	not	vulnerable.	Investigation	of	incidents	often	require	access	
to	several	months	or	more	of	logs,	which	is	why	it	is	important	to	keep	at	least	3	months	
available.	Two	common	log	rotation	utilities	include	rotatelogs(8)	which	is	bundled	with	
Apache,	and	logrotate(8)	commonly	bundled	on	Linux	distributions	are	described	in	the	
remediation	section.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	the	web	log	rotation	configuration	matches	the	Apache	configured	log	files.	
2. Verify	the	rotation	period	and	number	of	logs	to	retain	is	at	least	13	weeks	or	3	

months.	
3. For	each	virtual	host	configured	with	its	own	log	files	ensure	that	those	log	files	are	

also	included	in	a	similar	log	rotation.	

Remediation:	

To	implement	the	recommended	state,	do	either	option	'a'	if	using	the	Linux	logrotate	
utility	or	option	'b'	if	using	a	piped	logging	utility	such	as	the	Apache	rotatelogs:	

a)	File	Logging	with	Logrotate:	

	

98	|	P a g e 	
	

1. Add	or	modify	the	web	log	rotation	configuration	to	match	your	configured	log	files	
in	/etc/logrotate.d/httpd	to	be	similar	to	the	following.		

/var/log/httpd/*log {
 missingok
 notifempty
 sharedscripts
 postrotate
 /bin/kill -HUP 'cat /var/run/httpd.pid 2>/dev/null' 2> /dev/null
|| true
 endscript
}

2. Modify	the	rotation	period	and	number	of	logs	to	keep	so	that	at	least	13	weeks	or	3	
months	of	logs	are	retained.	This	may	be	done	as	the	default	value	for	all	logs	in	
/etc/logrotate.conf	or	in	the	web	specific	log	rotation	configuration	in	
/etc/logrotate.d/httpdto	be	similar	to	the	following.		

rotate log files weekly
weekly
keep 13 weeks of backlogs
rotate 13

3. For	each	virtual	host	configured	with	its	own	log	files	ensure	that	those	log	files	are	
also	included	in	a	similar	log	rotation.		

b)	Piped	Logging:	

1. Configure	the	log	rotation	interval	and	log	file	names	to	a	suitable	interval	such	as	
daily.		

CustomLog "|bin/rotatelogs -l /var/logs/logfile.%Y.%m.%d 86400"
combined

2. Ensure	the	log	file	naming	and	any	rotation	scripts	provide	for	retaining	at	least	3	
months	or	13	weeks	of	log	files.	

3. For	each	virtual	host	configured	with	its	own	log	files	ensure	that	those	log	files	are	
also	included	in	a	similar	log	rotation.	

	 	

	

99	|	P a g e 	
	

Default	Value:	

The	following	is	the	default	httpd	log	rotation	configuration	in	/etc/logrotate.d/httpd:	

/var/log/httpd/*log {
 missingok
 notifempty
 sharedscripts
 postrotate
 /bin/kill -HUP `cat /var/run/httpd.pid 2>/dev/null` 2> /dev/null || true
 endscript
}

	
The	default	log	retention	configured	in	/etc/logrotate.conf:	

rotate log files weekly
weekly
keep 4 weeks worth of backlogs
rotate 4

CIS	Controls:	

6.3	Ensure	Audit	Logging	Systems	Are	Not	Subject	to	Loss	(i.e.	rotation/archive)	
Ensure	that	all	systems	that	store	logs	have	adequate	storage	space	for	the	logs	generated	
on	a	regular	basis,	so	that	log	files	will	not	fill	up	between	log	rotation	intervals.	The	logs	
must	be	archived	and	digitally	signed	on	a	periodic	basis.	

	

100	|	P a g e 	
	

6.5	Apply	Applicable	Patches	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Apply	available	Apache	patches	within	1	month	of	availability.	

Rationale:	

Obviously	knowing	about	newly	discovered	vulnerabilities	is	only	part	of	the	solution;	
there	needs	to	be	a	process	in	place	where	patches	are	tested	and	installed.	These	patches	
fix	diverse	problems,	including	security	issues.	It	is	recommended	to	use	the	Apache	
packages	and	updates	provide	by	the	Linux	platform	vendor	rather	than	building	from	
source	when	possible,	in	order	to	minimize	the	disruption	and	the	work	of	keeping	the	
software	up-to-date.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. When	Apache	was	built	from	source:		
a. Check	the	Apache	web	site	for	latest	versions,	date	of	releases	and	any	

security	patches.	https://httpd.apache.org/security/vulnerabilities_24.html	
Apache	patches	are	available	https://www.apache.org/dist/httpd/patches.		

b. If	newer	versions	with	security	patches	more	than	1	month	old	and	are	not	
installed,	then	the	installation	is	not	sufficiently	up-to-date.	

2. When	using	platform	packages	
a. Check	for	vendor	supplied	updates	from	the	vendor	web	site.	
b. If	newer	versions	with	security	patches	more	than	1	month	old	are	not	

installed,	then	the	installation	is	not	sufficiently	up-to-date.	

	 	

	

101	|	P a g e 	
	

Remediation:	

Update	to	the	latest	Apache	release	available	according	to	either	of	the	following:	

1. When	building	from	source:		
a. Read	release	notes	and	related	security	patch	information		
b. Download	latest	source	and	any	dependent	modules	such	as	mod_security.		
c. Build	new	Apache	software	according	to	your	build	process	with	the	same	

configuration	options.		
d. Install	and	Test	the	new	software	according	to	your	organizations	testing	

process.		
e. Move	to	production	according	to	your	organizations	deployment	process.	

2. When	using	platform	packages:		
a. Read	release	notes	and	related	security	patch	information		
b. Download	and	install	latest	available	Apache	package	and	any	dependent	

software.		
c. Test	the	new	software	according	to	your	organizations	testing	process.		
d. Move	to	production	according	to	your	organizations	deployment	process.	

Default	Value:	

Not	Applicable	

References:	

1. https://httpd.apache.org/security/vulnerabilities_24.html		

CIS	Controls:	

4	Continuous	Vulnerability	Assessment	and	Remediation	

	

102	|	P a g e 	
	

6.6	Install	and	Enable	ModSecurity	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

ModSecurity	is	an	open	source	web	application	firewall	(WAF)	for	real-time	web	
application	monitoring,	logging,	and	access	control.	It	enables	but	does	not	include	a	
powerful	customizable	rule	set,	which	may	be	used	to	detect	and	block	common	web	
application	attacks.	Installation	of	ModSecurity	without	a	rule	set	does	not	provide	
additional	security	for	the	protected	web	applications.	Refer	to	the	benchmark	
recommendation	"Install	and	Enable	OWASP	ModSecurity	Core	Rule	Set"	for	details	on	a	
recommended	rule	set.	

Note:	Like	other	application	security/application	firewall	systems,	Mod_Security	requires	a	
significant	commitment	of	staff	resources	for	initial	tuning	of	the	rules	and	handling	alerts.	
In	some	cases,	this	may	require	additional	time	working	with	application	
developers/maintainers	to	modify	applications	based	on	analysis	of	the	results	of	tuning	
and	monitoring	logs.	After	setup,	an	ongoing	commitment	of	staff	is	required	for	
monitoring	logs	and	ongoing	tuning,	especially	after	upgrades/patches.	Without	this	
commitment	to	tuning	and	monitoring,	installing	Mod_Security	may	NOT	be	effective	and	
may	provide	a	false	sense	of	security.	

Rationale:	

Installation	of	the	ModSecurity	Apache	module	enables	a	customizable	web	application	
firewall	rule	set	which	may	be	configured	to	detect	and	block	common	attack	patterns	as	
well	as	block	outbound	data	leakage.	

Audit:	

Perform	the	following	to	determine	if	the	security2_module	has	been	loaded:	

Use	the	httpd	-M	option	as	root	to	check	that	the	module	is	loaded.	

httpd -M | grep security2_module

	
Note:	If	the	module	is	correctly	enabled,	the	output	will	include	the	module	name	and	
whether	it	is	loaded	statically	or	as	a	shared	module.	

	 	

	

103	|	P a g e 	
	

Remediation:	

1. Install	the	ModSecurity	module	if	it	is	not	already	installed	in	
modules/mod_security2.so.	It	may	be	installed	via	OS	package	installation	(such	as	
apt-get	or	yum)	or	built	from	the	source	files.	See	
https://www.modsecurity.org/download.html	for	details.	

2. Add	or	modify	the	LoadModule	directive	if	not	already	present	in	the	Apache	
configuration	as	shown	below.	Typically	the	LoadModule	directive	is	placed	in	file	
named	mod_security.conf	which	is	included	in	the	Apache	configuration:		

LoadModule security2_module modules/mod_security2.so

Default	Value:	

The	ModSecurity	module	is	NOT	loaded	by	default.	

References:	

1. https://www.modsecurity.org/	

CIS	Controls:	

18.2	Deploy	and	Configure	Web	Application	Firewalls	
Protect	web	applications	by	deploying	web	application	firewalls	(WAFs)	that	inspect	all	
traffic	flowing	to	the	web	application	for	common	web	application	attacks,	including	but	
not	limited	to	cross-site	scripting,	SQL	injection,	command	injection,	and	directory	
traversal	attacks.	For	applications	that	are	not	web-based,	specific	application	firewalls	
should	be	deployed	if	such	tools	are	available	for	the	given	application	type.	If	the	traffic	is	
encrypted,	the	device	should	either	sit	behind	the	encryption	or	be	capable	of	decrypting	
the	traffic	prior	to	analysis.	If	neither	option	is	appropriate,	a	host-based	web	application	
firewall	should	be	deployed.	

	

104	|	P a g e 	
	

6.7	Install	and	Enable	OWASP	ModSecurity	Core	Rule	Set	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	OWASP	ModSecurity	Core	Rules	Set	(CRS)	is	a	set	of	open	source	web	application	
defensive	rules	for	the	ModSecurity	web	application	firewall	(WAF).	The	OWASP	
ModSecurity	CRS	provides	baseline	protections	in	the	following	attack/threat	categories:	

• HTTP	Protection	-	detecting	violations	of	the	HTTP	protocol	and	a	locally	defined	
usage	policy.	

• Real-time	Blacklist	Lookups	-	utilizes	3rd	Party	IP	Reputation	
• HTTP	Denial	of	Service	Protections	-	defense	against	HTTP	Flooding	and	Slow	HTTP	

DoS	Attacks.	
• Common	Web	Attacks	Protection	-	detecting	common	web	application	security	

attack.	
• Automation	Detection	-	detecting	bots,	crawlers,	scanners	and	other	surface	

malicious	activity.	
• Integration	with	AV	Scanning	for	File	Uploads	-	detects	malicious	files	uploaded	

through	the	web	application.	
• Tracking	Sensitive	Data	-	tracks	credit	card	usage	and	blocks	leakages.	
• Trojan	Protection	-	detecting	access	to	trojan	horses.	
• Identification	of	Application	Defects	-	alerts	on	application	misconfigurations.	
• Error	Detection	and	Hiding	-	disguising	error	messages	sent	by	the	server.	

Note:	Like	other	application	security/application	firewall	systems,	Mod_Security	requires	a	
significant	commitment	of	staff	resources	for	initial	tuning	of	the	rules	and	handling	alerts.	
In	some	cases,	this	may	require	additional	time	working	with	application	
developers/maintainers	to	modify	applications	based	on	analysis	of	the	results	of	tuning	
and	monitoring	logs.	After	setup,	an	ongoing	commitment	of	staff	is	required	for	
monitoring	logs	and	ongoing	tuning,	especially	after	upgrades/patches.	Without	this	
commitment	to	tuning	and	monitoring,	installing	Mod_Security	may	NOT	be	effective	and	
may	provide	a	false	sense	of	security.	

Rationale:	

Installing,	configuring	and	enabling	of	the	OWASP	ModSecurity	Core	Rule	Set	(CRS),	
provides	additional	baseline	security	defense,	and	provides	a	good	starting	point	to	
customize	the	monitoring	and	blocking	of	common	web	application	attacks.	

	 	

	

105	|	P a g e 	
	

Audit:	

For	the	OWASP	ModSecurity	CRS	version	2.2.9,	perform	the	following	to	audit	the	
configuration.	

In	the	2.2.9	release,	the	OWASP	ModSecurity	CRS	contains	15	base_rule	configuration	files,	
each	with	rule	sets.	The	CRS	also	contains	14	optional	rule	sets,	and	17	experimental	rule	
sets.	Since	it	is	expected	that	customization	and	testing	will	be	necessary	to	implement	the	
CRS,	it	is	not	expected	that	any	site	will	implement	all	CRS	configuration	files	/	rule	sets.	
Therefore,	for	the	purpose	of	auditing,	the	OWASP	ModSecurity	CRS	will	be	considered	
implemented	if	200	or	more	of	the	security	rules	(SecRule)	are	active	in	the	CRS	
configuration	files.	The	default	2.2.9	installation	contains	227	security	rules.	Perform	the	
following	to	determine	if	2.2.9	OWASP	ModSecurity	CRS	is	enabled:	

• Set	RULE_DIR	environment	variable	to	the	directory	where	the	active	rules	are	
included	from	the	modsecurity	configuration	file.	An	example	is	shown	below.	

 RULE_DIR=$APACHE_PREFIX/modsecurity.d/activated_rules/

• Use	the	following	command	to	count	the	security	rules	in	all	of	the	active	CRS	
configuration	files.	

find $APACHE_PREFIX/modsecurity.d/activated_rules/ -name
'modsecurity_crs_*.conf' | xargs grep '^SecRule ' | wc -l

• If	the	number	of	active	files	is	200	or	greater,	then	OWASP	ModSecurity	CRS	is	
considered	active	and	the	audit	passed.	

For	the	OWASP	ModSecurity	CRS	version	3.0,	perform	the	following	to	audit	the	
configuration.	

In	the	3.0	release,	the	OWASP	ModSecurity	CRS	contains	29	rule	configuration	files,	each	
with	rule	sets.	It	is	expected	that	customization	and	testing	will	be	necessary	to	implement	
the	CRS;	it	is	not	expected	that	any	site	will	implement	all	CRS	configuration	files	/	rule	
sets.	Therefore,	for	the	purpose	of	auditing,	the	OWASP	ModSecurity	CRS	v3.0	will	be	
considered	implemented	if	325	or	more	of	the	security	rules	(SecRule)	are	active	in	the	CRS	
configuration	files.	The	default	OWASP	ModSecurity	CRS	3.0	installation	contains	462	
security	rules.	In	addition	to	the	rules,	there	are	three	additional	values	that	have	to	be	set.	
The	Inbound	and	the	Outbound	Anomaly	Threshold	and	the	Paranoia	Mode.	The	Anomaly	
Threshold	values	set	a	limit	so	that	traffic	is	not	blocked	until	the	threshold	is	exceeded.	
Any	traffic	that	triggers	enough	active	rules	so	that	the	additive	value	of	each	rule	exceeds	
the	threshold	value	will	be	block.	The	suitable	paranoia	level	has	to	be	defined	according	to	
the	security	level	of	the	service	in	question.	The	default	value	of	1	should	be	applicable	for	

	

106	|	P a g e 	
	

any	online	service.	The	Paranoia	Level	2	should	be	chosen	for	online	services	with	a	need	
for	further	hardening,	(such	as	online	services	with	a	wide	attack	surface	or	online	services	
with	known	security	issues	and	concerns).	Paranoia	Level	3	and	Level	4	cater	services	with	
even	higher	security	requirements	but	have	to	be	considered	experimental.	

Perform	the	following	to	determine	if	OWASP	ModSecurity	CRS	3.0	is	enabled,	and	is	
configured	to	meet	or	exceed	the	expected	values:	

• Set	RULE_DIR	environment	variable	to	the	directory	where	the	active	rules	are	
included	from	the	modsecurity	configuration	file.	An	example	is	shown	below.	

 RULE_DIR=$APACHE_PREFIX/modsecurity.d/owasp-modsecurity-crs-3.0.0/

• Use	the	following	command	to	count	the	security	rules	in	all	of	the	active	CRS	
configuration	files.	

 find $RULE_DIR -name '*.conf' | xargs grep '^SecRule ' | wc -l

• If	the	number	of	active	rules	is	325	or	greater	then	OWASP	ModSecurity	CRS	3.0	is	
considered	active.	

• The	Inbound	Anomaly	Threshold	must	be	less	than	or	equal	to	5,	and	can	be	checked	
with	the	following	command.	

 find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.inbound_anomaly_score_threshold'

• The	Outbound	Anomaly	Threshold	must	be	less	than	or	equal	to	4,	and	may	be	
audited	with	the	following	command.	

 find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.outbound_anomaly_score_threshold'

• The	Paranoia	Level	must	be	greater	than	or	equal	to	1,	and	may	be	audited	with	the	
following	command.	

 find $RULE_DIR -name '*.conf' | xargs egrep -v '^\s*#' | grep
'setvar:tx.paranoia_level'

Remediation:	

Install,	configure	and	test	the	OWASP	ModSecurity	Core	Rule	Set:	

1. Download	the	OWASP	ModSecurity	CRS	from	the	project	page	
https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_
Project		

2. Unbundled	the	archive	and	follow	the	instructions	in	the	INSTALL	file.	

	

107	|	P a g e 	
	

3. Depending	on	the	CRS	version	used,	the	crs-setup.conf	or	the	
modsecurity_crs_10_setup.conf	file	will	be	required,	and	rules	in	the	base_rules	
directory	are	intended	as	a	baseline	useful	for	most	applications.	

4. Test	the	application	for	correct	functionality	after	installing	the	CRS.	Check	web	
server	error	logs	and	the	modsec_audit.log	file	for	blocked	requests	due	to	false	
positives.	

5. It	is	also	recommended	to	test	the	application	response	to	malicious	traffic	such	as	
an	automated	web	application	scanner	to	ensure	the	rules	are	active.	The	web	
server	error	log	and	modsec_audit.log	files	should	show	logs	of	the	attacks	and	the	
servers	response	codes.	

Default	Value:	

The	OWASP	ModSecurity	CRS	is	NOT	installed	or	enabled	by	default.	

CRS	v3.0	Default	Values:	

• inbound_anomaly_score_threshold	=	5	
• outbound_anomaly_score_threshold	=	4	
• paranoia_level	=	1	

References:	

1. https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_
Project		

2. https://www.modsecurity.org/		

CIS	Controls:	

18.2	Deploy	and	Configure	Web	Application	Firewalls	
Protect	web	applications	by	deploying	web	application	firewalls	(WAFs)	that	inspect	all	
traffic	flowing	to	the	web	application	for	common	web	application	attacks,	including	but	
not	limited	to	cross-site	scripting,	SQL	injection,	command	injection,	and	directory	
traversal	attacks.	For	applications	that	are	not	web-based,	specific	application	firewalls	
should	be	deployed	if	such	tools	are	available	for	the	given	application	type.	If	the	traffic	is	
encrypted,	the	device	should	either	sit	behind	the	encryption	or	be	capable	of	decrypting	
the	traffic	prior	to	analysis.	If	neither	option	is	appropriate,	a	host-based	web	application	
firewall	should	be	deployed.	

	

108	|	P a g e 	
	

7	SSL/TLS	Configuration	

Recommendations	in	this	section	pertain	to	the	configuration	of	SSL/TLS-related	aspects	of	
Apache	HTTP	server.	

7.1	Install	mod_ssl	and/or	mod_nss	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Secure	Sockets	Layer	(SSL)	was	developed	by	Netscape	and	turned	into	an	open	standard,	
and	was	renamed	Transport	Layer	Security	(TLS)	as	part	of	the	process.	TLS	is	important	
for	protecting	communication	and	can	provide	authentication	of	the	server	and	even	the	
client.	However	contrary	to	vendor	claims,	implementing	SSL	does	NOT	directly	make	your	
web	server	more	secure!	SSL	is	used	to	encrypt	traffic	and	therefore	does	provide	
confidentiality	of	private	information	and	users	credentials.	Keep	in	mind,	however	that	
just	because	you	have	encrypted	the	data	in	transit	does	not	mean	that	the	data	provided	
by	the	client	is	secure	while	it	is	on	the	server.	Also,	SSL	does	not	protect	the	web	server,	as	
attackers	will	easily	target	SSL-Enabled	web	servers,	and	the	attack	will	be	hidden	in	the	
encrypted	channel.	The	mod_ssl	module	is	the	standard,	most	used	module	that	
implements	SSL/TLS	for	Apache.	A	newer	module	found	on	Red	Hat	systems	can	be	a	
compliment	or	replacement	for	mod_ssl,	and	provides	the	same	functionality	plus	
additional	security	services.	The	mod_nss	is	an	Apache	module	implementation	of	the	
Network	Security	Services	(NSS)	software	from	Mozilla,	which	implements	a	wide	range	of	
cryptographic	functions	in	addition	to	TLS.	

Rationale:	

It	is	best	to	plan	for	SSL/TLS	implementation	from	the	beginning	of	any	new	web	server.	As	
most	web	servers	have	some	need	for	SSL/TLS	due	to:	

• Non-public	information	submitted	that	should	be	protected	as	it's	transmitted	to	the	
web	server.	

• Non-public	information	that	is	downloaded	from	the	web	server.	
• Users	are	going	to	be	authenticated	to	some	portion	of	the	web	server	
• There	is	a	need	to	authenticate	the	web	server	to	ensure	users	that	they	have	

reached	the	real	web	server,	and	have	not	been	phished	or	redirected	to	a	bogus	
site.	

	 	

	

109	|	P a g e 	
	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Ensure	the	mod_ssl	and/or	mod_nssis	loaded	in	the	Apache	configuration:	

httpd -M | egrep 'ssl_module|nss_module'

	
Results	should	show	either	or	both	of	the	modules.	

Remediation:	

Perform	either	of	the	following	to	implement	the	recommended	state:	

1. For	Apache	installations	built	from	the	source,	use	the	option	--with-ssl=	to	
specify	the	openssl	path,	and	the	--enable-ssl	configure	option	to	add	the	SSL	
modules	to	the	build.	The	--with-included-apr	configure	option	may	be	necessary	
if	there	are	conflicts	with	the	platform	version.	If	a	new	version	of	Openssl	is	needed	
it	may	be	downloaded	from	http://www.openssl.org/	See	the	Apache	
documentation	on	building	from	source	
http://httpd.apache.org/docs/2.4/install.htmlfor	details.		

./configure --with-included-apr --with-ssl=$OPENSSL_DIR --enable-ssl

2. For	installations	using	OS	packages,	it	is	typically	just	a	matter	of	ensuring	the	
mod_ssl	package	is	installed.	The	mod_nsspackage	might	also	be	installed.	The	
following	yum	commands	are	suitable	for	Red	Hat	Linux.		

yum install mod_ssl

Default	Value:	

SSL	is	not	enabled	by	default.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html		
2. https://www.centos.org/docs/5/html/5.4/technical-notes/mod_nss.html		

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

110	|	P a g e 	
	

7.2	Install	a	Valid	Trusted	Certificate	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	default	SSL	certificate	is	self-signed	and	is	not	trusted.	Install	a	valid	certificate	signed	
by	a	commonly	trusted	certificate	authority.	To	be	valid,	the	certificate	must	be:	

• Signed	by	a	trusted	certificate	authority	
• Not	be	expired,	and	
• Have	a	common	name	that	matches	the	host	name	of	the	web	server,	such	as	

www.example.com.	

Rationale:	

A	digital	certificate	on	your	server	automatically	communicates	your	site's	authenticity	to	
visitors'	web	browsers.	If	a	trusted	authority	signs	your	certificate,	it	confirms	for	the	
visitor	they	are	actually	communicating	with	you,	and	not	with	a	fraudulent	site	stealing	
credit	card	numbers	or	personal	information.	

Audit:	

Perform	either	or	both	of	the	following	steps	to	determine	if	the	recommended	state	is	
implemented:	

1. OpenSSL	can	also	be	used	to	validate	a	certificate	as	a	valid	trusted	certificate,	using	
a	trusted	bundle	of	CA	certificate.	It	is	important	that	the	CA	bundle	of	certificates	be	
an	already	validated	and	trusted	file	in	order	for	the	test	to	be	valid.		

$ openssl verify -CAfile /etc/pki/tls/certs/ca-bundle.crt -purpose
sslserver /etc/pki/tls/certs/example.com.crt
/etc/pki/tls/certs/example.com.crt: OK

A	specific	error	message	and	code	will	be	reported	in	addition	to	the	OK	if	the	
certificate	is	not	valid,	For	example:		

error 10 at 0 depth lookup:certificate has expired
OK

	 	

	

111	|	P a g e 	
	

2. Testing	can	also	be	done	by	connecting	to	a	running	web	server.	This	may	be	done	
with	your	favorite	browser,	a	command	line	web	client	or	with	openssl s_client.	
Of	course,	it	is	important	here	as	well	to	be	sure	of	the	integrity	of	the	trusted	
certificate	authorities	used	by	the	web	client.	Visit	the	OWASP	testing	SSL	web	page	
for	additional	suggestions:	https://www.owasp.org/index.php/Testing_for_SSL-
TLS_%28OWASP-CM-001%29		

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Decide	on	the	host	name	to	be	used	for	the	certificate.	It	is	important	to	remember	
that	the	browser	will	compare	the	host	name	in	the	URL	to	the	common	name	in	the	
certificate,	so	that	it	is	important	that	all	https:	URL's	match	the	correct	host	name.	
Specifically,	the	host	name	www.example.com	is	not	the	same	as	example.com	nor	the	
same	as	ssl.example.com.	

2. Generate	a	private	key	using	openssl.	Although	certificate	key	lengths	of	1024	have	
been	common	in	the	past,	a	key	length	of	2048	is	now	recommended	for	strong	
authentication.	The	key	must	be	kept	confidential	and	will	be	encrypted	with	a	
passphrase	by	default.	Follow	the	steps	below	and	respond	to	the	prompts	for	a	
passphrase.	See	the	Apache	or	OpenSSL	documentation	for	details:		

o https://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#realcert			
o https://www.openssl.org/docs/HOWTO/certificates.txt		

cd /etc/pki/tls/certs
umask 077
openssl genrsa -aes128 2048 > example.com.key
Generating RSA private key, 2048 bit long modulus
...+++
............+++
e is 65537 (0x10001)
Enter pass phrase:
Verifying - Enter pass phrase:

	 	

	

112	|	P a g e 	
	

3. Generate	the	certificate	signing	request	(CSR)	to	be	signed	by	a	certificate	authority.	
It	is	important	that	common	name	exactly	make	the	web	host	name.		

openssl req -utf8 -new -key example.com.key -out www.example.com.csr

Enter pass phrase for example.com.key:
You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [GB]:US
State or Province Name (full name) [Berkshire]:New York
Locality Name (eg, city) [Newbury]:Lima
Organization Name (eg, company) [My Company Ltd]:Durkee Consulting
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname)
[]:www.example.com
Email Address []:ralph@example.com
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
mv www.example.com.key /etc/pki/tls/private/

4. Send	the	certificate	signing	request	(CSR)	to	a	certificate	signing	authority	to	be	
signed,	and	follow	their	instructions	for	submission	and	validation.	The	CSR	and	the	
final	signed	certificate	are	just	encoded	text,	and	need	to	be	protected	for	integrity,	
but	not	confidentiality.	This	certificate	will	be	given	out	for	every	SSL	connection	
made.	

5. The	resulting	signed	certificate	may	be	named	www.example.com.crt	and	placed	in	
/etc/pki/tls/certs/	as	readable	by	all	(mode	0444).	Please	note	that	the	
certificate	authority	does	not	need	the	private	key	(example.com.key)	and	this	file	
must	be	carefully	protected.	With	a	decrypted	copy	of	the	private	key,	it	would	be	
possible	to	decrypt	all	conversations	with	the	server.	

	 	

	

113	|	P a g e 	
	

6. Do	not	forget	the	passphrase	used	to	encrypt	the	private	key.	It	will	be	required	
every	time	the	server	is	started	in	https	mode.	If	it	is	necessary	to	avoid	requiring	an	
administrator	having	to	type	the	passphrase	every	time	the	httpd service	is	started,	
the	private	key	may	be	stored	in	clear	text.	Storing	the	private	key	in	clear	text	
increases	the	convenience	while	increasing	the	risk	of	disclosure	of	the	key,	but	may	
be	appropriate	for	the	sake	of	being	able	to	restart,	if	the	risks	are	well	managed.	Be	
sure	that	the	key	file	is	only	readable	by	root.	To	decrypt	the	private	key	and	store	it	
in	clear	text	file	the	following	openssl	command	may	be	used.	You	can	tell	by	the	
private	key	headers	whether	it	is	encrypted	or	clear	text.		

cd /etc/pki/tls/private/
umask 077
openssl rsa -in www.example.com.key -out www.example.com.key.clear

7. Locate	the	Apache	configuration	file	for	mod_ssl	and	add	or	modify	the	
SSLCertificateFile	and	SSLCertificateKeyFiledirectives	to	have	the	correct	
path	for	the	private	key	and	signed	certificate	files.	If	a	clear	text	key	is	referenced	
then	a	passphrase	will	not	be	required.	You	can	use	the	CA's	certificate	that	signed	
your	certificate	instead	of	the	CA	bundle,	to	speed	up	the	initial	SSL	connection	as	
fewer	certificates	will	need	to	be	transmitted.		

SSLCertificateFile /etc/pki/tls/certs/example.com.crt
SSLCertificateKeyFile /etc/pki/tls/private/example.com.key
Default CA file, can be replaced with your CA's certificate.
SSLCACertificateFile /etc/pki/tls/certs/ca-bundle.crt

8. Lastly,	start	or	restart	the	httpd	service	and	verify	correct	functioning	with	your	
favorite	browser.	

References:	

1. https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29	
2. https://httpd.apache.org/docs/2.4/ssl/ssl_faq.html#realcert	
3. https://www.openssl.org/docs/HOWTO/certificates.txt	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

114	|	P a g e 	
	

7.3	Protect	the	Server's	Private	Key	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

It	is	critical	to	protect	the	server's	private	key.	The	server's	private	key	is	encrypted	by	
default	as	a	means	of	protecting	it.	However,	having	it	encrypted	means	that	the	
passphrase	is	required	each	time	the	server	is	started	up,	and	now	it	is	necessary	to	protect	
the	passphrase	as	well.	The	passphrase	may	be	typed	in	when	it	is	manually	started	up,	or	
provided	by	an	automated	program.	To	summarize,	the	options	are:	

1. Use	SSLPassPhraseDialog builtin,	-	requires	a	passphrase	to	be	manually	entered.	
2. Use	SSLPassPhraseDialog |/path/to/program	to	provide	the	passphrase.	
3. Use	SSLPassPhraseDialog exec:/path/to/program	to	provide	the	passphrase,	
4. Store	the	private	key	in	clear	text	so	that	a	passphrase	is	not	required.	Any	of	the	

above	options	1-4	are	acceptable	as	long	as	the	key	and	passphrase	are	protected	as	
described	below.	Option	1	has	the	additional	security	benefit	of	not	storing	the	
passphrase,	but	is	not	generally	acceptable	for	most	production	web	servers,	since	it	
requires	the	web	server	to	be	manually	started.	Options	2	and	3	can	provide	
additional	security	if	the	programs	providing	them	are	secure.	Option	4	is	the	
simplest,	is	widely	used	and	is	acceptable	as	long	as	the	private	key	is	appropriately	
protected.	

Rationale:	

If	the	private	key	were	to	be	disclosed,	it	could	be	used	to	decrypt	all	of	the	SSL	
communications	with	the	web	server,	and	could	also	be	used	to	impersonate	the	web	
server.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. For	each	certificate	file	referenced	in	the	Apache	configuration	files	with	the	
SSLCertificateFile	directive,	examine	the	file	for	a	private	key,	clearly	identified	
by	the	string	PRIVATE KEY—--		

2. For	each	file	referenced	in	the	Apache	configuration	files	with	the	
SSLCertificateKeyFile	directive,	verify	the	ownership	is	root:root	and	the	
permission	0400.	

	 	

	

115	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. All	private	keys	must	be	stored	separately	from	the	public	certificates.	Find	all	
SSLCertificateFile	directives	in	the	Apache	configuration	files.	For	any	
SSLCertificateFile	directives	that	do	not	have	a	corresponding	separate	
SSLCertificateKeyFile	directive,	move	the	key	to	a	separate	file	from	the	
certificate,	and	add	the	SSLCertificateKeyFile	directive	for	the	key	file.	

2. For	each	of	the	SSLCertificateKeyFile	directives,	change	the	ownership	and	
permissions	on	the	server	private	key	to	be	owned	by	root:root	with	permission	
0400.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html		
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslpassphrasedialog	

CIS	Controls:	

14	Controlled	Access	Based	on	the	Need	to	Know	

	

116	|	P a g e 	
	

7.4	Disable	the	SSL	v3.0	Protocol	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	Apache	SSLProtocol	directive	specifies	the	SSL	and	TLS	protocols	allowed.	The	SSLv3	
protocol	should	be	disabled	in	this	directive	as	it	is	outdated	and	vulnerable	to	information	
disclosure.	Only	TLS	protocols	should	be	enabled.	

Rationale:	

The	SSLv3	protocol	was	discovered	to	be	vulnerable	to	the	POODLE	attack	(Padding	Oracle	
On	Downgraded	Legacy	Encryption)	in	October	2014.	The	attack	allows	decryption	and	
extraction	of	information	from	the	server's	memory.	Due	to	this	vulnerability	disabling	the	
SSLv3	protocol	is	highly	recommended.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Search	
the	Apache	configuration	files	for	the	SSLProtocol	directive.	Verify	that	the	directive	exists	
and	has	either:	

• a	minus	-SSLv3	value	included	
• an	explicit	list	of	only	TLS	protocols	without	any	plus	(+)	or	minus	(-)	symbols	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Search	the	Apache	
configuration	files	for	the	SSLProtocol	directive;	add	the	directive	if	not	present,	or	change	
the	value	to	match	one	of	the	following	values.	The	first	setting	TLSv1.1 TLS1.2	is	
preferred	when	it	is	acceptable	to	also	disable	the	TLSv1.0	protocol.	See	the	level	2	
recommendation	"Disable	the	TLS	v1.0	Protocol"	for	details.	

SSLProtocol TLSv1.1 TLS1.2

SSLProtocol TLSv1

Default	Value:	

SSLProtocol all	

	 	

	

117	|	P a g e 	
	

References:	

1. https://www.us-cert.gov/ncas/alerts/TA14-290A	
2. https://www.openssl.org/~bodo/ssl-poodle.pdf	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

118	|	P a g e 	
	

7.5	Restrict	Weak	SSL	Ciphers	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Disable	weak	SSL	ciphers	using	the	SSLCipherSuite,	and	SSLHonorCipherOrder	directives.	
The	SSLCipherSuite	directive	specifies	which	ciphers	are	allowed	in	the	negotiation	with	
the	client.	While	the	SSLHonorCipherOrder	causes	the	server’s	preferred	ciphers	to	be	used	
instead	of	the	client’s	specified	preferences.	

Rationale:	

The	SSL/TLS	protocols	support	a	large	number	of	encryption	ciphers	including	many	weak	
ciphers	that	are	subject	to	man-in-the	middle	attacks	and	information	disclosure.	Some	
implementations	even	support	the	NULL	cipher	which	allows	a	TLS	connection	without	any	
encryption!	Therefore,	it	is	critical	to	ensure	the	configuration	only	allows	strong	ciphers	
greater	than	or	equal	to	128-bit	to	be	negotiated	with	the	client.	Stronger	256-bit	ciphers	
should	be	allowed	and	preferred.	In	addition,	enabling	the	SSLHonorCipherOrder	further	
protects	the	client	from	man-in-the-middle	downgrade	attacks	by	ensuring	the	servers	
preferred	ciphers	will	be	used	rather	than	the	clients’	preferences.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Verify	the	SSLCipherSuite	directive	disables	weak	ciphers	in	the	Apache	server	
level	configuration	and	every	virtual	host	that	is	SSL	enabled.	

2. Alternately	the	SSL	protocols	and	ciphers	supported	can	be	easily	tested	by	
connecting	to	a	running	web	server	with	openssl s_client	such	as	shown	in	
https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29		

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	following	
line	in	the	Apache	server	level	configuration	and	every	virtual	host	that	is	SSL	enabled:	

SSLHonorCipherOrder On
SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW:!SSLv2:!MD5:!RC4

	

	

119	|	P a g e 	
	

FIPS	Compliance:	The	above	cipher	suite	specification	may	be	used	for	servers	that	fall	
under	FIPS	140-2	compliance	requirements,	SP800-52	provides	guidelines	for	the	TLS	
ciphers,	because	it	eliminates	the	usage	of	the	RC4	cipher	and	MD5	hash	which	are	not	
deemed	FIPS	compliant.	

Disable	SSLv3	Ciphers:	If	the	SSLv3	protocol	has	also	been	disabled,	then	the	SSLv3	
related	ciphers	will	not	be	used,	and	could	be	removed	from	the	cipher	suite	specification.	

SSLCipherSuite ALL:!EXP:!NULL:!ADH:!LOW:!SSLv2:!SSLv3:!MD5:!RC4

Default	Value:	

The	following	are	the	default	values:	SSLCipherSuite	default	depends	on	OpenSSL	version.	
SSLHonorCipherOrder Off	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslprotocol	
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslciphersuite	
3. https://www.openssl.org/	
4. https://www.owasp.org/index.php/Testing_for_SSL-TLS_%28OWASP-CM-001%29	
5. https://community.qualys.com/blogs/securitylabs/2011/10/17/mitigating-the-

beast-attack-on-tls		
6. https://community.qualys.com/blogs/securitylabs/2013/03/19/rc4-in-tls-is-

broken-now-what	
7. https://blogs.msdn.com/b/kaushal/archive/2011/10/03/taming-the-beast-

browser-exploit-against-ssl-tls.aspx	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

120	|	P a g e 	
	

7.6	Disable	SSL	Insecure	Renegotiation	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

A	man-in-the-middle	renegotiation	attack	was	discovered	in	SSLv3	and	TLSv1	in	
November,	2009	(CVE-2009-3555).	First,	a	work	around	and	then	a	fix	was	approved	as	an	
Internet	Standard	as	RFC	574,	Feb	2010.	The	work	around,	which	removes	the	
renegotiation,	is	available	from	OpenSSL	as	of	version	0.9.8l	and	newer	versions.	For	
details:	https://www.openssl.org/news/secadv_20091111.txt	The	
SSLInsecureRenegotiation	directive	was	added	in	Apache	2.2.15,	for	web	servers	linked	
with	OpenSSL	version	0.9.8m	or	later,	to	provide	backward	compatibility	to	clients	with	the	
older,	unpatched	SSL	implementations.	

Rationale:	

Enabling	the	SSLInsecureRenegotiation	directive	leaves	the	server	vulnerable	to	man-in-
the-middle	renegotiation	attack.	Therefore,	the	SSLInsecureRenegotiation	directive	
should	not	be	enabled.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Search	
the	Apache	configuration	files	for	the	SSLInsecureRenegotiation	directive	and	verify	that	
the	directive	is	either	not	present	or	has	a	value	of	off.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Search	the	Apache	
configuration	files	for	the	SSLInsecureRenegotiation	directive.	If	the	directive	is	present	
modify	the	value	to	be	off.	If	the	directive	is	not	present	then	no	action	is	required.	

SSLInsecureRenegotiation off

Default	Value:	

SSLInsecureRenegotiation off	

	 	

	

121	|	P a g e 	
	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslinsecurerenegotiation	
2. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555		
3. https://azure.microsoft.com/en-us/services/multi-factor-authentication/		

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

122	|	P a g e 	
	

7.7	Ensure	SSL	Compression	is	not	Enabled	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	SSLCompression	directive	controls	whether	SSL	compression	is	used	by	Apache	when	
serving	content	over	HTTPS.	It	is	recommended	that	the	SSLCompression	directive	be	set	to	
off.	

Rationale:	

If	SSL	compression	is	enabled,	HTTPS	communication	between	the	client	and	the	server	
may	be	at	increased	risk	to	the	CRIME	attack.	The	CRIME	attack	increases	a	malicious	
actor's	ability	to	derive	the	value	of	a	session	cookie,	which	commonly	contains	an	
authenticator.	If	the	authenticator	in	a	session	cookie	is	derived,	it	can	be	used	to	
impersonate	the	account	associated	with	the	authenticator.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

1. Search	the	Apache	configuration	files	for	the	SSLCompressiondirective.	
2. Verify	that	the	directive	either	does	not	exist	or	exists	and	is	set	to	off.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

1. Search	the	Apache	configuration	files	for	the	SSLCompression	directive.	
2. If	the	directive	is	present,	set	it	to	off.	

Default	Value:	

In	Apache	versions	>=	2.4.3,	the	SSLCompression	directive	is	available	and	SSL	compression	
is	implicitly	disabled.	In	Apache	2.4	-	2.4.2,	the	SSLCompression	directive	is	not	available	
and	SSL	compression	is	implicitly	enabled.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html#sslcompression	
2. https://en.wikipedia.org/wiki/CRIME_(security_exploit)	

	

123	|	P a g e 	
	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

124	|	P a g e 	
	

7.8	Disable	the	TLS	v1.0	Protocol	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	TLSv1.0	protocol	should	be	disabled	via	the	SSLProtocol	directive,	if	possible,	as	it	has	
been	shown	to	be	vulnerable	to	information	disclosure.	

Rationale:	

The	TLSv1.0	protocol	is	vulnerable	to	the	BEAST	attack	when	used	in	CBC	mode	(October	
2011).	Unfortunately,	the	TLSv1.0	uses	CBC	modes	for	all	of	the	block	mode	ciphers,	which	
only	leaves	the	RC4	streaming	cipher.	The	RC4	cipher	is	not	vulnerable	to	the	BEAST	
attack;	however,	there	is	research	that	indicates	it	is	also	weak	and	is	not	recommended.	
Therefore,	it	is	recommended	that	the	TLSv1.0	protocol	be	disabled	if	all	TLS	clients	
support	the	newer	TLS	protocols.	All	major	up-to-date	browsers	support	TLSv1.1	and	
TLSv1.2;	however,	some	older	IE	browsers	(8,9,10)	may	still	have	TLSv1.1	and	TLSv1.2	
disabled	for	some	strange	reason.	While	Safari	6	does	not	support	the	newer	TLS	protocols.	
Review	the	Wikipedia	reference	for	browser	support	details.	Ensuring	that	all	user's	
browsers	are	configured	to	allow	TLSv1.1	and	TLSv1.2	is	necessary	before	disabling	
TLSv1.0	on	the	Apache	web	server;	therefore,	this	recommendation	is	a	level	2	rather	than	
a	level	1.	Disabling	TLSv1.0	on	internal	only	websites	is	more	easily	accomplished	when	
access	is	limited	to	clients	with	browsers	controlled	by	the	organization	policies	and	
procedures	to	allow	and	prefer	TLSv1.1	and	higher.		

The	NIST	SP	800-52r1	guidelines	for	TLS	configuration	state	that	servers	that	support	
government-only	applications	shall	not	support	TLSv1.0	or	any	of	the	SSL	protocols.	While	
Servers	that	support	citizen	or	business-facing	applications	may	be	configured	to	support	
TLS	version	1.0	in	order	to	enable	interaction	with	citizens	and	businesses.	Also,	it	is	
important	to	note	that	Microsoft	support	for	all	older	versions	of	IE	ends	January	12,	2016,	
and	Apple	ends	support	for	Safari	6	with	the	fall	release	if	OS	X	10.11.	So,	it	is	wise	to	plan	
for	usage	of	TLSv1.0	to	be	eliminated	in	2016.	Some	organizations	may	find	it	helpful	to	
implement	a	phased	transitional	plan	where	TLSv1.0	is	not	disabled,	but	the	web	server	
will	detect	browsers	which	do	not	have	TLSv1.1	or	newer	enabled	and	redirect	them	to	a	
web	site	that	explains	how	to	enabled	the	newer	TLS	protocols.	The	redirect	can	be	
implemented	using	the	mod_rewrite	which	can	detect	the	protocol	used,	and	rewrite	the	
URL	to	the	helpful	website.	

	 	

	

125	|	P a g e 	
	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Search	the	Apache	configuration	files	for	the	SSLProtocol	directive	and	ensure	it	has	the	
value	of	TLSv1.1 TLSv1.2.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Search	the	Apache	
configuration	files	for	the	SSLProtocol	directive;	add	the	directive	if	not	present,	or	change	
the	value	to	TLSv1.1 TLSv1.2.	

Default	Value:	

SSLProtocol all	

References:	

1. https://en.wikipedia.org/wiki/Transport_Layer_Security#Web_browsers	-	Browser	
support	and	defaults	for	SSL/TLS	protocols	

2. https://community.qualys.com/blogs/securitylabs/2011/10/17/mitigating-the-
beast-attack-on-tls	-	Qualys	-	Ivan	Ristic		

3. http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf		
4. https://support.microsoft.com/en-us/gp/microsoft-internet-explorer	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

126	|	P a g e 	
	

7.9	Enable	OCSP	Stapling	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	OCSP	(Online	Certificate	Status	Protocol)	provides	the	current	revocation	status	of	an	
X.509	certificate	and	allows	for	a	certificate	authority	to	revoke	the	validity	of	a	signed	
certificate	before	its	expiration	date.	The	URI	for	the	OCSP	server	is	included	in	the	
certificate	and	verified	by	the	browser.	The	Apache	SSLUseStapling	directive	along	with	
the	SSLStaplingCache	directive	are	recommended	to	enable	OCSP	Stapling	by	the	web	
server.	If	the	client	requests	OCSP	stapling,	then	the	web	server	can	include	the	OCSP	
server	response	along	with	the	web	server's	X.509	certificate.	

Rationale:	

The	OCSP	protocol	is	a	big	improvement	over	CRLs	(certificate	revocation	lists)	for	
checking	if	a	certificate	has	been	revoked.	There	are	however	some	minor	privacy	and	
efficiency	concerns	with	OCSP.	The	fact	that	the	browser	has	to	check	a	third-party	CA	
discloses	that	the	browser	is	configured	for	OCSP	checking.	Also,	the	already	high	overhead	
of	making	an	SSL	connection	is	increased	by	the	need	for	the	OCSP	requests	and	responses.	
The	OCSP	stapling	improves	the	situation	by	having	the	SSL	server	"staple"	an	OCSP	
response,	signed	by	the	OCSP	server,	to	the	certificate	it	presents	to	the	client.	This	obviates	
the	need	for	the	client	to	ask	the	OCSP	server	for	status	information	on	the	server	
certificate.	However,	the	client	will	still	need	to	make	OCSP	requests	on	any	intermediate	
CA	certificates	that	are	typically	used	to	sign	the	server's	certificate.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented.	At	the	
Apache	server	level	configuration	and	for	every	virtual	host	that	is	SSL	enabled:	

• Verify	the	SSLStaplingCache	directive	is	present	and	not	commented	out.	There	are	
three	supported	cache	types,	any	of	them	are	considered	compliant.	

• Verify	the	SSLUseStapling	directive	is	enabled	with	a	value	of	on		

	 	

	

127	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
SSLUseStapling	directive	to	have	a	value	of	on	in	the	Apache	server	level	configuration	and	
every	virtual	host	that	is	SSL	enabled.	Also	ensure	that	SSLStaplingCache	is	set	to	one	of	
the	three	cache	types	similar	to	the	examples	below.	

SSLUseStapling On
SSLStaplingCache "shmcb:logs/ssl_staple_cache(512000)"
- or-
SSLStaplingCache "dbm:logs/ssl_staple_cache.db"
- or -
SSLStaplingCache dc:UNIX:logs/ssl_staple_socket

Default	Value:	

SSLUseStapling Off	SSLStaplingCache<no default value>	

References:	

1. https://en.wikipedia.org/wiki/OCSP_stapling	-	OCSP	Stapling	
2. https://httpd.apache.org/docs/2.4/mod/mod_ssl.html	-	Apache	SSL	Directives	

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

128	|	P a g e 	
	

7.10	Enable	HTTP	Strict	Transport	Security	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

HTTP	Strict	Transport	Security	(HSTS)	is	an	optional	web	server	security	policy	
mechanism	specified	by	an	HTTP	Server	header.	The	HSTS	header	allows	a	server	
declaration	that	only	HTTPS	communication	should	be	used	rather	than	clear	text	HTTP	
communication.	

Rationale:	

Usage	of	HTTP	Strict	Transport	Security	(HSTS)	helps	protect	HSTS	compliant	browsers	
and	other	agents	from	HTTP	downgrade	attacks.	Downgrade	attacks	include	a	variety	of	
man-in-the-middle	attacks	which	leave	the	web	communication	vulnerable	to	disclosure	
and	modification	by	forcing	the	usage	of	HTTP	rather	than	HTTPS	communication.	The	
sslstrip	attack	tool	by	Moxie	Marlinspike	released	in	2009	is	one	such	attack,	which	
works	when	the	server	allows	both	HTTP	and	HTTPS	communication.	However,	a	man-in-
the-middle	HTTP-to-HTTPS	proxy	would	be	effective	in	cases	where	the	server	required	
HTTPS,	but	did	not	publish	an	HSTS	policy	to	the	browser.	This	attack	would	also	be	
effective	on	browsers	which	were	not	compliant	with	HSTS.	All	current	up-to-date	
browsers	support	HSTS.	The	HSTS	header	specifies	a	length	of	time	in	seconds	that	the	
browser	/	user	agent	should	access	the	server	only	using	HTTPS.	The	header	may	also	
specify	if	all	sub-domains	should	also	be	included	in	the	same	policy.	Once	a	compliant	
browser	receives	the	HSTS	Header	it	will	not	allow	access	to	the	server	via	HTTP.	
Therefore,	it	is	important	that	you	ensure	that	there	is	no	portion	of	the	web	site	or	web	
application	that	requires	HTTP	prior	to	enabling	the	HSTS	protocol.	If	all	sub-domains	are	
to	be	included	via	the	includeSubDomains	option,	then	carefully	consider	all	various	host	
names,	web	applications	and	third-party	services	used	to	include	any	DNS	CNAME	values	
that	may	be	impacted.	An	overly	broad	includeSubDomains	policy	will	disable	access	to	
HTTP	web	sites	for	all	websites	with	the	same	domain	name.	Also	consider	that	the	access	
will	be	disabled	for	the	number	of	seconds	given	in	the	max-age	value,	so	in	the	event	a	
mistake	is	made,	a	large	value,	such	as	a	year,	could	create	significant	support	issues.	An	
optional	flag	of	preload	may	be	added	if	the	web	site	name	is	to	be	submitted	to	be	
preloaded	in	Chrome,	Firefox	and	Safari	browsers.	See	https://hstspreload.appspot.com/	
for	details.	

	 	

	

129	|	P a g e 	
	

Audit:	

Perform	either	of	the	following	steps	to	determine	if	the	recommended	state	is	
implemented.	At	the	Apache	server	level	configuration	and	for	every	virtual	host	that	is	SSL	
enabled,	verify	there	is	a	Header	directive	present	that	sets	the	Strict-Transport-
Security	header	with	a	max-age	value	of	at	least	480	seconds	or	more	(8	minutes	or	more).	
For	example:	

Header always set Strict-Transport-Security "max-age=600"

	

As	an	alternative,	the	configuration	may	be	validated	by	connecting	to	the	HTTPS	server	
and	verifying	the	presence	of	the	header.	Such	as	the	openssl	s_client	command	shown	
below:	

openssl s_client -connect www.example.com:443
GET / HTTP1.1.
Host:www.example.com

HTTP/1.1 200 OK
Date: Mon, 08 Dec 2014 18:28:29 GMT
Server: Apache
X-Frame-Options: NONE
Strict-Transport-Security: max-age=600
Last-Modified: Mon, 19 Jun 2006 14:47:16 GMT
ETag: "152-41694d7a92500"
Accept-Ranges: bytes
Content-Length: 438
Connection: close
Content-Type: text/html

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	a	Header	directive	as	
shown	below	in	the	Apache	server	level	configuration	and	every	virtual	host	that	is	SSL	
enabled.	The	includeSubDomains	and	preload	flags	may	be	included	in	the	header,	but	are	
not	required.	

Header always set Strict-Transport-Security "max-age=600”;
includeSubDomains; preload
- or -
Header always set Strict-Transport-Security "max-age=600"

Default	Value:	

The	Strict	Transport	Security	header	is	not	present	by	default.	

	 	

	

130	|	P a g e 	
	

References:	

1. https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security	
2. https://www.owasp.org/index.php/HTTP_Strict_Transport_Security	
3. https://moxie.org/software/sslstrip/	
4. https://developer.mozilla.org/en-

US/docs/Web/Security/HTTP_strict_transport_security		
5. https://hstspreload.appspot.com/		

CIS	Controls:	

14.2	Encrypt	All	Sensitive	Information	Over	Less-trusted	Networks	
All	communication	of	sensitive	information	over	less-trusted	networks	should	be	
encrypted.	Whenever	information	flows	over	a	network	with	a	lower	trust	level,	the	
information	should	be	encrypted.	

	

131	|	P a g e 	
	

8	Information	Leakage	

Recommendations	in	this	section	intend	to	limit	the	disclosure	of	potentially	sensitive	
information.	

8.1	Set	ServerToken	to	'Prod'	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Configure	the	Apache	ServerTokens	directive	to	provide	minimal	information.	By	setting	
the	value	to	Prod	or	ProductOnly.	The	only	version	information	given	in	the	server	HTTP	
response	header	will	be	Apache	rather	than	providing	detailed	on	modules	and	versions	
installed.	

Rationale:	

Information	is	power,	and	identifying	web	server	details	greatly	increases	the	efficiency	of	
any	attack,	as	security	vulnerabilities	are	extremely	dependent	upon	specific	software	
versions	and	configurations.	Excessive	probing	and	requests	may	cause	too	much	"noise"	
being	generated	and	may	tip	off	an	administrator.	If	an	attacker	can	accurately	target	their	
exploits,	the	chances	of	successful	compromise	prior	to	detection	increase	dramatically.	
Script	Kiddies	are	constantly	scanning	the	Internet	and	documenting	the	version	
information	openly	provided	by	web	servers.	The	purpose	of	this	scanning	is	to	accumulate	
a	database	of	software	installed	on	those	hosts,	which	can	then	be	used	when	new	
vulnerabilities	are	released.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
the	ServerTokens	directive	is	present	in	the	Apache	configuration	and	has	a	value	of	Prod	
or	ProductOnly.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
ServerTokens	directive	as	shown	below	to	have	the	value	of	Prod	or	ProductOnly:	

ServerTokens Prod

	

132	|	P a g e 	
	

Default	Value:	

The	default	value	is	Full	which	provides	the	most	detailed	information.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#servertokens	

CIS	Controls:	

18.9	Sanitize	Deployed	Software	of	Development	Artifacts	
For	in-house	developed	applications,	ensure	that	development	artifacts	(sample	data	and	
scripts;	unused	libraries,	components,	debug	code;	or	tools)	are	not	included	in	the	
deployed	software,	or	accessible	in	the	production	environment.	

	

133	|	P a g e 	
	

8.2	Set	ServerSignature	to	'Off'	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Disable	the	server	signatures	which	generates	a	signature	line	as	a	trailing	footer	at	the	
bottom	of	server	generated	documents	such	as	error	pages.	

Rationale:	

Server	signatures	are	helpful	when	the	server	is	acting	as	a	proxy,	since	it	helps	the	user	
distinguish	errors	from	the	proxy	rather	than	the	destination	server,	however	in	this	
context	there	is	no	need	for	the	additional	information	and	we	want	to	limit	leakage	of	
unnecessary	information.	

Audit:	

Verify	the	ServerSignature	directive	is	either	NOT	present	in	the	Apache	configuration	or	
has	a	value	of	Off.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
ServerSignature	directive	as	shown	below	to	have	the	value	of	Off:	

ServerSignature Off

Default	Value:	

The	default	value	is	Off	for	ServerSignature.	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#serversignature	

CIS	Controls:	

18	Application	Software	Security	

	

134	|	P a g e 	
	

8.3	Information	Leakage	via	Default	Apache	Content	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

In	previous	recommendations,	we	have	removed	default	content	such	as	the	Apache	
manuals	and	default	CGI	programs.	However,	if	you	want	to	further	restrict	information	
leakage	about	the	web	server,	it	is	important	that	default	content	such	as	icons	are	not	left	
on	the	web	server.	

Rationale:	

To	identify	the	type	of	web	servers	and	versions	software	installed	it	is	common	for	
attackers	to	scan	for	icons	or	special	content	specific	to	the	server	type	and	version.	A	
simple	request	like	http://example.com/icons/apache_pb2.png	may	tell	the	attacker	that	
the	server	is	Apache	2.4	as	shown	below.	The	many	icons	are	used	primarily	for	auto	
indexing,	which	is	also	recommended	to	be	disabled.	

Audit:	

Perform	the	following	step	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	there	is	no	alias	or	directory	access	to	the	Apache	icons	directory	in	any	of	the	Apache	
configuration	files.	

Remediation:	

Perform	either	of	the	following	to	implement	the	recommended	state:	

1. The	default	source	build	places	the	auto-index	and	icon	configurations	in	the	
extra/httpd-autoindex.conf	file,	so	it	can	be	disabled	by	leaving	the	include	line	
commented	out	in	the	main	httpd.conffile	as	shown	below.		

Fancy directory listings
#Include conf/extra/httpd-autoindex.conf

	 	

	

135	|	P a g e 	
	

2. Alternatively,	the	icon	alias	directive	and	the	directory	access	control	configuration	
can	be	commented	out	as	shown	if	present:		

We include the /icons/ alias for FancyIndexed directory listings. If
you do not use FancyIndexing, you may comment this out.

#Alias /icons/ "/var/www/icons/"
#<Directory "/var/www/icons">
Options Indexes MultiViews FollowSymLinks
AllowOverride None
Order allow,deny
Allow from all
#</Directory>

Default	Value:	

The	default	source	build	does	not	enable	access	to	the	Apache	icons.	

CIS	Controls:	

18.9	Sanitize	Deployed	Software	of	Development	Artifacts	
For	in-house	developed	applications,	ensure	that	development	artifacts	(sample	data	and	
scripts;	unused	libraries,	components,	debug	code;	or	tools)	are	not	included	in	the	
deployed	software,	or	accessible	in	the	production	environment.	

	

136	|	P a g e 	
	

9	Denial	of	Service	Mitigations	

Denial	of	Service	(DoS)	attacks	intend	to	degrade	a	service's	ability	to	process	and	respond	
to	service	requests.	Typically,	DoS	attacks	attempt	to	exhaust	the	service's	network-,	CPU-,	
disk-,	and/or	memory-	related	resources.	Configuration	states	in	this	section	may	increase	
a	server's	resiliency	to	DoS	attacks.	

9.1	Set	TimeOut	to	10	or	less	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

Denial	of	Service	(DoS)	is	an	attack	technique	with	the	intent	of	preventing	a	web	site	from	
serving	normal	user	activity.	DoS	attacks,	which	are	normally	applied	to	the	network	layer,	
are	also	possible	at	the	application	layer.	These	malicious	attacks	can	succeed	by	starving	a	
system	of	critical	resources,	vulnerability	exploit,	or	abuse	of	functionality.	Although	there	
is	no	100%	solution	for	preventing	DoS	attacks,	the	following	recommendation	uses	the	
Timeout	directive	to	mitigate	some	of	the	risk,	by	requiring	more	effort	for	a	successful	DoS	
attack.	Of	course,	DoS	attacks	can	happen	in	rather	unintentional	ways	as	well	as	
intentional	and	these	directives	will	help	in	many	of	those	situations	as	well.	

Rationale:	

One	common	technique	for	DoS	is	to	initiate	many	connections	to	the	server.	By	decreasing	
the	timeout	for	old	connections	and	we	allow	the	server	to	free	up	resources	more	quickly	
and	be	more	responsive.	By	making	the	server	more	efficient,	it	will	be	more	resilient	to	
DoS	conditions.	The	Timeout	directive	affects	several	timeout	values	for	Apache,	so	review	
the	Apache	document	carefully.	
https://httpd.apache.org/docs/2.4/mod/core.html#timeout	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	Timeout	directive	is	specified	in	the	Apache	configuration	files	to	have	a	value	of	10	
seconds	or	shorter.	

	 	

	

137	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	Timeout	
directive	in	the	Apache	configuration	to	have	a	value	of	10	seconds	or	shorter.	

Timeout 10

Default	Value:	

Timeout 60	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#timeout	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	
	

	

138	|	P a g e 	
	

9.2	Set	the	KeepAlive	directive	to	On	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	KeepAlive	directive	controls	whether	Apache	will	reuse	the	same	TCP	connection	per	
client	to	process	subsequent	HTTP	requests	from	that	client.	It	is	recommended	that	the	
KeepAlive	directive	be	set	to	On.	

Rationale:	

Allowing	per-client	reuse	of	TCP	sockets	reduces	the	amount	of	system	and	network	
resources	required	to	serve	requests.	This	efficiency	gain	may	improve	a	server's	resiliency	
to	DoS	attacks.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	KeepAlive	directive	in	the	Apache	configuration	to	have	a	value	of	On,	or	is	not	
present.	If	the	directive	is	not	present	the	default	value	is	On.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	KeepAlive	
directive	in	the	Apache	configuration	to	have	a	value	of	On,	so	that	KeepAlive	connections	
are	enabled.	

KeepAlive On

Default	Value:	

KeepAlive On	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#keepalive	

Notes:	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

139	|	P a g e 	
	

9.3	Set	MaxKeepAliveRequests	to	100	or	greater	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	MaxKeepAliveRequests	directive	limits	the	number	of	requests	allowed	per	connection	
when	KeepAlive	is	on.	If	it	is	set	to	0,	unlimited	requests	will	be	allowed.	

Rationale:	

The	MaxKeepAliveRequests	directive	is	important	to	be	used	to	mitigate	the	risk	of	Denial	
of	Service	(DoS)	attack	technique	by	reducing	the	overhead	imposed	on	the	server.	The	
KeepALive	directive	must	be	enabled	before	it	is	effective.	Enabling	KeepAlives	allows	for	
multiple	HTTP	requests	to	be	sent	while	keeping	the	same	TCP	connection	alive.	This	
reduces	the	overhead	of	having	to	setup	and	tear	down	TCP	connections	for	each	request.	
By	making	the	server	more	efficient,	it	will	be	more	resilient	to	DoS	conditions.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	MaxKeepAliveRequests	directive	in	the	Apache	configuration	to	have	a	value	of	100	
or	more.	If	the	directive	is	not	present	the	default	value	is	100.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
MaxKeepAliveRequests	directive	in	the	Apache	configuration	to	have	a	value	of	100	or	
more.	

MaxKeepAliveRequests 100

Default	Value:	

MaxKeepAliveRequests 100	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#maxkeepaliverequests		

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

140	|	P a g e 	
	

9.4	Set	KeepAliveTimeout	Low	to	Mitigate	Denial	of	Service	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	KeepAliveTimeout	directive	specifies	the	number	of	seconds	Apache	will	wait	for	a	
subsequent	request	before	closing	a	connection	that	is	being	kept	alive.	

Rationale:	

The	KeepAliveTimeout	directive	is	used	mitigate	some	of	the	risk,	by	requiring	more	effort	
for	a	successful	DoS	attack.	By	enabling	KeepAlive	and	keeping	the	timeout	relatively	low	
for	old	connections	and	we	allow	the	server	to	free	up	resources	more	quickly	and	be	more	
responsive.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	KeepAliveTimeout	directive	in	the	Apache	configuration	to	have	a	value	of	15	or	
less.	If	the	directive	is	not	present	the	default	value	is	5	seconds.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
KeepAliveTimeout	directive	in	the	Apache	configuration	to	have	a	value	of	15	or	less.	

KeepAliveTimeout 15

Default	Value:	

KeepAliveTimeout 5	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

141	|	P a g e 	
	

9.5	Set	Timeout	Limits	for	Request	Headers	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	RequestReadTimeout	directive	allows	configuration	of	timeout	limits	for	client	
requests.	The	header	portion	of	the	directive	provides	for	an	initial	timeout	value,	a	
maximum	timeout	and	a	minimum	rate.	The	minimum	rate	specifies	that	after	the	initial	
timeout,	the	server	will	wait	an	additional	1	second	for	each	N	bytes	received.	The	
recommended	setting	is	to	have	a	maximum	timeout	of	40	seconds	or	less.	Keep	in	mind	
that	for	SSL/TLS	virtual	hosts	the	time	for	the	TLS	handshake	must	fit	within	the	timeout.	

Rationale:	

Setting	a	request	header	timeout	is	vital	for	mitigating	Denial	of	Service	attacks	based	on	
slow	requests.	The	slow	request	attacks	are	particularly	lethal	and	relative	easy	to	perform,	
because	they	require	very	little	bandwidth	and	can	easily	be	done	through	anonymous	
proxies.	Starting	in	June	2009	with	the	Slow	Loris	DoS	attack,	which	used	a	slow	GET	
request,	was	published	by	Robert	Hansen	(RSnake)	on	his	blog	
http://ha.ckers.org/slowloris/.	Later	in	November	2010	at	the	OWASP	App	Sec	DC	
conference	Wong	Onn	Chee	demonstrated	a	slow	POST	request	attack	which	was	even	more	
effective.	See	https://www.owasp.org/index.php/H.....t.....t....p.......p....o....s....t	for	details.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Locate	any	RequestReadTimeout	directives	and	verify	that	they	have	a	maximum	

header	request	timeout	of	40	seconds	or	less.	
3. If	the	configuration	does	not	contain	any	RequestReadTimeout	directives,	and	the	

mod_reqtimeout	module	is	being	loaded,	then	the	default	value	of	40	seconds	is	
compliant	with	the	benchmark	recommendation.	

RequestReadTimeout header=XXX-40,MinRate=XXX body=XXXXXXXXXX

	 	

	

142	|	P a g e 	
	

Remediation:	

1. Load	the	mod_requesttimeout	module	in	the	Apache	configuration	with	the	
following	configuration.		

LoadModule reqtimeout_module modules/mod_reqtimeout.so

2. Add	a	RequestReadTimeout	directive	similar	to	the	one	below	with	the	maximum	
request	header	timeout	value	of	40	seconds	or	less.		

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

Default	Value:	

header=20-40,MinRate=500	

References:	

1. http://ha.ckers.org/slowloris/	
2. https://www.owasp.org/index.php/H.....t.....t....p.......p....o....s....t	

https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

143	|	P a g e 	
	

9.6	Set	Timeout	Limits	for	the	Request	Body	(Scored)	

Profile	Applicability:	

• Level	1	

Description:	

The	RequestReadTimeout	directive	also	allows	setting	timeout	values	for	the	body	portion	
of	a	request.	The	directive	provides	for	an	initial	timeout	value,	and	a	maximum	timeout	
and	minimum	rate.	The	minimum	rate	specifies	that	after	the	initial	timeout,	the	server	will	
wait	an	additional	1	second	for	each	N	bytes	are	received.	The	recommended	setting	is	to	
have	a	maximum	timeout	of	20	seconds	or	less.	The	default	value	is	body=20,MinRate=500.	

Rationale:	

It	is	not	sufficient	to	timeout	only	on	the	header	portion	of	the	request,	as	the	server	will	
still	be	vulnerable	to	attacks	like	the	OWASP	Slow	POST	attack,	which	provide	the	body	of	
the	request	very	slowly.	Therefore,	the	body	portion	of	the	request	must	have	a	timeout	as	
well.	A	timeout	of	20	seconds	or	less	is	recommended.	

Audit:	

Perform	the	following	to	determine	if	the	recommended	state	is	implemented:	

1. Locate	the	Apache	configuration	files	and	included	configuration	files.	
2. Locate	any	RequestReadTimeout	directives	and	verify	the	configuration	has	a	

maximum	body	request	timeout	of	20	seconds	or	less.	
3. If	the	configuration	does	not	contain	any	RequestReadTimeout	directives,	and	the	

mod_reqtimeout	module	is	being	loaded,	then	the	default	value	of	20	seconds	is	
compliant	with	the	benchmark	recommendation.		

Remediation:	

Load	the	mod_requesttimeout	module	in	the	Apache	configuration	with	the	following	
configuration.	

LoadModule reqtimeout_module modules/mod_reqtimeout.so

	
Add	a	RequestReadTimeout	directive	similar	to	the	one	below	with	the	maximum	request	
body	timeout	value	of	20	seconds	or	less.	

RequestReadTimeout header=20-40,MinRate=500 body=20,MinRate=500

	 	

	

144	|	P a g e 	
	

Default	Value:	

body=20,MinRate=500	

References:	

1. https://httpd.apache.org/docs/2.4/mod/mod_reqtimeout.html		

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

145	|	P a g e 	
	

10	Request	Limits	

Recommendations	in	this	section	reduce	the	maximum	allowed	size	of	request	parameters.	
Doing	so	increases	the	likelihood	of	negatively	impacting	application	and/or	site	
functionality.	It	is	highly	recommended	that	the	configuration	states	described	in	this	
section	be	tested	on	test	servers	prior	deploying	them	to	production	servers.	

10.1	Set	the	LimitRequestLine	directive	to	512	or	less	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

Buffer	Overflow	attacks	attempt	to	exploit	an	application	by	providing	more	data	than	the	
application	buffer	can	contain.	If	the	application	allows	copying	data	to	the	buffer	to	
overflow	the	boundaries	of	the	buffer,	then	the	application	is	vulnerable	to	a	buffer	
overflow.	The	results	of	Buffer	overflow	vulnerabilities	vary,	and	may	result	in	the	
application	crashing,	or	may	allow	the	attacker	to	execute	instructions	provided	in	the	data.	
The	Apache	LimitRequest*	directives	allow	the	Apache	web	server	to	limit	the	sizes	of	
requests	and	request	fields	and	can	be	used	to	help	protect	programs	and	applications	
processing	those	requests.	

Specifically,	the	LimitRequestLine	directive	limits	the	allowed	size	of	a	client's	HTTP	
request-line,	which	consists	of	the	HTTP	method,	URI,	and	protocol	version.	

Rationale:	

The	limiting	of	the	size	of	request	line	is	helpful	so	that	the	web	server	can	prevent	an	
unexpectedly	long	or	large	request	from	being	passed	to	a	potentially	vulnerable	CGI	
program,	module	or	application	that	would	have	attempted	to	process	the	request.	Of	
course,	the	underlying	dependency	is	that	we	need	to	set	the	limits	high	enough	to	not	
interfere	with	any	one	application	on	the	server,	while	setting	them	low	enough	to	be	of	
value	in	protecting	the	applications.	Since	the	configuration	directive	is	available	only	at	
the	server	configuration	level,	it	is	not	possible	to	tune	the	value	for	different	portions	of	
the	same	web	server.	Please	read	the	Apache	documentation	carefully,	as	these	requests	
may	interfere	with	the	expected	functionality	of	some	web	applications.	

	 	

	

146	|	P a g e 	
	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	LimitRequestline	directive	is	in	the	Apache	configuration	and	has	a	value	of	512	
or	less.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
LimitRequestline	directive	in	the	Apache	configuration	to	have	a	value	of	512	or	shorter.	

LimitRequestline 512

Default	Value:	

LimitRequestline 8190	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestline	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

147	|	P a g e 	
	

10.2	Set	the	LimitRequestFields	directive	to	100	or	less	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	LimitRequestFields	directive	limits	the	number	of	fields	allowed	in	an	HTTP	request.	

Rationale:	

The	limiting	of	the	number	of	fields	is	helpful	so	that	the	web	server	can	prevent	an	
unexpectedly	high	number	of	fields	from	being	passed	to	a	potentially	vulnerable	CGI	
program,	module	or	application	that	would	have	attempted	to	process	the	request.	Of	
course,	the	underlying	dependency	is	that	we	need	to	set	the	limits	high	enough	to	not	
interfere	with	any	one	application	on	the	server,	while	setting	them	low	enough	to	be	of	
value	in	protecting	the	applications.	Since	the	configuration	directives	are	available	only	at	
the	server	configuration	level,	it	is	not	possible	to	tune	the	value	for	different	portions	of	
the	same	web	server.	Please	read	the	Apache	documentation	carefully,	as	these	requests	
may	interfere	with	the	expected	functionality	of	some	web	applications.	

Audit:	

Verify	that	the	LimitRequestFields	directive	is	in	the	Apache	configuration	and	has	a	
value	of	100	or	less.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
LimitRequestFields	directive	in	the	Apache	configuration	to	have	a	value	of	100	or	less.	If	
the	directive	is	not	present	the	default	depends	on	a	compile	time	configuration,	but	
defaults	to	a	value	of	100.	

LimitRequestFields 100

Default	Value:	

LimitRequestFields 100	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfields	

	 	

	

148	|	P a g e 	
	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

149	|	P a g e 	
	

10.3	Set	the	LimitRequestFieldsize	directive	to	1024	or	less	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	LimitRequestFieldSize	limits	the	number	of	bytes	that	will	be	allowed	in	an	HTTP	
request	header.	It	is	recommended	that	the	LimitRequestFieldSize	directive	be	set	to	
1024	or	less.	

Rationale:	

By	limiting	of	the	size	of	request	headers	is	helpful	so	that	the	web	server	can	prevent	an	
unexpectedly	long	or	large	value	from	being	passed	to	exploit	a	potentially	vulnerable	
program.	Of	course,	the	underlying	dependency	is	that	we	need	to	set	the	limits	high	
enough	to	not	interfere	with	any	one	application	on	the	server,	while	setting	them	low	
enough	to	be	of	value	in	protecting	the	applications.	Since	the	configuration	directives	are	
available	only	at	the	server	configuration	level,	it	is	not	possible	to	tune	the	value	for	
different	portions	of	the	same	web	server.	Please	read	the	Apache	documentation	carefully,	
as	these	requests	may	interfere	with	the	expected	functionality	of	some	web	applications.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Verify	
that	the	LimitRequestFieldsize	directive	is	in	the	Apache	configuration	and	has	a	value	of	
1024	or	less.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
LimitRequestFieldsize	directive	in	the	Apache	configuration	to	have	a	value	of	1024	or	
less.	

LimitRequestFieldsize 1024

Default	Value:	

LimitRequestFieldsize 8190	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestfieldsize	

	

150	|	P a g e 	
	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

151	|	P a g e 	
	

10.4	Set	the	LimitRequestBody	directive	to	102400	or	less	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

The	LimitRequestBody	directive	limits	the	number	of	bytes	that	are	allowed	in	a	request	
body.	Size	of	requests	may	vary	greatly;	for	example,	during	a	file	upload	the	size	of	the	file	
must	fit	within	this	limit.	

Rationale:	

The	limiting	of	the	size	of	the	request	body	is	helpful	so	that	the	web	server	can	prevent	an	
unexpectedly	long	or	large	request	from	being	passed	to	a	potentially	vulnerable	program.	
Of	course,	the	underlying	dependency	is	that	we	need	to	set	the	limits	high	enough	to	not	
interfere	with	any	one	application	on	the	server,	while	setting	them	low	enough	to	be	of	
value	in	protecting	the	applications.	The	LimitRequestBody	may	be	configured	on	a	per	
directory,	or	per	location	context.	Please	read	the	Apache	documentation	carefully,	as	these	
requests	may	interfere	with	the	expected	functionality	of	some	web	applications.	

Audit:	

Verify	that	the	LimitRequestBody	directive	in	the	Apache	configuration	to	have	a	value	of	
102400	(100K)	or	less.	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	Add	or	modify	the	
LimitRequestBody	directive	in	the	Apache	configuration	to	have	a	value	of	102400	(100K)	
or	less.	Please	read	the	Apache	documentation	so	that	it	is	understood	that	this	directive	
will	limit	the	size	of	file	up-loads	to	the	web	server.	

LimitRequestBody 102400

Default	Value:	

LimitRequestBody 0 (unlimited)	

References:	

1. https://httpd.apache.org/docs/2.4/mod/core.html#limitrequestbody	

	 	

	

152	|	P a g e 	
	

CIS	Controls:	

9	Limitation	and	Control	of	Network	Ports,	Protocols,	and	Services	

	

153	|	P a g e 	
	

11	Enable	SELinux	to	Restrict	Apache	Processes	

Recommendations	in	this	section	provide	mandatory	access	controls	(MAC)	using	the	
SELinux	kernel	module	in	targeted	mode.	SELinux	provides	additional	enforced	security	
which	will	prevent	access	to	resources,	files	and	directories	by	the	httpd	processes	even	in	
cases	where	an	application	or	server	vulnerability	might	allow	inappropriate	access.	The	
SELinux	controls	are	advanced	security	controls	that	require	significant	effort	to	ensure	
they	do	not	negatively	impact	the	application	and/or	site	functionality.	It	is	highly	
recommended	that	the	configuration	states	described	in	this	section	be	tested	thoroughly	
on	test	servers	prior	to	deploying	them	to	production	servers.	SELinux	and	AppArmor	
provide	similar	controls,	and	it	is	not	recommended	to	use	both	SELinux	and	AppArmor	on	
the	same	system.	Depending	on	which	Linux	distribution	is	in	use	either	AppArmor	or	
SELinux	are	likely	to	be	already	installed	or	readily	available	as	packages.	AppArmor	differs	
from	SELinux	in	that	it	binds	the	controls	to	programs	rather	than	users	and	uses	path	
names	rather	than	labeled	type	enforcement.	

11.1	Enable	SELinux	in	Enforcing	Mode	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

SELinux	(Security-Enhanced	Linux)	is	a	Linux	kernel	security	module	that	provides	
mandatory	access	control	security	policies	with	type	enforcement	that	are	checked	after	
the	traditional	discretionary	access	controls.	It	was	created	by	the	US	National	Security	
Agency	and	can	enforce	rules	on	files	and	processes	in	a	Linux	system,	and	restrict	actions,	
based	on	defined	policies.	

Rationale:	

Web	applications	and	services	continue	to	be	one	of	the	leading	attack	vectors	for	black-hat	
criminals	to	gain	access	to	information	and	servers.	The	threat	is	high	because	web	servers	
are	often	externally	accessible	and	typically	have	the	greatest	share	of	server-side	
vulnerabilities.	The	SELinux	mandatory	access	controls	provide	a	much	stronger	security	
model	which	can	be	used	to	implement	a	deny-by-default	model	which	only	allows	what	is	
explicitly	permitted.	

	 	

	

154	|	P a g e 	
	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Use	
the	sestatus	command	to	check	that	SELinux	is	enabled	and	that	both	the	current	mode	
and	the	configured	mode	are	set	to	enforcing.	

$ sestatus | grep -i mode
Current mode: enforcing
Mode from config file: enforcing

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	If	SELinux	is	not	enabled	in	
the	configuration	file,	edit	the	file	/etc/selinux/config	and	set	the	value	of	SELINUX	as	
enforcing	and	reboot	the	system	for	the	new	configuration	to	be	effective.	

SELINUX=enforcing

If	the	current	mode	is	not	enforcing,	and	an	immediate	reboot	is	not	possible,	the	current	
mode	can	be	set	to	enforcing	with	the	setenable	command	shown	below.	

setenforce 1

Default	Value:	

SELinux	is	not	enabled	by	default.	

References:	

1. https://en.wikipedia.org/wiki/Security-Enhanced_Linux	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

155	|	P a g e 	
	

11.2	Run	Apache	Processes	in	the	httpd_t	Confined	Context	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

SELinux	includes	customizable	targeted	policies	that	may	be	used	to	confine	the	Apache	
httpd	server	to	enforce	least	privileges	so	that	the	httpd	server	has	only	the	minimal	access	
to	specified	directories,	files	and	network	ports.	Access	is	controlled	by	process	types	
(domains)	defined	for	the	httpd	process.	There	are	over	a	hundred	individual	httpd	related	
types	defined	in	a	default	Apache	SELinux	policy	which	includes	many	of	the	common	
Apache	add-ons	and	applications	such	as	php,	nagios,	smokeping	and	many	others.	The	
default	SELinux	policies	work	well	for	a	default	Apache	installation,	but	implementation	of	
SELinux	targeted	polices	on	a	complex	or	highly	customized	web	server	requires	a	rather	
significant	development	and	testing	effort	which	comprehends	both	the	workings	of	
SELinux	and	the	detailed	operations	and	requirements	of	the	web	application.	All	
directories	and	files	to	be	accessed	by	the	web	server	process	must	have	security	labels	
with	appropriate	types.	The	following	types	are	a	sample	of	the	most	commonly	used:	

• http_port_t	-	Network	ports	allowed	for	listening	
• httpd_sys_content_t	-	Read	access	to	directories	and	files	with	web	content	
• httpd_log_t	-	Directories	and	files	to	be	used	for	writable	log	data	
• httpd_sys_script_exec_t	-	Directories	and	files	for	executable	content.	

Rationale:	

With	the	proper	implementation	of	SELinux,	vulnerabilities	in	the	web	application	may	be	
prevented	from	being	exploited	due	to	the	additional	restrictions.	For	example,	a	
vulnerability	that	allows	an	attacker	to	read	to	inappropriate	system	files	may	be	
prevented	from	execution	by	SELinux	because	the	inappropriate	files	are	not	labeled	as	
httpd_sys_content_t.	Likewise	writing	to	an	unexpected	directory	or	execution	of	
unexpected	content	can	be	prevented	by	similar	mandatory	security	labels	enforced	by	
SELinux.	

	 	

	

156	|	P a g e 	
	

Audit:	

Check	that	all	of	the	Apache	httpd	processes	are	confined	to	the	httpd_t	SELinux	context.	
The	type	(the	third	colon	separated	field)	for	each	process	should	be	httpd_t.	Note	that	on	
some	platforms	such	as	Ubuntu	the	Apache	executable	is	named	apache2	instead	of	httpd.	

$ ps -eZ | grep httpd
unconfined_u:system_r:httpd_t:s0 1366 ? 00:00:00 httpd
unconfined_u:system_r:httpd_t:s0 1368 ? 00:00:00 httpd
. . .

Remediation:	

If	the	running	httpd	processes	are	not	confined	to	the	httpd_t	SELinux	context.	Then	check	
the	context	for	the	httpd	binary	and	the	apachectl	binary,	and	set	the	httpd	binary	to	have	
a	context	of	httpd_exec_t	and	the	apachectl	executable	should	have	a	context	of	
initrc_exec_t	as	shown	below.	Also	note	that	on	some	platforms	such	as	Ubuntu,	the	
Apache	executable	is	named	apache2	instead	of	httpd.	Also	note	that	on	some	platforms	
such	as	Ubuntu,	the	Apache	executable	is	named	apache2	instead	of	httpd.	

ls -alZ /usr/sbin/httpd /usr/sbin/httpd.* /usr/sbin/apachectl
-rwxr-xr-x. root root system_u:object_r:initrc_exec_t:s0 /usr/sbin/apachectl
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd.worker
-rwxr-xr-x. root root system_u:object_r:httpd_exec_t:s0 /usr/sbin/httpd.event

	
If	the	executable	files	are	not	labeled	correctly,	they	may	be	relabeled	with	the	chcon	
command,	as	shown,	however	the	file	system	labeling	is	based	on	the	SELinux	file	context	
polices	and	the	file	systems	will	on	some	occasions	be	relabeled	according	to	the	policy.	

chcon -t initrc_exec_t /usr/sbin/apachectl
chcon -t httpd_exec_t /usr/sbin/httpd /usr/sbin/httpd.*

	
	 	

	

157	|	P a g e 	
	

Since	the	file	system	may	be	relabeled	based	on	SELinux	policy,	it's	best	to	check	the	
SELinux	policy	with	semanage fcontext -l	option.	If	the	policy	is	not	present,	then	add	the	
pattern	to	the	policy	using	the	-a	option.	The	restorecon	command	shown	below	will	
restore	the	file	context	label	according	to	the	current	policy,	and	is	required	if	a	pattern	
was	added.	

	

Check the Policy
semanage fcontext -l | fgrep 'apachectl'
/usr/sbin/apachectl regular file system_u:object_r:initrc_exec_t:s0
semanage fcontext -l | fgrep '/usr/sbin/httpd'
/usr/sbin/httpd regular file system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.worker regular file system_u:object_r:httpd_exec_t:s0
/usr/sbin/httpd.event regular file system_u:object_r:httpd_exec_t:s0

Add to the policy, if not present
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd'
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd.worker'
semanage fcontext -f -- -a -t httpd_exec_t '/usr/sbin/httpd.event'
semanage fcontext -f -- -a -t initrc_exec_t /usr/sbin/apachectl
Restore the file labeling accord to the SELinux policy
restorecon -v /usr/sbin/httpd /usr/sbin/httpd.* /usr/sbin/apachectl

Default	Value:	

SELinux	is	not	enabled	by	default.	

References:	

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/chap-Security-
Enhanced_Linux-Targeted_Policy.html	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

158	|	P a g e 	
	

11.3	Ensure	the	httpd_t	Type	is	Not	in	Permissive	Mode	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

In	addition	to	setting	the	entire	SELinux	configuration	in	permissive	mode,	it	is	possible	to	
set	individual	process	types	(domains)	such	as	'httpd_t'	into	a	permissive	mode	as	well.	The	
permissive	mode	will	not	prevent	any	access	or	actions,	instead,	any	actions	that	would	
have	been	denied	are	simply	logged.	

Rationale:	

Usage	of	the	permissive	mode	is	helpful	for	testing	and	ensuring	that	SELinux	will	not	
prevent	access	that	is	necessary	for	the	proper	function	of	a	web	application.	However,	all	
access	is	allowed	in	permissive	mode	by	SELinux.	

Audit:	

Check	that	the	httpd_t	process	type	(domain)	is	not	in	permissive	mode	with	the	semodule	
command.	There	should	be	no	output	if	the	type	is	not	set	to	permissive.	

semodule -l | grep permissive_httpd_t

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

If	the	httpd_t	type	is	in	permissive	mode;	the	customized	permissive	mode	should	be	
deleted	with	the	following	semanage	command.	

semanage permissive -d httpd_t

Default	Value:	

The	httpd_t	type	is	not	in	permissive	mode	by	default.	

References:	

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Fixing_Problems-Permissive_Domains.html	

	

159	|	P a g e 	
	

CIS	Controls:	

14.4	Protect	Information	with	Access	Control	Lists	
All	information	stored	on	systems	shall	be	protected	with	file	system,	network	share,	
claims,	application,	or	database	specific	access	control	lists.	These	controls	will	enforce	the	
principle	that	only	authorized	individuals	should	have	access	to	the	information	based	on	
their	need	to	access	the	information	as	a	part	of	their	responsibilities.	

	

160	|	P a g e 	
	

11.4	Ensure	Only	the	Necessary	SELinux	Booleans	are	Enabled	(Not	
Scored)	

Profile	Applicability:	

• Level	2	

Description:	

SELinux	booleans	allow	or	disallow	behavior	specific	to	the	Apache	web	server.	Common	
examples	include	whether	CGI	execution	is	allowed,	or	if	the	httpd	server	is	allowed	to	
communicate	with	the	current	terminal	(tty).	Communication	with	the	terminal,	may	be	
necessary	for	entering	a	passphrase	during	start	up	to	decrypt	a	private	key.	

Rationale:	

Enabling	only	the	necessary	httpd	related	booleans	provides	a	defense	in	depth	approach,	
that	will	deny	actions	that	are	not	in	use	or	expected.	

Audit:	

Review	the	SELinux	httpd	booleans	that	are	enabled	to	ensure	only	the	necessary	booleans	
are	enabled	for	the	current	and	the	configured	state.	Due	to	the	variety	and	complexity	of	
web	server	usages	and	organizational	needs,	a	preset	recommendation	of	enabled	booleans	
is	not	practical.	Run	either	of	the	two	commands	below	to	show	only	the	enabled	httpd	
related	booleans.	The	getsebool	command	is	installed	with	the	core	SELinux,	while	the	
semanage	command	is	an	optional	package,	however	the	semanage	output	includes	
descriptive	text.	

getsebool -a | grep httpd_ | grep '> on'
httpd_builtin_scripting --> on
httpd_dbus_avahi --> on
httpd_tty_comm --> on
httpd_unified --> on

	
Alternative	using	the	semanage	command.	

semanage boolean -l | grep httpd_ | grep -v '(off , off)'
httpd_enable_cgi (on , on) Allow httpd cgi support
httpd_dbus_avahi (on , on) Allow Apache to communicate with avahi service via dbus
httpd_unified (on , on) Unify HTTPD handling of all content files.
httpd_builtin_scripting (on , on) Allow httpd to use built in scripting (usually
php)
httpd_tty_comm (on , on) Unify HTTPD to communicate with the terminal...

	

	

161	|	P a g e 	
	

Remediation:	

To	disable	the	SELinux	httpd	booleans	that	are	determined	to	be	unnecessary,	use	the	
setsebool	command	as	shown	below	with	the	-P	option	to	make	the	change	persistent.	

setsebool -P httpd_enable_cgi off
getsebool httpd_enable_cgi
httpd_enable_cgi --> off

Default	Value:	

SELinux	is	not	enabled	by	default.	

References:	

1. https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-
Enhanced_Linux-Working_with_SELinux-Booleans.html	

CIS	Controls:	

18	Application	Software	Security	

	

162	|	P a g e 	
	

12	Enable	AppArmor	to	Restrict	Apache	Processes	

Recommendations	in	this	section	provide	mandatory	access	controls	(MAC)	using	the	
AppArmor	kernel	module.	AppArmor	provides	additional	enforced	security	which	will	
prevent	access	to	resources,	files	and	directories	by	the	apache2	processes	even	in	cases	
where	an	application	or	server	vulnerability	might	allow	inappropriate	access.	The	
AppArmor	controls	are	advanced	security	controls	that	require	significant	effort	to	ensure	
they	do	not	negatively	impact	the	application	and/or	site	functionality.	It	is	highly	
recommended	that	the	configuration	states	described	in	this	section	be	tested	thoroughly	
on	test	servers	prior	to	deploying	them	to	production	servers.	AppArmor	and	SELinux	
provide	similar	controls,	and	it	is	not	recommended	to	use	both	SELinux	and	AppArmor	on	
the	same	system.	Depending	on	which	Linux	distribution	is	in	use	either	AppArmor	or	
SELinux	are	likely	to	be	already	installed	or	readily	available	as	packages.	AppArmor	differs	
from	SELinux	in	that	it	binds	the	controls	to	programs	rather	than	users	and	uses	path	
names	rather	than	labeled	type	enforcement.	

12.1	Enable	the	AppArmor	Framework	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

AppArmor	is	a	Linux	kernel	security	module	that	provides	a	named	based	mandatory	
access	control	with	security	policies.	AppArmor	can	enforce	rules	on	programs	for	file	
access	and	network	connections	and	restrict	actions	based	on	defined	policies.	

Rationale:	

Web	applications	and	web	services	continue	to	be	one	of	the	leading	attack	vectors	for	
black-hat	criminals	to	gain	access	to	information	and	servers.	The	threat	is	high	because	
web	servers	are	often	externally	accessible	and	typically	have	the	greatest	share	of	server-
side	vulnerabilities.	The	AppArmor	mandatory	access	controls	provide	a	much	stronger	
security	model	which	can	be	used	to	implement	a	deny-by-default	model	which	only	allows	
what	is	explicitly	permitted.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	Use	
the	aa-status	command	with	the	--enabled	option	to	check	that	AppArmor	is	enabled.	If	
AppArmor	is	enabled	the	command	will	return	a	zero	(0)	exit	code	for	success.	The	&&

	

163	|	P a g e 	
	

echo Enabled	is	added	to	the	command	below	to	provide	positive	feedback.	If	no	text	is	
echoed,	then	AppArmor	is	not	enabled.	

aa-status --enabled && echo Enabled
Enabled

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

• If	the	aa-status	command	is	not	found,	then	the	AppArmor	package	is	not	installed	
and	needs	to	be	installed	using	the	appropriate	the	Linux	distribution	package	
management.	For	example:		

apt-get install apparmor
apt-get install libapache2-mod-apparmor

• To	enable	the	AppArmor	framework	run	the	init.d	script	as	shown	below.		

/etc/init.d/apparmor start

Default	Value:	

AppArmor	is	enabled	by	default.	

References:	

1. https://help.ubuntu.com/community/AppArmor	

CIS	Controls:	

2.2	Deploy	Application	Whitelisting	
Deploy	application	whitelisting	technology	that	allows	systems	to	run	software	only	if	it	is	
included	on	the	whitelist	and	prevents	execution	of	all	other	software	on	the	system.	The	
whitelist	may	be	very	extensive	(as	is	available	from	commercial	whitelist	vendors),	so	
that	users	are	not	inconvenienced	when	using	common	software.	Or,	for	some	special-
purpose	systems	(which	require	only	a	small	number	of	programs	to	achieve	their	needed	
business	functionality),	the	whitelist	may	be	quite	narrow.	

	

164	|	P a g e 	
	

12.2	Customize	the	Apache	AppArmor	Profile	(Not	Scored)	

Profile	Applicability:	

• Level	2	

Description:	

AppArmor	includes	customizable	profiles	that	may	be	used	to	confine	the	Apache	web	
server	to	enforce	least	privileges	so	that	the	server	has	only	the	minimal	access	to	specified	
directories,	files	and	network	ports.	Access	is	controlled	by	a	profile	defined	for	the	
apache2	process.	The	default	AppArmor	profile	is	typically	a	very	permissive	profile	that	
allows	read-write	access	to	all	system	files.	Therefore,	it's	important	that	the	default	profile	
be	customized	to	enforce	least	privileges.	The	AppArmor	utilities	such	as	aa-autodep,	aa-
complain,	and	aa-logprof	can	be	used	to	generate	an	initial	profile	based	on	actual	usage.	
However	thorough	testing,	review	and	customization	will	be	necessary	to	ensure	that	the	
Apache	profile	restrictions	allow	necessary	functionality	while	implementing	least	
privilege.	

Rationale:	

With	the	proper	implementation	of	AppArmor	profile,	vulnerabilities	in	the	web	
application	may	be	prevented	from	being	exploited	due	to	the	additional	restrictions.	For	
example,	a	vulnerability	that	allows	an	attacker	to	read	an	inappropriate	system	files	may	
be	prevented	from	execution	by	AppArmor	because	the	inappropriate	files	are	not	allowed	
by	the	profile.	Likewise	writing	to	an	unexpected	directory	or	execution	of	unexpected	
content	can	be	prevented	by	similar	mandatory	security	controls	enforced	by	AppArmor.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

• Find	the	Apache	AppArmor	profile	typically	found	in	
/etc/apparmor.d/usr.sbin.apache2	along	with	any	files	included	by	the	profile	
such	as	/etc/apparmor.d/apache2.d/*	and	files	in	the	
/etc/apparmor.d/abstractions/	directory.	

• Review	the	capabilities	and	permissions	granted	to	ensure	that	the	profile	
implements	least	privileges	for	the	web	application.	Wild-card	paths	such	as	/**	
which	grant	access	to	all	files	and	directories	starting	with	the	root	level	directory,	
and	should	not	be	present	in	the	profile.	Instead	read	only	access	to	specific	
necessary	system	files	such	/etc/group	and	to	the	web	content	files	such	as	
/var/www/html/**	should	be	given.	Refer	to	the	apparmor.d	man	page	for	additional	
details.	Shown	below	are	some	possible	example	capabilities	and	path	permissions.		

	

165	|	P a g e 	
	

capability dac_override,
capability dac_read_search,
capability net_bind_service,
capability setgid,
capability setuid,
capability kill,
capability sys_tty_config,
. . .

/usr/sbin/apache2 mr,
/etc/gai.conf r,
/etc/group r,
/etc/apache2/** r,
/var/www/html/** r,
/run/apache2/** rw,
/run/lock/apache2/** rw,
/var/log/apache2/** rw,
/etc/mime.types r,

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

• Stop	the	Apache	server		

service apache2 stop

• Create	a	mostly	empty	apache2	profile	based	on	program	dependencies.		

aa-autodep apache2
Writing updated profile for /usr/sbin/apache2.

• Set	the	apache2	profile	in	complain	mode	so	that	access	violations	will	be	allowed,	
and	will	be	logged.		

aa-complain apache2
Setting /usr/sbin/apache2 to complain mode.

• Start	the	apache2	service		

service apache2 start

• Thoroughly	test	the	web	application	attempting	to	exercise	all	intended	
functionality	so	that	AppArmor	will	generate	the	necessary	logs	of	all	resources	
accessed.	The	logs	are	sent	via	the	system	syslog	utility,	and	are	typically	found	in	
either	the	/var/log/syslog	or	/var/log/messages	files.	Also	stop	and	restart	the	
web	server	as	part	of	the	testing	process.	

	

166	|	P a g e 	
	

• Use	aa-logprof	to	update	the	profile	based	on	logs	generated	during	the	testing.	
The	tool	will	prompt	for	suggested	modifications	to	the	profile,	based	on	the	logs.	
The	logs	may	also	be	reviewed	manually	in	order	to	update	the	profile.		

aa-logprof

• Review	and	edit	the	profile,	removing	any	inappropriate	content,	and	adding	
appropriate	access	rules.	Directories	with	multiple	files	accessed	with	the	same	
permission	can	be	simplified	with	the	usage	of	wild-cards	when	appropriate.	Reload	
the	updated	profile	using	the	apparmor_parser	command.		

apparmor_parser -r /etc/apparmor.d/usr.sbin.apache2

• Test	the	new	updated	profile	again	checking	for	any	new	apparmor	denied	logs	
generated.	Update	and	reload	the	profile	as	necessary.	Repeat	the	application	tests,	
until	no	new	apparmor	deny	logs	are	created,	except	for	access	which	should	be	
prohibited.		

tail -f /var/log/syslog

• Set	the	apache2	profile	to	enforce	mode,	reload	apparmor,	and	then	test	the	web	site	
functionality	again.		

aa-enforce /usr/sbin/apache2
/etc/init.d/apparmor reload

Default	Value:	

The	default	Apache	profile	is	very	permissive.	

References:	

1. https://wiki.ubuntu.com/AppArmor	

CIS	Controls:	

2	Inventory	of	Authorized	and	Unauthorized	Software	

	

167	|	P a g e 	
	

12.3	Ensure	Apache	AppArmor	Profile	is	in	Enforce	Mode	(Scored)	

Profile	Applicability:	

• Level	2	

Description:	

AppArmor	profiles	may	be	in	one	of	three	modes:	disabled,	complain	or	enforce.	In	the	
complain	mode,	any	violations	of	the	access	controls	are	logged	but	the	restrictions	are	not	
enforced.	Also,	once	a	profile	mode	has	been	changed,	it	is	recommended	to	restart	the	
Apache	server,	otherwise	the	currently	running	process	may	not	be	confined	by	the	policy.	

Rationale:	

The	complain	mode	is	useful	for	testing	and	debugging	a	profile,	but	is	not	appropriate	for	
production.	Only	the	confined	process	running	in	enforce	mode	will	prevent	attacks	that	
violate	the	configured	access	controls.	

Audit:	

Perform	the	following	steps	to	determine	if	the	recommended	state	is	implemented:	

Use	the	aa-unconfined	command	to	check	that	the	apache2	policy	is	enforced,	and	that	the	
currently	running	apache2	processes	are	confined.	The	output	should	include	both	
confined by	and	(enforce)	

aa-unconfined --paranoid | grep apache2
1899 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
1902 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
1903 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (enforce)'
. . .

	
Note	that	non-compliant	results	may	include	not confined	or	(complain)	such	as	the	
following:	

3304 /usr/sbin/apache2 not confined
2502 /usr/sbin/apache2 confined by '/usr/sbin/apache2 (complain)'
4004 /usr/sbin/apache2 confined by
'/usr/sbin/apache2//HANDLING_UNTRUSTED_INPUT (complain)'

	 	

	

168	|	P a g e 	
	

Remediation:	

Perform	the	following	to	implement	the	recommended	state:	

• Set	the	profile	state	to	enforce	mode.		

aa-enforce apache2
Setting /usr/sbin/apache2 to enforce mode.

• Stop	the	Apache	server,	and	confirm	that	is	it	not	running.	In	some	cases,	the	
AppArmor	controls	may	prevent	the	web	server	from	stopping	properly,	and	it	may	
be	necessary	to	stop	the	process	manually	or	even	reboot	the	server.		

service apache2 stop
 * Stopping web server apache2
service apache2 status
 * apache2 is not running

• Restart	the	Apache	service.		

service apache2 start
 * Starting web server apache2

Default	Value:	

The	default	mode	is	enforce.	

CIS	Controls:	

2.2	Deploy	Application	Whitelisting	
Deploy	application	whitelisting	technology	that	allows	systems	to	run	software	only	if	it	is	
included	on	the	whitelist	and	prevents	execution	of	all	other	software	on	the	system.	The	
whitelist	may	be	very	extensive	(as	is	available	from	commercial	whitelist	vendors),	so	that	
users	are	not	inconvenienced	when	using	common	software.	Or,	for	some	special-purpose	
systems	(which	require	only	a	small	number	of	programs	to	achieve	their	needed	business	
functionality),	the	whitelist	may	be	quite	narrow.	

		

	

169	|	P a g e 	
	

Appendix:	Summary	Table	
Control	 Set	

Correctly	
Yes	 No	

1	 Planning	and	Installation	
1.1	 Pre-Installation	Planning	Checklist	(Not	Scored)	 o	 o	
1.2	 Do	Not	Install	a	Multi-use	System	(Not	Scored)	 o	 o	
1.3	 Installing	Apache	(Not	Scored)	 o	 o	
2	 Minimize	Apache	Modules	
2.1	 Enable	only	necessary	Authentication	and	Authorization	

Modules	(Not	Scored)	 o	 o	

2.2	 Enable	the	Log	Config	Module	(Scored)	 o	 o	
2.3	 Disable	WebDAV	Modules	(Scored)	 o	 o	
2.4	 Disable	Status	Module	(Scored)	 o	 o	
2.5	 Disable	Autoindex	Module	(Scored)	 o	 o	
2.6	 Disable	Proxy	Modules	(Scored)	 o	 o	
2.7	 Disable	User	Directories	Modules	(Scored)	 o	 o	
2.8	 Disable	Info	Module	(Scored)	 o	 o	
3	 Principles,	Permissions,	and	Ownership	
3.1	 Run	the	Apache	Web	Server	as	a	non-root	user	(Scored)	 o	 o	
3.2	 Give	the	Apache	User	Account	an	Invalid	Shell	(Scored)	 o	 o	
3.3	 Lock	the	Apache	User	Account	(Scored)	 o	 o	
3.4	 Set	Ownership	on	Apache	Directories	and	Files	(Scored)	 o	 o	
3.5	 Set	Group	Id	on	Apache	Directories	and	Files	(Scored)	 o	 o	
3.6	 Restrict	Other	Write	Access	on	Apache	Directories	and	Files	

(Scored)	 o	 o	

3.7	 Secure	Core	Dump	Directory	(Scored)	 o	 o	
3.8	 Secure	the	Lock	File	(Scored)	 o	 o	
3.9	 Secure	the	Pid	File	(Scored)	 o	 o	
3.10	 Secure	the	ScoreBoard	File	(Scored)	 o	 o	
3.11	 Restrict	Group	Write	Access	for	the	Apache	Directories	and	

Files	(Scored)	 o	 o	

3.12	 Restrict	Group	Write	Access	for	the	Document	Root	
Directories	and	Files	(Scored)	 o	 o	

4	 Apache	Access	Control	
4.1	 Deny	Access	to	OS	Root	Directory	(Scored)	 o	 o	
4.2	 Allow	Appropriate	Access	to	Web	Content	(Not	Scored)	 o	 o	
4.3	 Restrict	Override	for	the	OS	Root	Directory	(Scored)	 o	 o	
4.4	 Restrict	Override	for	All	Directories	(Scored)	 o	 o	
5	 Minimize	Features,	Content	and	Options	
5.1	 Restrict	Options	for	the	OS	Root	Directory	(Scored)	 o	 o	

	

170	|	P a g e 	
	

5.2	 Restrict	Options	for	the	Web	Root	Directory	(Scored)	 o	 o	
5.3	 Minimize	Options	for	Other	Directories	(Scored)	 o	 o	
5.4	 Remove	Default	HTML	Content	(Scored)	 o	 o	
5.5	 Remove	Default	CGI	Content	printenv	(Scored)	 o	 o	
5.6	 Remove	Default	CGI	Content	test-cgi	(Scored)	 o	 o	
5.7	 Limit	HTTP	Request	Methods	(Scored)	 o	 o	
5.8	 Disable	HTTP	TRACE	Method	(Scored)	 o	 o	
5.9	 Restrict	HTTP	Protocol	Versions	(Scored)	 o	 o	
5.10	 Restrict	Access	to	.ht*	files	(Scored)	 o	 o	
5.11	 Restrict	File	Extensions	(Scored)	 o	 o	
5.12	 Deny	IP	Address	Based	Requests	(Scored)	 o	 o	
5.13	 Restrict	Listen	Directive	(Scored)	 o	 o	
5.14	 Restrict	Browser	Frame	Options	(Scored)	 o	 o	
6	 Operations	-	Logging,	Monitoring	and	Maintenance	
6.1	 Configure	the	Error	Log	(Scored)	 o	 o	
6.2	 Configure	a	Syslog	Facility	for	Error	Logging	(Scored)	 o	 o	
6.3	 Configure	the	Access	Log	(Scored)	 o	 o	
6.4	 Log	Storage	and	Rotation	(Scored)	 o	 o	
6.5	 Apply	Applicable	Patches	(Scored)	 o	 o	
6.6	 Install	and	Enable	ModSecurity	(Scored)	 o	 o	
6.7	 Install	and	Enable	OWASP	ModSecurity	Core	Rule	Set	

(Scored)	 o	 o	

7	 SSL/TLS	Configuration	
7.1	 Install	mod_ssl	and/or	mod_nss	(Scored)	 o	 o	
7.2	 Install	a	Valid	Trusted	Certificate	(Scored)	 o	 o	
7.3	 Protect	the	Server's	Private	Key	(Scored)	 o	 o	
7.4	 Disable	the	SSL	v3.0	Protocol	(Scored)	 o	 o	
7.5	 Restrict	Weak	SSL	Ciphers	(Scored)	 o	 o	
7.6	 Disable	SSL	Insecure	Renegotiation	(Scored)	 o	 o	
7.7	 Ensure	SSL	Compression	is	not	Enabled	(Scored)	 o	 o	
7.8	 Disable	the	TLS	v1.0	Protocol	(Scored)	 o	 o	
7.9	 Enable	OCSP	Stapling	(Scored)	 o	 o	
7.10	 Enable	HTTP	Strict	Transport	Security	(Scored)	 o	 o	
8	 Information	Leakage	
8.1	 Set	ServerToken	to	'Prod'	(Scored)	 o	 o	
8.2	 Set	ServerSignature	to	'Off'	(Scored)	 o	 o	
8.3	 Information	Leakage	via	Default	Apache	Content	(Scored)	 o	 o	
9	 Denial	of	Service	Mitigations	
9.1	 Set	TimeOut	to	10	or	less	(Scored)	 o	 o	
9.2	 Set	the	KeepAlive	directive	to	On	(Scored)	 o	 o	
9.3	 Set	MaxKeepAliveRequests	to	100	or	greater	(Scored)	 o	 o	
9.4	 Set	KeepAliveTimeout	Low	to	Mitigate	Denial	of	Service	

(Scored)	 o	 o	

	

171	|	P a g e 	
	

9.5	 Set	Timeout	Limits	for	Request	Headers	(Scored)	 o	 o	
9.6	 Set	Timeout	Limits	for	the	Request	Body	(Scored)	 o	 o	
10	 Request	Limits	
10.1	 Set	the	LimitRequestLine	directive	to	512	or	less	(Scored)	 o	 o	
10.2	 Set	the	LimitRequestFields	directive	to	100	or	less	(Scored)	 o	 o	
10.3	 Set	the	LimitRequestFieldsize	directive	to	1024	or	less	

(Scored)	 o	 o	

10.4	 Set	the	LimitRequestBody	directive	to	102400	or	less	
(Scored)	 o	 o	

11	 Enable	SELinux	to	Restrict	Apache	Processes	
11.1	 Enable	SELinux	in	Enforcing	Mode	(Scored)	 o	 o	
11.2	 Run	Apache	Processes	in	the	httpd_t	Confined	Context	

(Scored)	 o	 o	

11.3	 Ensure	the	httpd_t	Type	is	Not	in	Permissive	Mode	(Scored)	 o	 o	
11.4	 Ensure	Only	the	Necessary	SELinux	Booleans	are	Enabled	

(Not	Scored)	 o	 o	

12	 Enable	AppArmor	to	Restrict	Apache	Processes	
12.1	 Enable	the	AppArmor	Framework	(Scored)	 o	 o	
12.2	 Customize	the	Apache	AppArmor	Profile	(Not	Scored)	 o	 o	
12.3	 Ensure	Apache	AppArmor	Profile	is	in	Enforce	Mode	

(Scored)	 o	 o	

	

	 	

	

172	|	P a g e 	
	

		

Appendix:	Change	History	
Date	 Version	 Changes	for	this	version	

12-30-2012	 1.0.0	 Initial	Release	

12-03-2013	 1.1.0	 Updated	to	cover	Apache	2.4.6	

12-03-2013	 1.1.0	 Ticket	#79:	Correct	Typos	

12-03-2013	 1.1.0	 Ticket	#78:	1.6.3	Establish	Log	
Monitoring	

12-03-2013	 1.1.0	 Ticket	#77:	1.6.5	Monitor	
Vulnerability	Lists	

12-03-2013	 1.1.0	 Ticket	#76:	no	recommendation	to	
prevent	apache	from	writing	to	web	
root	

12-03-2013	 1.1.0	 Ticket	#75:	1.3.4	Set	Ownership	on	
Apache	Directories	and	Files	

12-05-2014	 1.2.0	 Ticket	#93:	Update	"Apache	Directory	
and	File	Permissions"	per	discussion	
on	unix	domain	socket	file	
permissions.		

12-05-2014	 1.2.0	 Ticket	#87:	Update	SSL	Cipher	
Recommendations	not	allow	RC4	
Apache	2.4	

12-05-2014	 1.2.0	 Ticket	#86:	Update	Protocol	
Recommendations	to	Mitigate	both	
POODLE	and	BEAST	Apache	2.4	

12-09-2014	 1.2.0	 Ticket	#91:	Add	recommendation	for	
HTTP	Strict	Transport	Security	
header	BM	2.4	

	

173	|	P a g e 	
	

12-09-2014	 1.2.0	 Ticket	#94:	Consider	adding	
recommendations	for	OCSP	Stapling	

12-10-2014	 1.2.0	 Ticket	#97:	Use	code	block	format	for	
UID	output	information	in	
Recommendation	1.3.1.	

12-10-2014	 1.2.0	 Ticket	#96:	Consider	making	
Recommendation	1.7.2	â€œInstall	a	
Valid	Trusted	Certificateâ€�	scored.	

12-10-2014	 1.2.0	 Ticket	#95:	Consider	mentioning	
apachectl	or	apache2ctl	to	Overview	
of	Section	1	

04-23-2015	 1.2.1	 Informational	update	to	1.7.8	Disable	
the	TLS	v1.0	Protocol	

04-23-2015	 1.2.1	 Informational	update	to	1.7.9	Enable	
HTTP	Strict	Transport	Security	

04-23-2015	 1.2.1	 Ticket	#99:	Typos	in	corrections	
neeed	in	"Enable	HTTP	Strict	
Transport	Security"	3.4	BM	

05-31-2016	 1.3.0	 Ticket	#108:	Add	recommendations	
for	using	AppArmor	with	Apache	

05-31-2016	 1.3.0	 Ticket	#107:	Add	recommendations	
for	using	SELinux	in	Targeted	mode	

05-31-2016	 1.3.0	 Ticket	#106:	Disable	proxy	modules	

05-31-2016	 1.3.0	 Ticket	#105:	Adjust	log	level	
configuration	to	include	Not	Found	
Errors	

05-31-2016	 1.3.0	 Ticket	#104:	Added	recommendations	
for	using	ModSecurity	and	the	OWASP	
Core	Rule	Set	

05-31-2016	 1.3.0	 Ticket	#99:	Corrected	typos	in	
recommendation	3.4	

	

174	|	P a g e 	
	

05-31-2016	 1.3.0	 Ticket	#112:	Correct	
SSLStaplingCache	in	Recommendation	
1.7.9	

05-31-2016	 1.3.0	 Ticket	#111:	Correct	TLS1.2	to	
TLSv1.2	in	recommendation	1.7.8	

05-31-2016	 1.3.0	 Ticket	#109:	Update	restrict	Weak	
SSL	ciphers	to	reflect	recent	issues	

08-17-2017	 1.3.1	 Mapped	recommendations	to	CIS	
Controls	

08-17-2017	 1.3.1	 Planned	Update	

	

	
	

