
Software Security
Era: Past, Present
and Future

Nafiez & Yeh

Who?

Nafiez (@zeifan)

- Independent researcher

(https://github.com/nafiez)

- HITB CTF Crew

- Passionate in Vulnerability Research

and Reverse Engineering

Jaan Yeh (@iamyeh)

- Currently work in Carbon Black as

Threat Researcher

- HITB CTF Crew

- Passionate in Vulnerability Analysis

and Malware Reverse Engineering

TOC

Introduction

What we focus on

Past

Present

Future

Overview

Overview

“Protecting software against malicious attacks and to
reduce risk and attack surface, continuing software to
work correctly under potential risks.”

➢ Software Security is large

➢ Our talk is more towards memory corruption

➢ Evolution of exploitation and mitigations

➢ Main focus on Windows and Linux

Introduction

Software, Memory
Corruption and
Exploitation

➢ What causes the issue? Root cause?

➢ Whose fault?

➢ Why does the issue still exist?

Developer View

➢ Determine crash state: vulnerability class, non-

vulnerability, fail-fast, etc.

➢ Exploitability

Security View

The Past

➢ In 90’s, buffer overflow is everywhere

➢ Old memory protections (DEP / NX, Stack Guard, etc.)

➢ More Windows exploitation in the wild compare to Linux

➢ Trivial to exploit (JMP ESP)

Stack
(Low address)

..

..
(High address)

argv[1]

Saved EBP

AAAAAAAAAAAAAAAAAAAAAA

Return Address

AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA
AAAAAAAA

Fill the “gap”

ESP

EBP

perl -e ‘print “\x41” x 1000’ | ./program

Timeline

1988

Morris Worm

fingerd.c vulnerability
is the first to be
exploitable remotely.

1995 -
1997

Buffer Overflow

Raise of the buffer
overflow. Mudge and
Aleph1 demonstrate
BOF Linux
environment. Solar
Designer
demonstrate new
technique (ret-2-
libc).

1998 -
2000

Exploits
Evolution

Various type of
memory corruption
introduced, such as
format string, heap
overflow, frame
pointer. During this
period, StackGuard
was introduced and
its bypasses.

2001 -
2003

Protections Era

Raised of memory
protections /
mitigations, mostly
by PaX Security.
Integer overflow
introduced.

2004 -
2006

Windows Era

More on Windows
exploitation, from
user to remote
kernel.

2007 -
2010

Evolution of
Exploits

Windows Vista
shipped with ASLR
and added with new
feature after
released, SEHOP.
Heap feng shui,
Linux ASLR bypass
(ret2ret, ret2pop,
etc.), ROP
techniques and
more in the wild
exploits. First
Pwn2Own in 2007.

➢ Numbers of exploitation techniques introduced based on

memory corruption

➢ Mitigation bypasses (DEP / ASLR), Kernel Pool, JIT, etc.

➢ More tutorials on Linux, until then Windows has been a

value target

Microsoft Win32k.sys -
Integer Overflow

➢ Inspired by Taviso’s finding

➢ Simple Integer Overflow

➢ Two’s complement system, absolute value of INT_MIN is

higher than INT_MAX

➢ Dividing INT_MIN with -1, overflows

01 - http://blog.cmpxchg8b.com/2013/02/the-other-integer-overflow.html

➢ Bug spotted in “ScaleViewPortEx” API

➢ ScaleViewportExtEx(HDC hdc, int xn, int dx, int yn, int yd,

LPSIZE lpsz)

➢ Function modifies the viewport for a device context using

the ratios formed by the specified multiplicands and

divisors

/*
Crash Triage:
eax=80000000 ebx=00000001 ecx=00340910 edx=ffffffff esi=e13ce008 edi=00000000
eip=bf941b8d esp=f671cd10 ebp=f671cd44 iopl=0 ov up ei ng nz na pe cy
cs=0008 ss=0010 ds=0023 es=0023 fs=0030 gs=0000 efl=00010286
win32k!NtGdiScaleViewPortExtEx+0x99:
bf941b8d f77d10 idiv eax,dword ptr [ebp+10h] ss:0010:f671cd54=ffffffff
*/

// proof-of-concept
#include <windows.h>
#include <stdio.h>

int main(int argc, char **argv)
{

LoadLibraryA("user32.dll");
LoadLibraryA("gdi32.dll");

HDC dev_context;
SIZE Size;

dev_context = CreateCompatibleDC(NULL);
SetLayout(dev_context, LAYOUT_RTL);

ScaleViewportExtEx(dev_context, INT_MIN, -1, -1, -1, &Size);

return 0;
}

The Present

Timeline

2011 -

2013

Raised of Exploit

Kits

Exploit kits almost

used everywhere

using known

vulnerabilities or

even 0-days. Famous

targets including

browsers, Adobe,

Java.

2014 -

2015

Browsers Era

Browsers become

low hanging fruit.

Mitigations MemGC

released to protect

IE / Edge. More

bypasses publicly

released. Windows

10 released.

2016

Memory Killer?

Intel announced

RIP-ROP, memory

protection based on

CPU level. Windows

10 shipped with

capability to kill

types of vulnerability

class.

2017

Windows

Windows leading in

memory protections

and mitigations.

Things are getting

harder in Windows

exploitation.

Required chains of

bugs to gain

success exploit.

More research on

modern CPU.

2018

CPU era?

New version of

Spectre and

Meltdown

discovered.

Vulnerability class

still exists,

exploitability

determine the level.

Future?

???

???

➢ Memory corruption still exist, exploitation is harder

➢ ROP Chain bugs

➢ Memory protection / mitigations effectiveness

➢ Windows is harder target. Pwn2Own resulting memory
corruption exploitation on Windows required chains of

vulnerability.

Source: http://gaasedelen.blogspot.com/2014/03/exploiting-icofx-26-cve-2013-4988.html

➢ Consider effective these days

➢ Windows leading in mitigations while the rest still
working on improvements

Memory Mitigations

Windows Mitigations

NX / DEP SEHOP / ASLR MemGC CFG ACG / RFG Hyper-V Based
Security (VBS) -
Kernel level
(enabling ACG,
CIG, RFG, CFG),
CFI

Linux Mitigations

NX / DEP

Stack Guard /
Canary /
AppArmor

ASLR PaX (grsecurity) LLVM (CFI, etc.)

CVE-2018-1000097 -
GNU Sharutils (unshar)
Buffer Overflow

➢ Introduced in 1994

➢ Package containing - shar, unshar, uuencode, uudecode

➢ Creating and manipulating shell archives that can be
readily emailed - remote target? :)

➢ Widely used in Linux, code no longer updated since 2015

➢ Example target - “unshar” command

➢ Randomly create test case using “shar” command

➢ 4 hours fuzzing, 5 unique crashes - all same result LOL

➢ Result analysis (next slide)

Target - ‘unshar’ command (v 4.15.2)

- We fuzzed using AFL, within 4 hours we managed to get 5
unique crashes

Result Analysis - Classic Buffer Overflow

Line 449 - 450:
rw_base_size = GET_PAGE_SIZE;
rw_buffer = malloc (rw_base_size);

Line 45:
define GET_PAGE_SIZE 8192

Line 243 - 249:
if (!fgets (rw_buffer, BUFSIZ, file))
{

if (!start)
error (0, 0, _("Found no shell commands in %s"), name);

return false;
}

1. Page size was set to 8192

2. rw_buffer allocated page size, 8192

3. BUFSIZ allocated with 8192, unfortunately rw_base_size
size not equals to memory page allocation, 4096 in this
case. Failure to do so, leads to overflow / crash.

➢ Old vulnerability class still exists

➢ Fuzzing could help to speed up finding memory corruptions

The Future!

➢ Memory corruption exploitation is getting much more

harder

➢ Hardware based mitigations and bypasses

➢ Past and present vulnerability types remain stay

➢ More chain types of vulnerabilities

➢ Hardcore research on CPU, UEFI, etc. and its exploitation

➢ More attack types on modern CPU

➢ Software based mitigations need more improvement

Intel Control-flow Enforcement Technology
(CET)

➢ Shadow Stack (bypass?)

○ Second stack for program
that used for control transfer
operations

○ Separate from data stack and
can be enable for operation
via user mode or supervisor

mode
○ Protecting return address

and defend against ROP

➢ Indirect Branch Tracking (bypass?)

○ New instruction named
ENDBRANCH used to mark
valid indirect CALL/JMP

targets in the program
○ Protecting free branch

against JOP / COP

Conclusion

BUGS

VENDORS

http://www.stickpng.com/img/at-the-movies/cartoons/tom-and-jerry/tom-and-jerry-chase

Thank you for
listening!

Terima Kasih :)

