
The Legacy Print Spooler: A story about 

vulnerabilities from the previous 

millennium until today 
 

Peleg Hadar,​ Senior Security Researcher, SafeBreach Labs 

Tomer Bar​, Research Team Leader, SafeBreach Labs 

 

Created: ​January 2020 

Updated:​ July 2020 (See the “​Updated Notes​” section) 

 
 
 
Table of Contents 
Introduction 2 

Exploring the Print Spooler 2 
The Printing Process 3 

Diving into the Spooler 4 
Our Research Environment 4 
Picking our First Target: The SHD File 5 

1st Vulnerability - Fuzzing in the Shadow (Files) 6 
Sanity Test 6 
Patching the Spooler for Fuzzing and Profit 7 
Starting to Fuzz 9 
First Crash Dump 10 

Windows 10 19H2 10 
Windows 2000 10 

Root Cause Analysis (1st Vulnerability) 11 
Background 11 
Analyzing the Vulnerability 14 

2nd Vulnerability - User-to-SYSTEM Privilege Escalation 15 



Introduction 15 
“Printing” to System32 - First Try 16 
The RPC Impersonation Barrier 17 
Printing to System32 - Second Try 18 
Writing Files as SYSTEM 19 

Mitigation 20 

Updated Notes 21 

References 21 

 

Introduction 
SafeBreach Labs discovered three vulnerabilities in the Windows ​Print Spooler ​service.  

 

This is the story of how we discovered the DoS, CVE-2020-1048 and CVE-2020-1337 

vulnerabilities which we reported to Microsoft. 

 

In this blog post, we will demonstrate our journey since we found the vulnerabilities, 

starting with exploring the Print Spooler components, diving in to the undocumented SHD 

file format and its parsing process, and last but not least, we will present both of the 

vulnerabilities which we found in the Print Spooler mechanism and analyze the root cause. 

Exploring the Print Spooler 
The Print Spooler​ is the primary component of the printing interface in Windows OS. It’s an 

executable file that manages the printing process. Some of its responsibilities are: 

● Retrieving and loading the printer driver 

● Spooling high-level function calls into a print job 

● Scheduling the print job for printing 

https://docs.microsoft.com/en-us/windows/win32/printdocs/print-spooler


The Printing Process 

The Print Spooler is based on an RPC client/server model, which means that there are 

several processes which are involved in a single printing operation. 

 

 

Screenshot Reference: 

https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-comp

onents 

 

Let’s walk-through the printing process in brief: 

 

1. A user application creates a print job by calling the ​GDI​ (Graphics Device 

Interface) which provides the application with the ability to print graphics and/or 

formatted text (for example, ​StartDoc​). 

2. GDI makes an RPC call to​ ​Winspool.drv​ (The client-side of the spooler, which 

exports RPC stubs), for example,  GDI may use the ​StartDocPrinter​ function to 

forward the call to the Spooler Server (spoolsv.exe). 

3. The spooler server ​(Spoolsv.exe)​ forwards the print job to the print router. 

4. The print router ​(spoolss.dll​) redirects the print job to one of the following print 

providers: 

https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/introduction-to-spooler-components
https://docs.microsoft.com/en-us/windows/win32/gdi/windows-gdi
https://docs.microsoft.com/en-us/windows/win32/api/wingdi/nf-wingdi-startdoca
https://docs.microsoft.com/en-us/windows/win32/printdocs/startdocprinter


a. If the printer is connected locally it will be redirected to the ​Local Print 

Provider​ (​localspl.dll​) 

b. Otherwise, it will be redirected to a Network Print Provider (e.g. Win32spl.dll, 

Inetpp.dll, etc.) 

 

Note: ​We will focus on the first local scenario. In this scenario, a local printer is 

connected to the workstation. (A pure-virtual printer can be added using Microsoft’s 

default API. No special permissions are required.) 

 

5.  ​The local print provider​ ​(localspl.dll)​ performs the following: 

a. Creates a Spool File (.SPL) ​which contains the data to be printed 

(​EMF-SPOOL​, RAW, TEXT) and a Shadow File (.SHD) which contains metadata 

about the print job.  ​We will dive into the SHD format soon. 

b. Redirects the print job to the print processor​. 

 

6. The print processor​, in our case, the local ​winprint​ processor, ​reads the print 

job’s spooled data.​ (Remember, this is the SPL file which might contain EMF-SPOOL, 

RAW, PSCRIPT1 or TEXT. Then the print processor ​converts the spooled data to 

RAW Data Type​ and sends it back to the appropriate ​port monitor ​for printing. 

 

7. The port monitor, which is responsible for ​communicating between the 

user-mode spooler and the kernel-mode port drivers​, will ​write the data to the 

printer.  ​(We will use the local port, so it will just write the data to a predefined file 

path.) 

Diving into the Spooler 

Our Research Environment 

First, we defined our research environment: 

● An updated Windows 10 x64 19H2 (The latest build while we wrote this article was 

10.0.18362.535.) 

https://docs.microsoft.com/en-us/windows-hardware/drivers/print/local-print-provider
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/local-print-provider
http://msdn2.microsoft.com/en-us/library/cc231034.aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/print/raw-data-type


● A local printer which prints to a file (very convenient for testing purposes) 

It can be added by a limited user (low-integrity) using three simple PowerShell 

commands. (You can do the same with WinAPI as well.): 

In this example, we’ve added a local port which prints into a file (c:\temp\a.bin) and 

configured a local printer named “Test2”, which prints its jobs to this port. 

Picking our First Target: The SHD File 

After we learned a bit about the Print Spooler architecture and components, we asked 

ourselves where we should start. 

 

Let’s summarize the two last steps of the printing process for a moment: 

1.  ​The local print provider​ ​(localspl.dll)​ ​creates a Spool File (.SPL) ​which contains the 

data to be printed (​EMF-SPOOL​, RAW, TEXT) and a Shadow File (.SHD) which contains 

metadata about the print job.  

2. The print processor reads the print job’s spooled data. 

 

We know that the SPL file can be an interesting target to attack (and we might approach it 

later) as it’s being handled by the GDI which has a big attack surface (a lot of bugs were 

found in this one), ​but​ ​we were more interested in the SHD files for the following reasons: 

1. This format doesn’t have any official documentation and we were curious.  

We asked ourselves some questions: What component is in charge of parsing this 

file? What does it contain? Is it encrypted? What impact can we have if we change 

this file? 

Later on ​we did find an out-dated (and pretty impressive) SHD documentation here: 

http://www.undocprint.org/formats/winspool/shd 

2. Before even diving into a single piece of code, we looked at spoolsv.exe behavior 

while it started and we noticed that it ​enumerates SHD and SPL files​ in the 

PRINTERS folder (which is where the spool files are saved:) 

http://msdn2.microsoft.com/en-us/library/cc231034.aspx
http://www.undocprint.org/formats/winspool/shd


 

We assumed that if spoolsv.exe will find SPL and/or SHD files, it will try to parse 

them and maybe even send a print job to the printer.  

This seemed very interesting, as it provides a convenient way to send data 

directly to the spooler, which will (probably) be parsed and be used by other 

components as well​. All we need to do is to drop some files into the directory and 

restart the service. Dropping a file into this directory is possible for every 

limited-user in the system. 

 

We decided to start with fuzzing​ this exact flow of shadow (SHD) file parsing. 

1st Vulnerability - Fuzzing in the Shadow (Files) 

Sanity Test 

In order to make sure we can drop a large set of files that will be parsed successfully by the 

Print Spooler, we need make sure that we have the following: 

1. A single SHD file which works ​(which means that the spooler will read it, send it to 

the virtual printer, and print to a file successfully). 

2. No limit on the amount of SHD files that can be processed​ - We want to make 

sure that the spooler service can process unlimited SHD files. ​We prefer to drop a 

lot of files and restart the service once ​rather than restart the service multiple 

times (to reduce the overhead). 

 

We marked the “Keep printed documents” option and printed an empty document using 

mspaint.exe, to get the SPL and SHD files we needed: 

 



 

 

We restarted the Print Spooler service, but nothing happened. It just ignored our files. We 

assumed it probably marked the job status as “Printed” so it won’t send the same print jobs 

to the printer twice. 

 

Using the following unofficial SHD ​documentation​ and RE’d of the updated binaries using 

IDA Pro and WinDbg, we created an updated SHD template for 010 Editor which includes 

the relevant fields for our research. 

The template will be published on ​SafeBreach Labs’ GitHub repository​. 

 

As can be seen in the following screenshot, the ​wStatus ​ value of the SHD file is 0x480. 

 

 

According to ​Microsoft’s documentation​, that means the following: 

JOB_STATUS_PRINTED | JOB_STATUS_USER_INTERVENTION 

 

We changed it to JOB_STATUS_RESTART (0x800) and it worked. We have a valid SHD 

file that we can mess with during the fuzzing. 

Patching the Spooler for Fuzzing and Profit 

Next, we want to make sure we have no limitation on the number of SHD files that can be 

processed by Print Spooler. 

 

At the start, we looked at the same operation of SHD file enumeration as we showed 

before in the Process Monitor, and examined the stack trace: 

http://www.undocprint.org/formats/winspool/shd
https://github.com/SafeBreach-Labs/Spooler
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rprn/1625e9d9-29e4-48f4-b83d-3bd0fdaea787


 

Looks like the interesting function is in ​localspl.dll​ (the local print provider): 

ProcessShadowJobs​. 

 

We googled the name of the function and we found an interesting project called ​OpenNT 

which contains a very old version (1995-ish) of Windows source code including ​localspl 

which implements this exact function. 

This is very interesting, as we compared most of the logic and the code seemed to be ​very 

similar ​to the Windows 10 version so it was a good start. 

 

After auditing the source code we found a limitation inside the ​ReadShadowJob​ function 

(called from ProcessShadowJobs which we will talk about very soon) which we needed to 

bypass: 

 

The function extracts the job id from the SHD file, and compares it to ​MaxJobId ​which is 

256. ​If it’s bigger than 255, it won’t process the file​. 

 

This is how it looks in the Windows 10 version: 

https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/init.c
https://github.com/Paolo-Maffei/OpenNT/blob/master/printscan/print/spooler/localspl/init.c


 

 

In order to bypass the test we patched the ​jb​ instruction with 6 NOPs: 

 

Starting to Fuzz 

As a start, we decided to write and use our own simple fuzzer. 

 

When we looked at the start of the ​ReadShadowJob​ function, we noticed that each SHD 

file must have an ​existing ​SPL file with the same name as well, as it’s using CreateFile with 

the OPEN_EXISTING flag: 

 



We didn’t find any usage of the handle to the SPL file in this function, so we decided to drop 

empty SPL files for optimization purposes. 

 

After the fuzzer was done generating all of our crafted SHD files, we restarted the Print 

Spooler service. As we mentioned, we patched it so it can process all of our files at once (no 

need to restart the service.) 

First Crash Dump 

Windows 10 19H2 

After approximately 20 minutes of fuzzing we’ve noticed a crash, which was reproducible: 

 

 

 

The stack trace was as follows: 

 

 

Windows 2000 

We wanted to check if this bug existed on Windows 2000, assuming that this is pretty old 

code and there is a chance that the bug existed on this version as well. Here is how we 

checked: 

 

We took a valid SHD file from Windows 2000 and changed it in order to trigger the bug. 



 

The file was similar to the Win10 SHD version, except for some DWORD (32 bit) / QWORD 

(64 bit) differences. 

 

We dropped the file and restart the Spooler service:

 

And we have a crash on Win2000 as well :). Apparently we found a very (very) old bug. 

Root Cause Analysis (1st Vulnerability) 

Background 

Before we dive into the bug root cause, we will provide you with the context of what 

happened so far (until the bug was triggered) in order for you to understand the bug 

better. 



 

1. During the Spooler initialization process, the ​ProcessShadowJobs​ function was 

called in order to process the SHD files which needed to be printed. 

2. Each SHD file was parsed by the ​ReadShadowJob​ which treats the SHD file as a 

serialized struct​, extracting the values from the struct and assigning them to an 

INIJOB ​struct (which is undocumented). The ​INIJOB ​struct is allocated on the heap: 

 

3. Moving on a little bit further, a ​scheduler​ thread was created (while initializing the 

local print provider): 

 

4. The scheduler initialization process iterated all of the ​Spooler ports​ and made sure 

that each port had its own thread which can handle print jobs: 



 

5. Once the port thread was ready, an infinite loop was run which waited for a print job 

(which was represented as the INIJOB struct, parsed from the SHD file): 

 

6. After altering some attributes of the INIJOB struct, the Port thread function rewrote 

the SHD file by calling ​WriteShadowJob​, and then sent the print job to a print 

processor (by calling ​PrintDocumentThruPrintProcessor​.) 

 



Analyzing the Vulnerability 

The following is the stack trace of the crash: 

 

 

The ​WriteShadowJob ​function does the opposite of ReadShadowJob. It converts an INIJOB 

struct into a SHADOW_FILE struct and writes it back to a file. 

 

During the conversion process, it tries to retrieve the length of a SECURITY_DESCRIPTOR 

struct ​which was originally extracted from our crafted SHD file​. 

 

 

This is the root cause of the bug, which we have already seen in the screenshot of the crash 

dump: 

 

 

RtlLengthSecurityDescriptor tried to dereference ​rax ​(which contains the address of 

the security descriptor struct inside the SHD file and can be controllable ​by any user​). 

 

Let’s take a look at the Shadow File which caused the crash: 

 

Our fuzzer changed the offset of the SecurityInfo (which is the ​SECURITY_DESCRIPTOR 

struct) to 0x636 (instead of 0x624): 



 

Before the fuzzer made the change to the file, the function read 8 bytes of NULL (the green 

square in the screenshot) and didn’t try to dereference the data because it was equal to 0. 

 

When the fuzzer incremented the offset of the Security Descriptor struct by 0x10, it 

was no longer 0 (the red square in the screenshot), so it tried to dereference it, and 

then it crashed, resulting in crashing the service (DoS.) 

 

 

2nd Vulnerability - User-to-SYSTEM Privilege 

Escalation 

Introduction 

When we did the fuzzing process, we learned a lot about the Spooler mechanism. We 

figured out what exactly happens during the printing process, which components are 

involved, what is the connection between each component, and how exactly the SHD 

(Shadow file) format is parsed. 

 



So we took a look once again at the updated SHD file format: (This is a cropped version):

 

The fact that the SID of the user which created the print job was included in the SHD file 

seemed very interesting to us as any user can craft an SHD file. We immediately asked 

ourselves how the Print Spooler handles privileges, as it runs as NT AUTHORITY\SYSTEM. 

We will find out soon. 

 

So if the Print Spooler provides us with the ability to print to a file, maybe we can “print” a 

malicious file to System32 on behalf of NT AUTHORITY\SYSTEM? 

 

We assumed it’s possible since the Spooler runs as NT AUTHORITY\SYSTEM so it should be 

able to write to System32. 

“Printing” to System32 - First Try 

First, we used a Windows 10 VM with a limited-user and configured it as follows: 

1. Added a local print port, located in System32. The file would be written to this path. 

2. Added a local virtual printer which used the port we created. 

 

 

 

 



Next, using WinAPI we wrote a simple C program which prints ​RAW Data Type​ using our 

printer. We used RAW because we wanted to write a DLL file and we didn’t want the data to 

be parsed by any further component, just written as-is. 

 

We used a dummy DLL for PoC purposes and fired up the program to “print” the file to 

System32 within the context of the limited user: 

Our first try failed. We assumed it wouldn’t be so straight-forward, but let’s try to figure out 

why. 

The RPC Impersonation Barrier 

As we mentioned at the start of the article - when a user creates a printing job, it is sent 

over RPC to spoolsv.exe. In order to block the option of abusing the Print Spooler service 

and perform operations as SYSTEM, Microsoft used the impersonation feature of RPC 

which performs most of the tasks ​on behalf of the user which created the print job​. 

 

This is the logic of the impersonation : 

 

It’s simple as this: 

1. Call to ​RpcImpersonateClient 

2. Call StartDocPrinter using the token of the user who created the print job 

3. Call to ​RpcRevertToSelf 

https://docs.microsoft.com/en-us/windows-hardware/drivers/print/raw-data-type
https://docs.microsoft.com/en-us/windows/win32/api/rpcdce/nf-rpcdce-rpcimpersonateclient
https://docs.microsoft.com/en-us/windows/win32/api/securitybaseapi/nf-securitybaseapi-reverttoself


Printing to System32 - Second Try 

We understood that we have to find some kind of use-case in which the Print Spooler will be 

able to create and perform our print job using its own SYSTEM token (and not by 

impersonation). 

 

We recalled the ​ProcessShadowJobs​ function, which we mentioned in the previous 

vulnerability. The function is called when the Spooler is being initialized and ​processes all of 
the SHD files within the Spooler folder. 
 

 
 
We wondered:  Are you telling us that there is a function which (A) reads unencrypted 

serialized data (B) from a folder which we have write access to as a limited user and (C) we 

can fully control the data? Sounds like a plan! 

 

Originally, we assumed that during the early stages of the service initialization (and 

processing the SHD files), there was no context nor impersonation, as the SHD files were 

already written. 

We also assumed that the context of the user is extracted out of the SHD file (remember 

the SID field), but we found something better: 



 

It appears that the service is impersonating itself and operates as NT 

AUTHORITY\SYSTEM! 

 

Let’s try to change the SHD file to contain the SYSTEM SID, write it to the Spooler’s folder 

then restart the computer. Once the Spooler is restarted it will process the SHD file, parsing 

the SYSTEM’s SID and performing the operations on behalf of SYSTEM. 

Writing Files as SYSTEM 

We used a valid SHD file as a template and changed the following fields: 

1. The SPLSize field. This is the size of the DLL which we want to write. 

2. The status of the print job. We changed it to 0x800 so the spooler would process it. 

3. The job number. 

 

Next, we copied the crafted SHD file and our DLL (as the SPL file) to the Spooler’s directory, 

running as a limited user: 

 

And then, we restarted the computer. We enabled ProcMon on boot so we could 

understand if we were able to write the DLL to System32: 



 

 

We succeeded. We just achieved a privilege escalation from a limited user to NT 

AUTHORITY\SYSTEM and wrote an arbitrary DLL file in System32. 

 

As a bonus, multiple Windows services loaded our DLL (wbemcomn.dll) as they didn’t 

verify the signature and tried to load the DLL from an unexisting path, meaning we 

also got code execution. 

 

Our wbemcomn.dll loaded an additional DLL named “hello-world.dll”, which dropped a txt 

file each time it got loaded. ​The name of the txt file consists of the username and the 

process which loaded it. 

Mitigation 
One of the root causes of the arbitrary file write bug class (in the context of local privilege 
escalation) is the fact that an unprivileged user is allowed to write directly to folders which are 
being handled directly by services which run as NT AUTHORITY\SYSTEM, for example: 
 

● System32\spool\PRINTERS -  ​CVE-2020-1048, CVE-2020-1337, Spooler DoS 
● Spool\drivers\color - ​CVE-2020-1117​ (RCE) 
● System32\tasks - ​CVE-2019-1069 
● C:\ProgramData\Microsoft\Windows\WER\ReportQueue - ​CVE-2019-0863  
● c:\windows\debug\WIA 
● c:\windows\PLA - 3 sub directories. 



  
In addition to reporting the vulnerabilities to MSRC, we also translated our experience into a 
Mini-Filter Driver as a PoC for demonstrating how one can prevent the exploitation of such 
vulnerabilities in real-time. 
 
You can find the source code in our GitHub repository​[3]​. ​Please notice that the code was 
written for demonstration purposes only, and should not be used in a production 
environment. 
  

Updated Notes 
Update (May 2020): Microsoft released a patch for the EoP vulnerability we found and assigned 
it CVE-ID: ​CVE-2020-1048​. 
 
Update (June 2020): We have found a way to bypass the patch and re-exploit the vulnerability 
on the latest Windows version. Microsoft assigned this vulnerability CVE-ID: ​CVE-2020-1337 
and it will be patched on August’s Patch Tuesday.  
We will be able to release technical details once it is patched. Stay tuned. 

References 
[1] ​Yuan, Feng:  Windows Graphics Programming: Win32 GDI and DirectDraw 

[2] ​https://www.codeproject.com/Articles/8916/Printing-Architecture 

[3] ​https://github.com/SafeBreach-Labs/Spooler 

https://portal.msrc.microsoft.com/en-US/security-guidance/advisory/CVE-2020-1048
https://www.amazon.co.uk/exec/obidos/ASIN/0130869856
https://www.codeproject.com/Articles/8916/Printing-Architecture
https://github.com/SafeBreach-Labs/Spooler

