
Dragonblood: Attacking the Dragonfly

Handshake of WPA3

Mathy Vanhoef and Eyal Ronen

Black Hat USA. Las Vegas, 7 August 2019.

Background: Dragonfly in WPA3 and EAP-pwd

2

Negotiate

session key
Provide mutual

authentication

Forward secrecy
& prevent offline
dictionary attacks

Protect against

server compromise

= Password Authenticated Key Exchange (PAKE)

Dragonfly

3

Convert password to

group element P

Convert password to

group element P

Commit phase

Confirm phase

Negotiate shared key

Confirm peer negotiated same key

Dragonfly

4

Convert password to

group element P

Convert password to

group element P

Commit phase

Confirm phase

Supports two crypto groups:

1. MODP groups

2. Elliptic curves

What are MODP groups?

 All operations are MODulo the Prime (= MODP)

5

Operations performed on integers x where:

› x < 𝑝 with 𝑝 a prime

› 𝑥𝑞 mod 𝑝 = 1 must hold

› 𝑞 = #elements in the group

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

6

Convert value to a MODP element

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

7

Problem for groups 22-24:

high chance that value >= p

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: ???

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

8

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

9

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

10

#iterations depends on password

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P

11

No timing leak countermeasures,

despite warnings by IETF & CFRG!

#iterations depends on password

IETF mailing list in 2010

12

“[..] susceptible to side channel (timing) attacks

and may leak the shared password.”

“not so sure how important that is [..] doesn't leak

the shared password [..] not a trivial attack.”

Leaked information: #iterations needed

13

Client address addrA

Measured

Leaked information: #iterations needed

14

Client address addrA

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

15

Client address addrA

Measured

Password 1

Password 2

Password 3

What information is leaked?

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

16

Spoof client address to obtain

different execution & leak new data

Leaked information: #iterations needed

17

Client address addrA addrB

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

18

Client address addrA addrB

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

19

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

20

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Leaked information: #iterations needed

21

Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine

password in RockYou dump

Raspberry Pi 1 B+: differences are measurable

22

Raspberry Pi 1 B+: differences are measurable

23

Hostap AP: ~75 measurements / address

What about elliptic curves?

 Need to convert password to point (x,y) on the curve

24

Operations performed on points (x, y) where:

› x < 𝑝 and y < 𝑝 with 𝑝 a prime

› 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 must hold

Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)

25

EAP-pwd: similar timing

leak with elliptic curves

Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

26

WPA3: always do 40

loops & return first P

Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

27

Problem for Bainpool curves:

high chance that x >= p

Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

28

Code may be skipped!

Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

29

#Times skipped depends on password

Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

30

 simplified, execution time for several client MAC

addresses forms a signature of the password.

31

Cache

Attacks

NIST Elliptic Curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

32

Monitor using Flush+Reload to

know in which iteration we are

NIST curves: use Flush+Reload to

detect when code is executed

Bainpool Elliptic Curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

33

Monitor using Flush+Reload to

know in which iteration we are

Brainpool curves: use Flush+Reload

to detect when code is executed

Cache-attacks in practice

Requires powerfull adversary:

› Run unpriviliged code on victim’s machine

› Act as malicious client/AP within range of victim

34

Abuse leaked info to recover the password

› Spoof various client addresses similar to timing attack

› Use resulting password signature in dictionary attack

Attack Optimizations

Timing & cache attack result in password signature

› Both use the same brute-force algorithm

Improve performance using GPU code:

› We can brute-force 𝟏𝟎𝟏𝟎 passwords for $1

› MODP / Brainpool: all 8 symbols costs $67

› NIST curves: all 8 symbols costs $14k

35

Implementation

Inspection

36

Invalid Curve Attack

37

Commit(x’, y’)

Point isn’t on curve

Negotiated key

is predictable

Invalid Curve Attack

38

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key

is predictable

Guess key and

send confirm

Confirm phase

Invalid Curve Attack

39

Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key

is predictable

Guess key and

send confirm

Confirm phase

Bypasses authentication

 EAP-pwd: all implementations affected

 WPA3: only iwd is vulnerable

Implementation Vulnerabilities II

40

Bad randomness:

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!

Side-channels:

› FreeRADIUS aborts if >10 iterations are needed

› Aruba’s EAP-pwd aborts if >30 are needed

› Can use leaked info to recover password

Wi-Fi Specific

Attacks

41

Denial-of-Service Attack

42

Convert password to

group element P

Convert password to

group element P

AP converts password to EC

point when client connects

› Conversion is computationally expensive (40 iterations)

› Forging 8 connections/sec saturates AP’s CPU

Downgrade Against WPA3-Transition

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades  forward secrecy

› Performing partial WPA2 handshake  dictionary attacks

Solution is to remember which networks support WPA3

› Similar to trust on first use of SSH & HSTS

› Implemented by Pixel 3 and Linux’s NetworkManager

43

Crypto Group Downgrade

Handshake can be performed with multiple curves

› Initiator proposes curve & responder accepts/rejects

› Spoof reject messages to downgrade used curve

44

= design flaw, all client & AP

implementations vulnerable

45

Disclosure

Disclosure process

Notified parties early with hope to influence WPA3

› Some initially sceptic, considered it implementation flaws

› Group downgrade: “was known, but forgot to warn about it”

Reaction of the Wi-Fi Alliance

› Privately created backwards-compatible security guidelines

› 2nd disclosure round to address Brainpool side-channels

46

Fundamental issue still unsolved

› On lightweight devices, doing 40 iterations is too costly

› Even powerfull devices are at risk: handshake might be

offloaded the lightweight Wi-Fi chip itself

47

!
Wi-Fi standard now being updated

› Prevent crypto group downgrade attack

› Allow offline computation of password element

Additional upates to Wi-Fi standard

48

Elliptic curve groups:

› Restrict usage of weak elliptic curves

› Constant-time algo (simplified SWU)

MODP crypto groups:

› Restrict usage of weak MODP groups

› Constant-time algo (modulo intead of iterations)

Updates aren’t backwards-compatible

Might lead to WPA3.1?

› Not yet clear how this will be handled

› Risk of downgrade attacks to original WPA3

49

Will people be able to easily attack WPA3?

› No, WPA3 > WPA2 even with its flaws

› Timing leaks: non-trival to determine if vulnerable

Conclusion
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Standard now being updated

› WPA3 > WPA2 & planned updates are strong

https://wpa3.mathyvanhoef.com

50

https://wpa3.mathyvanhoef.com/

