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Background: Dragonfly in WPA3 and EAP-pwd
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Supports two crypto groups:

1. MODP groups

2. Elliptic curves



What are MODP groups?

 All operations are MODulo the Prime (= MODP)
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Operations performed on integers x where:

› x < 𝑝 with 𝑝 a prime

› 𝑥𝑞 mod 𝑝 = 1 must hold

› 𝑞 = #elements in the group



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Convert value to a MODP element



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Problem for groups 22-24: 

high chance that value >= p



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: ???

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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#iterations depends on password



Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞

return P
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No timing leak countermeasures,

despite warnings by IETF & CFRG!

#iterations depends on password



IETF mailing list in 2010
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“[..] susceptible to side channel (timing) attacks 

and may leak the shared password.”

“not so sure how important that is [..] doesn't leak 

the shared password [..] not a trivial attack.”



Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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What information is leaked?

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addr1, addr2)

if value >= p: continue

P = 𝑣𝑎𝑙𝑢𝑒(𝑝−1)/𝑞
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Spoof client address to obtain 

different execution & leak new data



Leaked information: #iterations needed
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Password 3



Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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Leaked information: #iterations needed
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Client address addrA addrB addrC

Measured

Password 1

Password 2

Password 3

Forms a signature of the password

Need ~17 addresses to determine 

password in RockYou dump



Raspberry Pi 1 B+: differences are measurable
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Raspberry Pi 1 B+: differences are measurable

23

Hostap AP: ~75 measurements / address



What about elliptic curves?

 Need to convert password to point (x,y) on the curve
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Operations performed on points (x, y) where:

› x < 𝑝 and y < 𝑝 with 𝑝 a prime

› 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 mod 𝑝 must hold



Hash-to-curve: EAP-pwd

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

return (x, 𝑥3 + 𝑎𝑥 + 𝑏)
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EAP-pwd: similar timing 

leak with elliptic curves



Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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WPA3: always do 40 

loops & return first P



Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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Problem for Bainpool curves: 

high chance that x >= p



Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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Code may be skipped!



Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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#Times skipped depends on password



Hash-to-curve: WPA3 (simplified)

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P

30

 simplified, execution time for several client MAC 

addresses forms a signature of the password.
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Cache 

Attacks



NIST Elliptic Curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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Monitor using Flush+Reload to 

know in which iteration we are

NIST curves: use Flush+Reload to 

detect when code is executed



Bainpool Elliptic Curves

for (counter = 1; counter < 40; counter++)

x = hash(pw, counter, addr1, addr2)

if x >= p: continue

if square_root_exists(x) and not P:

P = (x, 𝑥3 + 𝑎𝑥 + 𝑏)

return P
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Monitor using Flush+Reload to 

know in which iteration we are

Brainpool curves: use Flush+Reload 

to detect when code is executed



Cache-attacks in practice

Requires powerfull adversary:

› Run unpriviliged code on victim’s machine

› Act as malicious client/AP within range of victim
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Abuse leaked info to recover the password

› Spoof various client addresses similar to timing attack

› Use resulting password signature in dictionary attack



Attack Optimizations

Timing & cache attack result in password signature

› Both use the same brute-force algorithm

Improve performance using GPU code:

› We can brute-force 𝟏𝟎𝟏𝟎 passwords for $1

› MODP / Brainpool: all 8 symbols costs $67

› NIST curves: all 8 symbols costs $14k
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Implementation 

Inspection

36



Invalid Curve Attack
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Commit(x’, y’)

Point isn’t on curve

Negotiated key 

is predictable



Invalid Curve Attack
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Invalid Curve Attack
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Commit(x’, y’)

Commit reply

Point isn’t on curve

Negotiated key 

is predictable

Guess key and 

send confirm

Confirm phase

Bypasses authentication

 EAP-pwd: all implementations affected

 WPA3: only iwd is vulnerable



Implementation Vulnerabilities II
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Bad randomness: 

› Can recover password element P

› Aruba’s EAP-pwd client for Windows is affected

› With WPA2 bad randomness has lower impact!

Side-channels: 

› FreeRADIUS aborts if >10 iterations are needed

› Aruba’s EAP-pwd aborts if >30 are needed

› Can use leaked info to recover password



Wi-Fi Specific 

Attacks
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Denial-of-Service Attack
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Convert password to 

group element P

Convert password to 

group element P

AP converts password to EC 

point when client connects

› Conversion is computationally expensive (40 iterations)

› Forging 8 connections/sec saturates AP’s CPU



Downgrade Against WPA3-Transition

Transition mode: WPA2/3 use the same password

› WPA2’s handshake detects downgrades  forward secrecy

› Performing partial WPA2 handshake  dictionary attacks

Solution is to remember which networks support WPA3

› Similar to trust on first use of SSH & HSTS

› Implemented by Pixel 3 and Linux’s NetworkManager
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Crypto Group Downgrade

Handshake can be performed with multiple curves

› Initiator proposes curve & responder accepts/rejects

› Spoof reject messages to downgrade used curve
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= design flaw, all client & AP 

implementations vulnerable
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Disclosure



Disclosure process

Notified parties early with hope to influence WPA3

› Some initially sceptic, considered it implementation flaws

› Group downgrade: “was known, but forgot to warn about it”

Reaction of the Wi-Fi Alliance

› Privately created backwards-compatible security guidelines

› 2nd disclosure round to address Brainpool side-channels
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Fundamental issue still unsolved

› On lightweight devices, doing 40 iterations is too costly

› Even powerfull devices are at risk: handshake might be 

offloaded the lightweight Wi-Fi chip itself
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!
Wi-Fi standard now being updated

› Prevent crypto group downgrade attack

› Allow offline computation of password element



Additional upates to Wi-Fi standard
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Elliptic curve groups:

› Restrict usage of weak elliptic curves

› Constant-time algo (simplified SWU)

MODP crypto groups:

› Restrict usage of weak MODP groups

› Constant-time algo (modulo intead of iterations)



Updates aren’t backwards-compatible

Might lead to WPA3.1?

› Not yet clear how this will be handled

› Risk of downgrade attacks to original WPA3
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Will people be able to easily attack WPA3?

› No, WPA3 > WPA2 even with its flaws

› Timing leaks: non-trival to determine if vulnerable



Conclusion
› WPA3 vulnerable to side-channels

› Countermeasures are costly

› Standard now being updated

› WPA3 > WPA2 & planned updates are strong

https://wpa3.mathyvanhoef.com
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https://wpa3.mathyvanhoef.com/

