Dragonblood: Attacking the Dragonfly
Handshake of WPA3

Mathy Vanhoef and Eyal Ronen

KATHOLIEKE UNIVERSITEIT ((/
LEUVEN 2 NEW YORK UNIVERSITY
TEL AVIV UNIVERSITY '

Background: Dragonfly in WPA3 and EAP-pwd

= Password Authenticated Key Exchange (PAKE)

(-

E/ session key

authentication

4 “\ Provide mutual =@® Negotiate
& B

Forward secrecy
& prevent offline
dictionary attacks

Dragonfly

| |
Convert password to Convert password to
group element P group element P
Commit phase
Negotiate shared key

A4

N

Confirm phase

< Confirm peer negotiated same key i

Dragonfly

Convert password to Convert password to
group element P group element P

Supports two crypto groups:
— 1. MODP groups —

2. Elliptic curves
Cconfirm phase

A4

AN

What are MODP groups?

Operations performed on integers x where:

» X < p with p a prime

» x9 mod p = 1 must hold

» q = #elements in the group

—> All operations are MODulo the Prime (= MODP)

Convert password to MODP element

value = hash(pw, addrl, addr2)

P = value®~1)/d

return P Convert value to a MODP element

Convert password to MODP element

value = hash(pw, addrl, addr2)

P = value®-1/4

retu

Problem for groups 22-24.
high chance that value >=p

Convert password to MODP element

value = hash(pw, addrl, addr2)
if value >= p: ?2?
P = value®-1/4

return P

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, addrl, addr2)
if value >= p: continue
P = value®@-D/a

return P

Convert password to MODP element

for (counter = 1; counter < 256; counter++)

value = hash counter, addrl, addr2)

1t val diterations depends on password

P = vatuevr -~

return P

10

Convert password to MODP element

for (counter = 1; counter < 256; counter++)
value = hash counter, addrl, addr2)
1t val diterations depends on password

P = vatuevr -~

No timing leak countermeasures,
despite warnings by IETF & CFRG!

11

IETF mailing list in 2010

“[..] susceptible to side channel (timing) attacks
and may leak the shared password.”

“not so sure how important that is [..] doesn't leak
the shared password [..] not a trivial attack.”

12

Leaked information: #iterations needed

Client address addrA

.
Measured D

13

Leaked information: #iterations needed

Client address addrA

Measured

Password 1

Password 2

Password 3

14

Leaked information: #iterations needed

Client address addrA

Measured

Password 2

Password 3

15

What information is leaked?

for (counter = 1; counter < 256; counter++)

value = hash(pw, counter, |addrl, addr2)]

1T V& gpoof client address to obtain

P =1 different execution & leak new data

16

Leaked information: #iterations needed

Client address addrA addrB
Measured = .
o 1 GD

Password 2 =

Password 3 =

17

Leaked information: #iterations needed

Client address addrA addrB
D D
Measured D
D
Password-1
D
Password-2 D
D
Password 3 .

18

Leaked information: #iterations needed

Client address

addrA addrB addrC

Measured

Password 3

19

Leaked information: #iterations needed

Client address

addrA addrB addrC

Measured

Password 3

20

Leaked information: #iterations needed

Client address

Measured

... Forms a signature of the password

@y D
Pas

Need ~17 addresses to determine

=< password in RockYou dump

21

Raspberry Pi 1 B+: differences are measurable

— 1 iteration

2 iterations
—-= 3 jterations
4 iterations

= =
o Ul
]]

O
on
]

Density (relative)

o
o
]
:

63 67 68
Response time (ms)

Raspberry Pi 1 B+: differences are measurable

1.5 - -—] [teration
2 iterations

—_—= 2 taratinnce

itive)

Hostap AP: ~75 measurements / address

Response time (ms)

What about elliptic curves?

\/ Operations performed on points (X, y) where:

C - » x<pandy < p with p a prime
/\ » y2 = x3 4+ ax + b mod p must hold

- Need to convert password to point (x,y) on the curve

24

Hash-to-curve: EAP-pwd

for (counter = 1; counter++)

X = hash(pw, counter, addrl, addr2)

if square root exists(x)

return (x, vx3+ax+b)

EAP-pwd: similar timing
leak with elliptic curves

25

Hash-to-curve: WPAS3 (simplified)
for (counter = 1; counter < 40; counter++)

X = hash(pw, counter, addrl, addr2)

if square root exists(x) and not P:

P=(x, Vx3+ax+Db)

return P

WPA3: always do 40
loops & return first P

26

Hash-to-curve: WPAS3 (simplified)
for (counter = 1; counter < 40; counter++)

X = hash(pw, counter, addrl, addr2)

if square root exists(x) and not P:

P=(x, Vx3+ax+Db)

t .
"SH Problem for Bainpool curves:

high chance that x >=p

27

Hash-to-curve: WPAS3 (simplified)

for (counter = 1; counter < 40; counter++)
X = hash(pw, counter, addrl, addr2)
if x >= p: continue
if square root exists(x) and not P:

P=(x, Vx3+ax+b)

return P code may be skipped!

28

Hash-to-curve: WPAS3 (simplified)

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)

if x >= p: continue

"el 4Times skipped depends on password

29

Hash-to-curve: WPAS3 (simplified)

for (counter = 1; counter < 40; counter++)
x = hash(pw, counter, addrl, addr2)
if x >= p: continue

if square root exists(x) and not P:

P=(x, Vx3+ax+b)

"€ 3> simplified, execution time for several client MAC
addresses forms a signature of the password.

30

> Cache
® Attacks

NIST Elliptic Curves Monitor using Flush+Reload to

for (counter = 1; c¢ know In which iteration we are

x =lhash(pw, counter, addrl, addr2)

if x >= p: continue
if square root exists(x) and not P:
P=(x, Vx3+ax+b)
return P

NIST curves: use Flush+Reload to
detect when code Is executed

32

Bainpool Elliptic Cur Monitor using Flush+Reload to

for (counter = 1; c¢ know in which iteration we are

x =lhash(pw, counter, addrl, addr2)

if x >= p: continue

if |square root exists(x)| and not P:
P=(x, Vx3+ax+b)
return P

Brainpool curves: use Flush+Reload
to detect when code Is executed

33

Cache-attacks In practice

- . Requires powerfull adversary:
@ > Run unpriviliged code on victim’s machine
» Act as malicious client/AP within range of victim
Abuse leaked info to recover the password

» Spoof various client addresses similar to timing attack

» Use resulting password signature in dictionary attack

34

Attack Optimizations

Timing & cache attack result in password signature

» Both use the same brute-force algorithm

Improve performance using GPU code:

» We can brute-force 10" passwords for $1
> MODP / Brainpool: all 8 symbols costs $67
» NIST curves: all 8 symbols costs $14k

35

Implementation
Inspection

Invalid Curve Attack

-

Point isn’t on curve

Commit{x’, y’}

v

|

Negotiated key)
IS predictable |

37

Invalid Curve Attack

-

Point isn’t on curve

Commit{x’, y’}

v

[Negotiated key)

IS predictable |

Commit reply

N

-

A\

Guess key and
send confirm

]

Confirm phase

v

N

38

Invalid Curve Attack

-

Point isn’t on curve

Commit{x’, y’}

v

(Negotiated key)

Bypasses authentication
» EAP-pwd: all implementations affected
» WPAS3: only iwd is vulnerable

Confirm phase

v

N

=

39

Implementation Vulnerabilities Il

NINE NINE Bad randomness:

NINE NINE

\ » Can recover password element P

HE » Aruba’s EAP-pwd client for Windows is affected
38 . .
e > With WPA2 bad randomness has lower impact!

Side-channels:

» FreeRADIUS aborts if >10 iterations are needed
» Aruba’s EAP-pwd aborts if >30 are needed

» Can use leaked info to recover password

40

"\ WI-FI Specific
‘.’ Attacks

Denial-of-Service Attack

| |
Convert password to Convert password to
group element P group element P é
‘ AP converts password to EC ‘
point when client connects

» Conversion is computationally expensive (40 iterations)
» Forging 8 connections/sec saturates AP’s CPU

42

Downgrade Against WPA3-Transition

Transition mode: WPA2/3 use the same password
» WPA2's handshake detects downgrades - forward secrecy
» Performing partial WPA2 handshake - dictionary attacks

Solution is to remember which networks support WPA3
» Similar to trust on first use of SSH & HSTS
» Implemented by Pixel 3 and Linux’s NetworkManager

43

Crypto Group Downgrade

Handshake can be performed with multiple curves
» Initiator proposes curve & responder accepts/rejects
» Spoof reject messages to downgrade used curve

= design flaw, all client & AP
Implementations vulnerable

44

Q Disclosure

Disclosure process

Notified parties early with hope to influence WPA3
» Some Initially sceptic, considered it implementation flaws
» Group downgrade: “was known, but forgot to warn about it”

Reaction of the Wi-Fi Alliance

» Privately created backwards-compatible security guidelines
» 2"d disclosure round to address Brainpool side-channels

46

Fundamental issue still unsolved

» On lightweight devices, doing 40 iterations is too costly

» Even powerfull devices are at risk: handshake might be
offloaded the lightweight Wi-Fi chip itself

Wi-Fi standard now being updated
» Prevent crypto group downgrade attack
m > Allow offline computation of password element

47

Additional upates to Wi-Fi standard

/ \ MODP crypto groups:
» Restrict usage of weak MODP groups

/ » Constant-time algo (modulo intead of iterations)

\/ Elliptic curve groups:

an

» Restrict usage of weak elliptic curves

/\ » Constant-time algo (simplified SWU)

48

Updates aren’t backwards-compatible

Might lead to WPA3.1?
> Not yet clear how this will be handled
» Risk of downgrade attacks to original WPA3

Will people be able to easily attack WPA3?
» No, WPA3 > WPA2 even with its flaws
» Timing leaks: non-trival to determine if vulnerable

49

Conclusion

» WPA3 vulnerable to side-channels
» Countermeasures are costly
» Standard now being updated

» WPA3 > WPAZ2 & planned updates are strong

https://wpa3.mathyvanhoef.com

50

https://wpa3.mathyvanhoef.com/

