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The talk in three bullets

* The threat landscape is constantly changing; detection strategies decay

* Knowing something about how fast and in what way the threat landscape
is changing lets us plan for the future

* Machine learning detection strategies decay in interesting ways that tell us
useful things about these changes



Important caveats

* A lot of details are omitted for time

* We're data scientists first and foremost, so...
o Advance apologies for any mistakes
o Our conclusions are machine-learning centric
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"Now here, you see, it takes all the running you can do to
keep in the same place. If you want to get somewhere else,
you must run at least twice as fast as that!“

(Lewis Carroll, 1871)



Faster and faster...

RATs, loggers, bots

1986 — Brain virus

1988 — Morris worm

Crimeware, weapons

2002 — Beast RAT
1990 — 1260 polymorphic 2003 — Blaster worm/DDoS

2010 — Koobface

virus 2004 — MyDoom worm/DDoS

1991 — Norton Antivirus, 2004 — Cabir: first mobile phone 2011 =Duqu

EICAR founded, antivirus worm 2012 — Flame, Shamoon
industry starts in earnest 2004 — Nuclear RAT 2013 — Cryptolocker, ZeuS
1995 — Concept virus 2005 — Bifrost RAT 2014 — Reign

2008-2009 — Conficker variants

2016 — Locky, Tinba, Mirai
2017 — WannaCry, Petya




Two (static) detection paradigms

Signatures Machine learning
* Highly specific, often to a single * Looks for statistical patterns that
family or variant suggest “this is a malicious
* Often straightforward to evade program
* Low false positive rate * Evasive techniques not yet well
developed

* Often fail on new malware

* Higher false positive rate

* Often does quite well on new
malware



A crash primer on deep learning



A toy problem
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What we want
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Training the model

Error-correct all weights

Malware score
ground truth
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...and repeat until it works




Recipe for an amazing ML classifier
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But.
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...and six weeks later, we have this.
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Our model performance begins to decay
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Machine learning models decay in informative ways

* Decay in performance happens

because the data changes | :&; *%;
* More decay means larger changes
in data
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Model confidence
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Alice replied: 'what's the answer?"
'l haven't the slightest idea,' said the Hatter.
(Lewis Carroll, 1871)
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Intuition: “borderline” files are likely misclassified
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Intuition: “distant” files are likely misclassified
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Do it automatically

.ll

Wiggle the lines” a bit

* Do the resulting classifications
agree or disagree on a region?

* Amount of agreement =
“Confidence”
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https://arxiv.org/pdf/1609.02226.pdf
Fitted Learning: Models with Awareness of their Limits ' ' Entropy
Navid Kardan, Kenneth O. Stanley



https://arxiv.org/pdf/1609.02226.pdf

Do it automatically

17.5

Key takeaway: 150
* High confidence ~ Model has e
seen data like this before! i
* Low confidence = This data g

“looks new”! .

https://arxiv.org/pdf/1609.02226.pdf
Fitted Learning: Models with Awareness of their Limits
Navid Kardan, Kenneth O. Stanley



https://arxiv.org/pdf/1609.02226.pdf

Looking at historical data with confidence

"It's a poor sort of memory that only works backwards," the Queen
remarked.
(Lewis Carroll, 1871)

23



1024 Inputs
512 Nodes

To this...
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Using confidence to examine changes in malware distribution

* Collect data for each month of 2017 (3M samples, unique sha256 values)
* Train a model on one month (e.g. January)

Jan
model
I3 3 2 5 5 2 R ) S A A




Using confidence to examine changes in malware distribution

* Collect data for each month of 2017 (3M samples, unique sha256 values)

* Train a model on one month (e.g. January)
* Evaluate it on data from all future months and record the number of

high/low confidence samples
Jan
e
(etc.)
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Look at change in high/low confidence samples

Low confidence counts

* Train January mode; count low-
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* Remember:
o Low-confidence = “Looks new”
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Same thing for high confidence samples

High confidence counts

* Remember:

o High confidence = “Looks like original
data”

Change in high-confidence predictions

Months post-training



Both forms of decay show noisy but clear trends
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Estimate the rates with a best-fit line

Change in low-confidence predictions

----- slope:0.0034
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Examining changes within a single family

“I wonder if I've been changed in the night? Let me think. Was | the

same when | got up this morning?”
(Lewis Carroll, 1871)
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Confidence over time for individual families

January 2017 February 2017 March 2017
Training Data Training Data Training Data

Collection of
WannaCry/HWorld
samples
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confidence samples confidence samples




WannaCry
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WannaCry

Samples first appear in training data
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WannaCry
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WannaCry/high confidence:

B dips as low as 70% after

appearing in training data

Hworld/high confidence:
} Never less than 84% after

appearing in training data




WannaCry
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WannaCry/low confidence:
9% down to 0.2% after

appearing in training data

Hworld/low confidence:
— 1.3% down to 0.0008% after
appearing in training data
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56% of WannaCry samples
this subset

HwWorld

High confidence
Low confidence

- gTidy

- 28THEN

- 8T49=4

- aTuE

m LT¥=0

m LTACN

- LTIRO

- LTdes

- LT1Dmy

- LTInf

CLunf

- LTARR

- LTy

- LTHERN

R RALEE

- LTuef

ID{I B
10°% 1
1|}—3 B
1074 5

1|}—1 -

1[:,—:- E




Distance measures from training data
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* Large distances = larger change in 5 ‘ﬁ.
statistical properties of the sample

o New family? Significant variant of
existing one?

25 1

fd
L]
i

il

* | ook at distances from one month ) -
' SR - —

to a later one for samples from the £ 3 o
same family ’

String length
'_I
LN

=
[ ]

L5 1

(.0 1




January 2017 to May 2017

* Changes in the feature
representation of samples lead to
changes in distance
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Distances to closest family member in training data
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Distance and new family detection
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THEY.STILL SUSPECT NOTHING

“This thing, what is it in itself, in its own constitution?”

(Marcus Aurelius, Meditations)
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Distance measures from training data
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Distances — July data
to nearest point in
January data

Drill into clusters potentially worth examining
further.

* Mal/Behav-238 — 1468 samples
* Mal/VB-ZS — 7236 samples

* Troj/Inject-CMP — 6426 samples
* Mal/Generic-S—318 samples

* |CLoader PUA — 124 samples

... And several clusters of apparently benign
samples
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“Begin at the beginning," the King said, very gravely, "and go
on till you come to the end: then stop.”
(Lewis Carroll, 1871)
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Conclusion

* ML models decay in interesting ways: this makes them
useful as analytic tools as well as just simple classifiers
o Confidence measures — population and family drift
o Distance metrics — family stability, novel family detection




Practical takeaways

* ML and “old school” malware detection are complementary
o ML can sometimes detect novel malware; compute and use confidence metrics

* The rate of change of existing malware — from the ML perspective — is slow
o Retiring seems to be more common than innovation

* There are large error bars on these estimates, and will vary by model and
data set, but...

o Expect to see a turnover of about 1% per quarter of established samples being
replaced by novel (from the ML perspective) samples

o About 4% per quarter of your most identifiable samples will be retired



Additional thanks to...

* Richard Cohen and Sophos Labs
* Josh Saxe and the rest of the DS team
* BlackHat staff and support

e ... and John Tenniel for the illustrations

* Code + tools coming soon: https://github.com/inv-ds-research/red _queens_race




SOPHOS

Cybersecurity made simple.



