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Who Am I?

▪ Jason Donenfeld, president of Edge Security (.com), also known 
as zx2c4.

▪ Background in exploitation, kernel vulnerabilities, crypto 
vulnerabilities, and been doing kernel-related development for a 
long time.

▪ Motivated to make a VPN that avoids the problems in both 
crypto and implementation that I’ve found in numerous other 
projects.



What is WireGuard?
▪ Layer 3 secure network tunnel for IPv4 and IPv6.

▪ Opinionated. Only layer 3! 

▪ Designed for the Linux kernel

▪ Slower cross platform implementations also.

▪ UDP-based. Punches through firewalls.

▪ Modern conservative cryptographic principles.

▪ Emphasis on simplicity and auditability.

▪ Authentication model similar to SSH’s 
authenticated_keys.

▪ Replacement for OpenVPN and IPsec.

▪ Grew out of a stealth rootkit project.

▪ Techniques desired for stealth are equally as useful for tunnel 
defensive measures.



Security Design Principle 1: Easily Auditable

OpenVPN Linux XFRM StrongSwan SoftEther WireGuard

116,730 LoC
Plus OpenSSL!

119,363 LoC
Plus StrongSwan!

405,894 LoC
Plus XFRM!

329,853 LoC 3,771 LoC

Less is more.



Security Design Principle 1: Easily Auditable

IPsec 
(XFRM+StrongSwan)

419,792 LoC

SoftEther
329,853 LoC

OpenVPN
119,363 

LoC

WireGuard
3,771 LoC



Security Design Principle 2: Simplicity of Interface

▪ WireGuard presents a normal network interface:

# ip link add wg0 type wireguard
# ip address add 192.168.3.2/24 dev wg0
# ip route add default via wg0
# ifconfig wg0 …
# iptables –A INPUT -i wg0 …

/etc/hosts.{allow,deny}, bind(), …

▪ Everything that ordinarily builds on top of network interfaces – like eth0 or wlan0 –
can build on top of wg0.



Blasphemy!

▪ WireGuard is blasphemous!

▪ We break several layering assumptions of 90s networking technologies like 
IPsec (opinioned).

▪ IPsec involves a “transform table” for outgoing packets, which is managed by a user space 
daemon, which does key exchange and updates the transform table.

▪ With WireGuard, we start from a very basic building block – the network 
interface – and build up from there.

▪ Lacks the academically pristine layering, but through clever organization we 
arrive at something more coherent.



Cryptokey Routing

▪ The fundamental concept of any VPN is an association between public keys of peers 
and the IP addresses that those peers are allowed to use.

▪ A WireGuard interface has:

▪ A private key

▪ A listening UDP port

▪ A list of peers

▪ A peer:

▪ Is identified by its public key

▪ Has a list of associated tunnel IPs

▪ Optionally has an endpoint IP and port



Cryptokey Routing

PUBLIC KEY :: IP ADDRESS



Cryptokey Routing

Server Config

[Interface]
PrivateKey = 
yAnz5TF+lXXJte14tji3zlMNq+hd2rYUIgJBgB3fBmk=
ListenPort = 41414

[Peer]
PublicKey = 
xTIBA5rboUvnH4htodjb6e697QjLERt1NAB4mZqp8Dg=
AllowedIPs = 10.192.122.3/32,10.192.124.1/24

[Peer]
PublicKey = 
TrMvSoP4jYQlY6RIzBgbssQqY3vxI2Pi+y71lOWWXX0=
AllowedIPs = 10.192.122.4/32,192.168.0.0/16

Client Config

[Interface]
PrivateKey = 
gI6EdUSYvn8ugXOt8QQD6Yc+JyiZxIhp3GInSWRfWGE=
ListenPort = 21841

[Peer]
PublicKey = 
HIgo9xNzJMWLKASShiTqIybxZ0U3wGLiUeJ1PKf8ykw=
Endpoint = 192.95.5.69:41414
AllowedIPs = 0.0.0.0/0



Cryptokey Routing

Userspace:

send(packet)

Linux kernel:

Ordinary routing table 
→wg0

WireGuard:

Destination IP address 
→which peer

WireGuard:

encrypt(packet)

send(encrypted) 
→ peer’s endpoint

WireGuard:

recv(encrypted)

WireGuard:

decrypt(packet) 
→which peer

WireGuard:

Source IP address 
→ peer’s  allowed 
IPs

Linux:

Hand packet to 
networking stack



Cryptokey Routing

▪ Makes system administration very 
simple.

▪ If it comes from interface wg0 and is 
from Yoshi’s  tunnel IP address of 
192.168.5.17, then the packet 
definitely came from Yoshi.

▪ The iptables rules are plain and clear.



Timers: A Stateless Interface for a Stateful Protocol

▪ As mentioned prior, WireGuard appears “stateless” to user space; you 
set up your peers, and then it just works.

▪ A series of timers manages session state internally, invisible to the user.

▪ Every transition of the state machine has been accounted for, so there 
are no undefined states or transitions.

▪ Event based.



Timers

• If no session has been established for 120 seconds, 
send handshake initiation.User space sends packet.

• Resend handshake initiation.No handshake response after 5 
seconds.

• Send an encrypted empty packet after 10 seconds, if 
we don’t have anything else to send during that time.

Successful authentication of 
incoming packet.

• Send handshake initiation.No successfully authenticated 
incoming packets after 15 seconds.



Security Design Principle 2: Simplicity of Interface

▪ The interface appears stateless to the system administrator.

▪ Add an interface – wg0, wg1, wg2, … – configure its peers, and immediately 
packets can be sent.

▪ If it’s not set up correctly, most of the time it will just refuse to work, rather than 
running insecurely: fails safe, rather than fails open.

▪ Endpoints roam, like in mosh.

▪ Identities are just the static public keys, just like SSH.

▪ Everything else, like session state, connections, and so forth, is invisible to admin.



Demo



Simple Composable Tools

▪ Since wg(8) is a very simple tool, that works with ip(8), other more complicated tools 
can be built on top.

▪ Integration into various network managers:

▪ OpenWRT

▪ OpenRC netifrc

▪ NixOS

▪ systemd-networkd

▪ LinuxKit

▪ Ubiquiti’s EdgeOS

▪ NetworkManager

▪ …



Simple Composable Tools: wg-quick

▪ Simple shell script

▪ # wg-quick up vpn0
# wg-quick down vpn0

▪ /etc/wireguard/vpn0.conf:

[Interface]
Address = 10.200.100.2
DNS = 10.200.100.1
PostDown = resolvconf -d %i
PrivateKey = uDmW0qECQZWPv4K83yg26b3L4r93HvLRcal997IGlEE=

[Peer]
PublicKey = +LRS63OXvyCoVDs1zmWRO/6gVkfQ/pTKEZvZ+CehO1E=
AllowedIPs = 0.0.0.0/0
Endpoint = demo.wireguard.io:51820



Network Namespace Tricks

▪ The WireGuard interface can live in one namespace, and the physical interface can live 
in another.

▪ Only let a Docker container connect via WireGuard.

▪ Only let your DHCP client touch physical interfaces, and only let your web browser see 
WireGuard interfaces.

▪ Nice alternative to routing table hacks.



Namespaces: Containers

# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP>

inet 127.0.0.1/8 scope host lo
17: wg0: <NOARP,UP,LOWER_UP>

inet 192.168.4.33/32 scope global wg0



Namespaces: Personal VPN

# ip addr
1: lo: <LOOPBACK,UP,LOWER_UP>

inet 127.0.0.1/8 scope host lo
17: wg0: <NOARP,UP,LOWER_UP>

inet 192.168.4.33/32 scope global wg0



Security Design Principle 3: Static Fixed Length Headers

▪ All packet headers have fixed width fields, so no parsing is necessary.

▪ Eliminates an entire class of vulnerabilities.

▪ No parsers → no parser vulnerabilities.

▪ Quite a different approach to formats like ASN.1/X.509 or even variable 
length IP and TCP packet headers.



Security Design Principle 4: Static Allocations and 
Guarded State

▪ All state required for WireGuard to work is allocated during config.

▪ No memory is dynamically allocated in response to received packets.

▪ Eliminates another entire classes of vulnerabilities.

▪ Places an unusual constraint on the crypto, since we are operating over a finite amount of 
preallocated memory. 

▪ No state is modified in response to unauthenticated packets.

▪ Eliminates yet another entire class of vulnerabilities.

▪ Also places unusual constraints on the crypto.



Security Design Principle 5: Stealth

▪ Some aspects of WireGuard grew out of a 
kernel rootkit project.

▪ Should not respond to any 
unauthenticated packets.

▪ Hinder scanners and service discovery.

▪ Service only responds to packets with 
correct crypto.

▪ Not chatty at all.

▪ When there’s no data to be exchanged, both 
peers become silent.



Security Design Principle 6: Solid Crypto

▪ We make use of Noise Protocol Framework – noiseprotocol.org

▪ WireGuard was involved early on with the design of Noise, ensuring it could do what we needed.

▪ Custom written very specific implementation of Noise_IKpsk2 for the kernel.

▪ Related in spirit to the Signal Protocol.

▪ The usual list of modern desirable properties you’d want from an authenticated key 
exchange

▪ Modern primitives: Curve25519, Blake2s, ChaCha20, Poly1305

▪ Lack of cipher agility! (Opinionated.)



Security Design Principle 6: Solid Crypto

▪ Strong key agreement & authenticity

▪ Key-compromise impersonation resistance

▪ Unknown key-share attack resistance

▪ Key secrecy

▪ Forward secrecy

▪ Session uniqueness

▪ Identity hiding

▪ Replay-attack prevention, while allowing for network packet reordering



Formal Symbolic Verification

▪ The cryptographic protocol has been formally verified using Tamarin.



Confluence of Principles → The Key Exchange

Initiator Responder

Handshake Initiation Message

Handshake Response Message

Transport Data

Transport Data

Both Sides Calculate Symmetric Session Keys



The Key Exchange

▪ The key exchange designed to keep our principles static allocations, 
guarded state, fixed length headers, and stealthiness.

▪ In order for two peers to exchange data, they must first derive 
ephemeral symmetric crypto session keys from their static public keys.

▪ Either side can reinitiate the handshake to derive new session keys.

▪ So initiator and responder can “swap” roles.

▪ Invalid handshake messages are ignored, maintaining stealth.



The Key Exchange: (Elliptic Curve) Diffie-Hellman 
Review

private A = random()
public A = derive_public(private A)

private B = random()
public B = derive_public(private B)

ECDH(private A, public B) == ECDH(private B, public A)



The Key Exchange: NoiseIK

▪ One peer is the initiator; the other is the responder. 

▪ Each peer has their static identity – their long term static keypair.

▪ For each new handshake, each peer generates an ephemeral keypair.

▪ The security properties we want are achieved by computing ECDH() on 
the combinations of two ephemeral keypairs and two static keypairs.



The Key Exchange: NoiseIK

Alice

Static Private

Ephemeral Private

Bob

Static Public

Ephemeral Public



The Key Exchange: NoiseIK

Bob

Static Private

Ephemeral Private

Alice

Static Public

Ephemeral Public



The Key Exchange: NoiseIK

▪ One peer is the initiator; the other is the responder. 

▪ Each side has a static identity keypair and an ephemeral session keypair.

▪ Session keys = Noise(
ECDH(ephemeral, static), 
ECDH(static, ephemeral),
ECDH(ephemeral, ephemeral), 
ECDH(static, static)
)

▪ The first three ECDH()make up the “triple DH”, like in Signal, and the last 
one allows for authentication in the first message, for 1-RTT.



The Key Exchange: NoiseIK – Initiator → Responder
▪ The initiator begins by knowing the long term static public key of the responder.

▪ The initiator sends to the responder:

▪ A cleartext ephemeral public key.

▪ The initiator’s public key, authenticated-encrypted using a key that is an (indirect) result of:

ECDH(Ei, Sr) == ECDH(Sr, Ei)

▪ After decrypting this, the responder knows the initiator’s public key.

▪ Only the responder can decrypt this, because it requires control of the responder’s static private key.

▪ No forward secrecy for identity hiding.

▪ A monotonically increasing counter (usually just a timestamp in TAI64N) that is authenticated-
encrypted using a key that is an (indirect) result of the above calculation as well as:

ECDH(Si, Sr) == ECDH(Sr, Si)

▪ This counter prevents against replay DoS.

▪ Authenticating it verifies the initiator controls its private key.

▪ Authentication in the first message – static-static ECDH().



The Key Exchange: NoiseIK – Responder → Initiator

▪ The responder at this point has learned the initiator’s static public key from 
the prior first message, as well as the initiator’s ephemeral public key.

▪ The responder sends to the initiator:

▪ A cleartext ephemeral public key.

▪ An empty buffer, authenticated-encrypted using a key that is an (indirect) result of the 
calculations in the prior message as well as:

ECDH(Er, Ei) == ECDH(Ei, Er)

and

ECDH(Er, Si) == ECDH(Si, Er)

▪ Authenticating it verifies the responder controls its private key.



The Key Exchange: Session Derivation

▪ After the previous two messages (initiator → responder and responder 
→ initiator), both initiator and responder have something bound to 
these ECDH() calculations:

▪ ECDH(Ei, Sr) == ECDH(Sr, Ei) 

▪ ECDH(Si, Sr) == ECDH(Sr, Si)

▪ ECDH(Ei, Er) == ECDH(Er, Ei) 

▪ ECDH(Si, Er) == ECDH(Er, Si) 

▪ From this they can derive symmetric authenticated-encryption session 
keys – one for sending and one for receiving.

▪ When the initiator sends its first data message using these session keys, 
the responder receives confirmation that the initiator has understood 
its response message, and can then send data to the initiator.



The Key Exchange

▪ Just 1-RTT.

▪ Extremely simple to implement
in practice, and doesn’t lead to 
the type of complicated messes 
we see in OpenSSL and 
StrongSwan.

▪ No certificates, X.509, or ASN.1: 
both sides exchange very short 
(32 bytes) base64-encoded 
public keys, just as with SSH.



Poor-man’s PQ Resistance

▪ Optionally, two peers can have a pre-shared key, which gets “mixed” into 
the handshake.

▪ Grover’s algorithm – 256-bit symmetric key, brute forced with 2128

complexity.

▪ This speed-up is optimal.

▪ Pre-shared keys are easy to steal, especially when shared amongst lots of 
parties.

▪ But simply augments the ordinary handshake, not replaces it.

▪ By the time adversary can decrypt past traffic, hopefully all those PSKs 
have been forgotten by various hard drives anyway.



Hybrid PQ Resistance

▪ Alternatively, do a post-quantum key exchange, through, the tunnel.

▪ PQ primitives not directly built-in because they are slow and new and 
likely to change.

▪ PSK design allows us to easily swap them in and out for experiments as 
we learn more.



Security Design Principle 7: Abuse Resistance

▪ Hashing and symmetric crypto is fast, but pubkey crypto is slow.

▪ We use Curve25519 for elliptic curve Diffie-Hellman (ECDH), which is one 
of the fastest curves, but still is slower than the network.

▪ Overwhelm a machine asking it to compute ECDH().

▪ Vulnerability in OpenVPN!

▪ UDP makes this difficult.

▪ WireGuard uses “cookies” to solve this.



Cookies: TCP-like

▪ Dialog:

▪ Initiator: Compute this ECDH().

▪ Responder: Your magic word is “area51”. Ask me 
again with the magic word.

▪ Initiator: My magic word is “area51”. Compute 
this ECDH().

▪ Proves IP ownership, but cannot rate limit IP 
address without storing state.

▪ Violates security design principle, no dynamic 
allocations!

▪ Always responds to message.

▪ Violates security design principle, stealth!

▪ Magic word can be intercepted.



Cookies: DTLS-like and IKEv2-like

▪ Dialog:

▪ Initiator: Compute this ECDH().

▪ Responder: Your magic word is “cbdd7c…bb71d9c0”. Ask me again with the magic word.

▪ Initiator: My magic word is “cbdd7c…bb71d9c0”. Compute this ECDH().

▪ “cbdd7c…bb71d9c0” == MAC(responder_secret, initator_ip_address)

Where responder_secret changes every few minutes.

▪ Proves IP ownership without storing state.

▪ Always responds to message.

▪ Violates security design principle, stealth!

▪ Magic word can be intercepted.

▪ Initiator can be DoS’d by flooding it with fake magic words.



Cookies: HIPv2-like and Bitcoin-like

▪ Dialog:

▪ Initiator: Compute this ECDH().

▪ Responder: Mine a Bitcoin first, then ask me!

▪ Initiator: I toiled away and found a Bitcoin. Compute this ECDH().

▪ Proof of work.

▪ Robust for combating DoS if the puzzle is harder than ECDH().

▪ However, it means that a responder can DoS an initiator, and that initiator and 
responder cannot symmetrically change roles without incurring CPU overhead.

▪ Imagine a server having to do proofs of work for each of its clients.



Cookies: The WireGuard Variant

▪ Each handshake message (initiation and response) has two macs: mac1 and mac2.

▪ mac1 is calculated as:
HASH(responder_public_key || handshake_message)

▪ If this mac is invalid or missing, the message will be ignored.

▪ Ensures that initiator must know the identity key of the responder in order to elicit a response.

▪ Ensures stealthiness – security design principle.

▪ If the responder is not under load (not under DoS attack), it proceeds normally.

▪ If the responder is under load (experiencing a DoS attack), …



Cookies: The WireGuard Variant

▪ If the responder is under load (experiencing a DoS attack), it replies with a 
cookie computed as:
XAEAD(
key=HASH(responder_public_key),
additional_data=handshake_message,
MAC(key: responder_secret, initiator_ip_address)

)

▪ mac2 is then calculated as:
MAC(key: cookie, handshake_message)

▪ If it’s valid, the message is processed even under load.



Cookies: The WireGuard Variant

▪ Once IP address is attributed, ordinary token bucket rate limiting can be 
applied.

▪ Maintains stealthiness.

▪ Cookies cannot be intercepted by somebody who couldn’t already initiate 
the same exchange.

▪ Initiator cannot be DoS’d, since the encrypted cookie uses the original 
handshake message as the “additional data” parameter.

▪ An attacker would have to already have a MITM position, which would make DoS
achievable by other means, anyway.



Performance

▪ Being in kernel space means that it is fast and low latency.

▪ No need to copy packets twice between user space and kernel space.

▪ ChaCha20Poly1305 is extremely fast on nearly all hardware, and safe.

▪ AES-NI is fast too, obviously, but as Intel and ARM vector instructions become wider 
and wider, ChaCha is handedly able to compete with AES-NI, and even perform better 
in some cases.

▪ AES is exceedingly difficult to implement performantly and safely (no cache-timing 
attacks) without specialized hardware.

▪ ChaCha20 can be implemented efficiently on nearly all general purpose processors.

▪ Simple design of WireGuard means less overhead, and thus better 
performance.

▪ Less code → Faster program? Not always, but in this case, certainly.



Performance: Measurements
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Fast, Modern, Secure

▪ Less than 4,000 lines of code.

▪ Easily implemented with basic 
data structures.

▪ Design of WireGuard lends itself 
to coding patterns that are 
secure in practice.

▪ Minimal state kept, no dynamic 
allocations.

▪ Stealthy and minimal attack 
surface.

▪ Handshake based on NoiseIK

▪ Fundamental property of a 
secure tunnel: association 
between a peer and a peer’s IPs.

▪ Extremely performant – best in 
class.

▪ Simple standard interface via an 
ordinary network device.

▪ Opinionated.



▪ Available now for all major Linux distros, FreeBSD, 
OpenBSD, macOS, and Android:
wireguard.com/install

▪ Paper published in NDSS 2017, available at: 
wireguard.com/papers/wireguard.pdf

▪ $ git clone https://git.zx2c4.com/WireGuard

▪ wireguard@lists.zx2c4.com
lists.zx2c4.com/mailman/listinfo/wireguard

▪ #wireguard on Freenode

▪ STICKERS FOR EVERYBODY

▪ Plenty of work to be done: looking for interested devs.

Jason Donenfeld

▪ Personal website:
www.zx2c4.com

▪ Company website:
www.edgesecurity.com

▪ Email:
Jason@zx2c4.com

Fast, Modern, Secure
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