
KeenLab iOS Jailbreak Internals:

Liang Chen (@chenliang0817)

Userland Read-Only Memory can be Dangerous

About me

• Security researcher & team leader at Tencent Keen Security Lab

• Browser vulnerability research (Safari, Chrome, IE etc.)

• Apple vulnerability research (Sandbox, Kernel, etc.)

Agenda
• Operating system memory protection overview

• iOS DMA features

• Implementation of iOS IOMMU protection

• iOS GPU notification mechanism

• The vulnerabilities

• Exploitation & Demo

• Conclusion

PART I: Operating system memory protection overview

Memory protection

• Modern OS implements memory protection at hardware
level
• Mitigate known attacks, makes exploitation harder

• Different levels
• Translation Block Entry properties at MMU (Memory Management

Unit) level
• NX, PXN, AP, etc.

• KPP, AMCC, etc.

Userland read-only memory mappings

• Old-school approach to protect userland memory
• Easy but effective

• Scenarios on iOS
• Executable memory is read-only, preventing from overwriting the code at early

stage of exploitation

• Sharing memory between processes

• Sharing memory between kernel and process

Userland memory sharing in iOS
• Make inter-process or user-to-kernel

communication more efficient

• Low privileged process only needs a
read-only mapping of the same physical
memory
• So that server process/kernel can make

sure the content of the memory is trustable
• Eliminating specific security consideration

(e.g boundary check, TOCTTOU issues, etc)

• Implementation
• Access protection bits at Translation Block

Entry
• System MMU can identify those bits

Breaking the trust boundary

• By remapping read-only memory as writable
• But without marking them COW(copy-on-write)

• Can lead to privilege escalation
• Sandbox bypass in process-to-process memory sharing scenario
• Or even kernel code execution in process-to-kernel memory sharing

scenario

Breaking the trust boundary

• How iOS prevent writable
remapping on read-only memory?
• By preventing users from setting

new_prot higher than max_prot in
vm_map_protect

• The only exception is to mark the
remapping as COW

Breaking the trust boundary

• Historical issues
• Read-only SharedMemory descriptors on Android are writable:

https://bugs.chromium.org/p/project-zero/issues/detail?id=1449
• Did the Man With No Name Feel Insecure?:

https://googleprojectzero.blogspot.com/2014/10/did-man-with-no-
name-feel-insecure.html

• On iOS, there is no such known issues
• Seems everything is fine up till now

PART II: iOS DMA features

DMA overview

• DMA(direct-memory-access) technology enables the ability
for fast data transfer between the host and peripheral
devices
• With stronger and more abundant features provided by modern

peripheral devices attached to the mobile devices

• DMA transfer does NOT involve CPU
• So access protection bits on Translation Block Entry is ignored

DMA overview

• DMA transfer use physical address, and no memory
protection any more?
• Not the case, why?

• Modern phones are 64-bit, while many of their peripheral
devices remain 32-bit
• Address translation is needed

• And, we need memory protection for DMA transfer also

IOMMU(input/output memory management unit) and DART

• IOMMU is introduced to connect a direct-memory-access capable
I/O bus to the main memory

• There is need to map 64bit physical addresses into 32bit device
addresses

• For 64bit iOS devices, DART(Device Address Resolution Table) is
responsible to perform the address translation

Host-to-device DMA and device-to-host DMA

• For 64bit iOS devices, peripheral devices such as Broadcom WIFI module,
implement DMA transfers

• Gal Beniamini of Google Project Zero team leverages DMA features on iOS to
achieve firmware to host attack in middle 2017
• Compromised WIFI firmware is able to mutate writable DMA mapping
• Kernel trust that DMA mapping , lack of boundary check, leading to code execution

• Limitation of device-to-host attack
• Short distance

• Have to compromise WIFI stack first (Attacker and victim in same WIFI environment)

Long distance remote attack?

• Browser exploit + kernel privilege escalation
• By using DMA related vulnerabilities? What?

• Looks like a crazy idea
• DMA features are kind of low level implementation which is mostly

performed at kernel level.

• Such feature is never exposed directly to the userland.
• Is there any DMA attack surface in userland?

Indirect userland DMA

• There might be indirect DMA interface at userland

• Hardware JPEG engine to accelerate the encoding and
decoding process

• IOSurface transform is done by hardware device

• Etc.

IOSurface and IOSurfaceAccelerator

• IOSurface object represents a
userland buffer which is shared with
the kernel.

• Users can create IOSurface by
providing existing userland memory
address and its length

• Kernel creates IOMemoryDescriptor
and map userland memory to kernel

• Option kIODirectionOut is set for read-only
userland mappings

• Option kIODirectionOut and kIODirectionIn
are both set for read-write userland
mappings

IOSurface and IOSurfaceAccelerator

• IOSurfaceAccelerator is a userland framework on iOS platform only

• Two most important interfaces: IOSurfaceAcceleratorCreate and
IOSurfaceAcceleratorTransferSurface
• IOSurfaceAcceleratorCreate is responsible for creating a IOKit userclient connection representing an

IOSurfaceAcceleratorClient kernel object

• IOSurfaceAcceleratorTransferSurface takes two IOSurface handles, one for source and another for
destination, along with a dictionary supplying the transferring parameters

• Transfer the surface from src to dst, with color filtering, border filling etc, processed directly by the kernel

• Typical scenario of using IOSurfaceAccelerator: Screen Snapshot

Low level implementation of IOSurfaceAccelerator

• AppleM2ScalerCSC driver architecture
• IOSurfaceAcceleratorClient talks to

AppleM2ScalerCSC which is the core driver

• Low level driver object AppleM2ScalerCSCHal is for
handling device dependent stuff and provide device
independent interface to AppleM2ScalerCSCDriver

• AppleM2ScalerCSCHal creates
ColorConversionControl, SrcDestCfgControl,
ScalingControl, DitherControl, ColorManager,etc.

• AppleM2ScalerCSCHal maps a device memory into
kernel virtual space, representing the device’s key
registers.

IOSurfaceAcceleratorTransferSurface Internals

• IOSurfaceAcceleratorTransferSurface
will reach kernel function
IOSurfaceAcceleratorClient::user_transf
orm_surface

• Overall procedure of
user_transform_surface
• We are interested in the DMA mapping part

Parameter
validation

Obtain Src/Dst
IOSurface Address

Map IOSurface
buffer via DMA

Obtain mapped
address of Src/Dst

buffer

Set device
registers

Start the Scaler

Wait for interrupt
from the device

Finish

Map IOSurface buffer via DMA

• An IODMACommand object is
created with a special IOMapper
• m_IOMapper is an instance of

IODARTMapper which is independent
between devices

• Then the IOSurface memory
descriptor is bond to the
IODMACommand

Obtain the IOSurface address in IOSpace

• After the mapping, the next step
is to obtain the device memory
visible to IOMMU
• v33 here represents the 32bit address

in IOSpace

SrcDestCfgControl object

• SrcDestCfgControl object is used to specify
the address of src and dst address of
IOSurface in IOSpace

• After IOSurface’s IOSpace address is decided,
SrcDestCfgControl object is set
• v4 represents the kernel virtual mapping of

Scaler’s device memory

• Other registers relating to transform
parameters are handling in a similar manner

Start the scaler

• After all registers are set, the scaler is
started by setting the control register
• (deviceAddrVirtual + 128) is the “powerOn”

register of the scaler

• The scaler device starts its work
immediately

• When scaler finished the processing, an
interrupt will be issued and the event will
be signaled.
• That indicates the source IOSurface has been

transferred to the destination IOSurface.
• In the case we don’t specify any transform

options in the parameter, scaler simply per-
formed a memory copy via DMA transfer.

PART III: The implementation of IOMMU memory protection

Page table specification of IOMMU
• Unlike CPU MMU, page table specification

of IOMMU is not well standardized

• On iOS DART is responsible for IOMMU
page table management
• So by reversing iOS DART code, we can

understand the page table better

• Gal Beniamini has reversed the logic in
DART module and explained the page
table specification on 64bit iOS devices.
• Similar as CPU MMU page table

Referenced from:
https://googleprojectzero.blogspot.com/2017/10/ov
er-air-vol-2-pt-3-exploiting-wi-fi.html

IOMMU memory protection

• In Gal’s blog he didn’t mention whether the IOMMU supports
memory protection or not.
• It remains unclear if IOMMU memory protection exists or not

• However we can get the answer by reversing DART implementation in iOS 11

IOMMU memory protection

• The entry point for mapping memory
in IOSpace:
IODARTMapper::iovmMapMemory
• mapOptions parameter has included the

memory’s protection bits in virtual space

• The last 3 bits in mapOptions is translated
to direction value

• Read-only mapping has direction value
2

• Write-only mapping has value 1
• Read/write mapping has the value 3.

IOMMU memory protection

• The direction variable flows and
finally reached the function in
AppleS5L8960XDART, the low level
implementation of DART
• On a device later than iPhone 5s, the

apSupport mask is always 0x180

• Indicating the 8th and 9th bit in the TTE
are AP related bits

IOMMU memory protection

• Finally we got the access protection specification in TTE
• IOMMU supports memory protection

UNK BlockAddr valid

64 36 12 2

AP

89

AP meaning

00 Read-write

01 Read-only

10 Write-only

PART IV: GPU notification mechanism

Apple Graphics workflow

• On iPhone7 device, Apple Graphics provides with 128 channels for
concurrent processing.

• Three channel categories: CL channel, GL channel and TA channel
• Kernel wraps drawing instructions from userland and put them

into those channels
• Kernel then waits for the GPU to finish processing
• A well-designed notification mechanism is necessary for GPU to

synchronize the status of instruction processing
• Considering the concurrency of GPU handling

GPU notification architecture

• GPU task owns a stampArray representing
the stamp status of each channel
• The memory is a representation of uint32

array of 128 elements, each showing the
last complete instruction’s stamp of that
channel

• stampArray memory is mapped to kernel
and userland also (userland mapping is
read-only)

Stamp address array

• Kernel also maintains a stamp
address array of 128 elements
• Each element represents the virtual

address of that mapped stamp status
kernel address

IOAccelEvent object

• The stamp value of each channel is
incremental upon each of the instruction
processing completeness.

• IOAccelEvent represents the expected
stamp value in specific channel of one
or one group of drawing instructions
• One IOAccelEvent contains 8 sub events
• One sub event is 8 bytes in size

• Lower 4 bytes represents the channel index
• Higher 4 bytes represents the expected

stamp value of that drawing instruction

IOAccelEvent object

• By comparing the expectStamp value
with the value in the stamp array,
kernel can decide whether an
IOAccelEvent has been finished or not

IOAccelEvent object

• To improve performance, some
IOAccelEvent objects are mapped
into userland as read-only
• Make userland apps understand the

status of an event without asking the
kernel

PART V: The vulnerabilities

1. The DMA mapping vulnerability

• On iOS 10 and early beta of iOS 11, the mapOptions of
the virtual memory is simply ignored by the DART mapper

mapOptions is not used in
iovmAlloc

1. The DMA mapping vulnerability

• Later on, AppleS5L8960XDART::setL3TTE is reached, which 8th and 9th

bit of the TTE set to 0
• Indicating read-write mapping

UNK BlockAddr valid

64 36 12 2

AP

89

AP meaning

00 Read-write

01 Read-only

10 Write-only

8th and 9th bit set to 0

2. The out-of-bound write vulnerability

• IOAccelResource is similar in functionality as
IOSurface object, except that
IOAccelResource represents a shared
userland buffer which would be mapped into
GPU task.

• Like IOSurface, we can create
IOAccelResource by specifying an existing
userland buffer, by specifying the size, or
even by providing an existing IOSurface
handle.

• As part of IOAccelResource initialization
process, a shared mapping will be created

2. The out-of-bound write vulnerability

• What is IOAccelClientSharedRO?
• Contains IOAccelEvent array with 4 elements
• With resource id and type information

• m_IOAccelClientSharedRO is mapped to
both userland and the kernel
• userland mapping is read-only

• The userland mapped address is
returned to user

Read-only mapping

2. The out-of-bound write vulnerability

• Userland application can delete the
IOAccelResource by calling method
1 of IOAccelSharedUserClient

• IOAccelEventMachineFast2::testEve
nt will be called if the
IOAccelResource is created with
specific option

2. The out-of-bound write vulnerability

• In IOAccelEventMachineFast2::testEvent,
it checks whether the IOAccelEvent in
IOAccelClientSharedRO has been
completed

• No boundary check is performed at
channel index
• Since the IOAccelEvent is created and managed

only by the kernel while the userland mapping is
read-only

• Kernel trust the index value

2. The out-of-bound write vulnerability

• However with the DMA mapping bug, the trust boundary is broken

• Channel index and expected stamp value can be mutated by the userland app

• Both m_inlineArrayA0x18Struct and m_stampAddressArray are arrays of 128
elements.

• With m_channelIndex changed to arbitrary value, we caused out-of-boundary read
on m_stampAddressArray, and out-of-boundary write on m_inlineArrayA0x18Struct

PART VI: Exploitation & Demo

Exploitability

• Exploitability of those two bugs depend on whether we can control
the content for for both m_inlineArrayA0x18Struct and
m_stampAddressArray with the same out-of-bound index
• Then we can perform arbitrary memory read and write

• Looks like a hard task, because
• Both arrays are created in very early stage of iOS boot process, impossible to

put controlled contents right after them
• Size of element of each array is different. The larger index we specify, the

longer span in address of the referenced array element.

Craft memory layout

• Some facts:
• Kernel heap memory starts at a relatively low address
• Heap grows linearly with more and more memory allocated
• The start address of heap differs within tens of megabytes upon each boot
• Addresses of m_inlineArrayA0x18Struct and m_stampAddressArray are closed with each

other

• It means
• We can use a relative large channel index
• Along with kernel spray techniques, we might be able to ensure content of the OOB value

of m_inlineArrayA0x18Struct[channelIndex] and m_stampAddressArray[channelIndex]
are both under our control

Feasibility of memory layouting

• Kernel heap spray
• Quite some known techniques: e.g. sending large OOL message

• On iPhone 7, we can spray around 350MB kernel memory within
container sandbox app

• After m_inlineArrayA0x18Struct and m_stampAddressArray are
created, around 50MB extra kernel memory is allocated (As a part of
boot process)

Feasibility of memory layouting

• m_inlineArrayA0x18Struct element size is 24 bytes

• m_stampAddressArray element size is 8 bytes

• So if:
• index ∗ 24 < 350MB + 50MB , and
• index ∗ 8 > 50MB

• With index value in range of [0x640000, 0x10AAAAA], the out-of-bound elements
of both m_inlineArrayA0x18Struct and
m_stampAddressArray arrays can be fallen into our sprayed data

Arbitrary read and write?

• Arbitrary memory read is not a problem
• Because m_stampAddressArray element size is 8 bytes
• You can reach every dword within each page (higher 4 bytes of a QWORD cannot

be read though, but usually not necessary)

• Arbitrary memory write is more tricky
• Because m_inlineArrayA0x18Struct element size is 24 bytes, only one of its

DWORD can be written

Write at specific offset within a page

• Thanks to mechanism of XNU zone allocator
• the base address of m_inlineArrayA0x18Struct array is always at offset 0xF0 or 0x20F0

of a 0x4000 page
• Similarly, m_stampAddressArray is allocated with 0x200, falling in kalloc.512 zone. The

address offset within a 0x4000 page can be all values dividable by 0x200.

• So how to write arbitrary page offset by OOB write on m_inlineArrayA0x18Struct
array
• For example, a vtable is usually at offset 0 of the page if the object size is large enough

• The problem can be solved by congruence theory in mathematics

Read at arbitrary offset within a page

• Because:
• 0xc000 ≡ 0(mod0x4000)

• So with arbitrary integer n:
• n ∗ 0x800 ∗ 24 ≡ 0(mod0x4000)

• With 0x4000 / 24 * 0xF0 / 16 = 0x27f6, we can get:
• 0xF0 + 0x27f6 ∗ 24 + n ∗ 0x800 ∗ 24 ≡ 0(mod0x4000)

• With arbitrary integer n, we can out-of-bound write to the first
8 bytes in a sprayed page given:
• index = 0x27f6 + n ∗ 0x800

• To reach arbitrary offset within page, with m be the offset of
the page, we just ensure index is:
• index = 0x27f6 + 0x2ab ∗ m/8 + n ∗ 0x800

Choose the best channelIndex value

• With index = 0x27f6 + 0x2ab ∗ m/8 + n ∗ 0x800 , plus the range of
[0x640000, 0x10AAAAA]

• We choose the value of 0x9e6185 (can be other values as well)
• This value can reach offset 0x568 of a 0x4000 page by writing

m_inlineArrayA0x18Struct out-of-bound
• And reach offset 0x28/0x228/0x448, etc… of a 0x4000 page by reading

m_stampAddressArray out-of-bound

First attempt to exploit

• Spray around 350MB OOL messages of
size 0x2000

• Make sure
• Offset 0x28, 0x228,0x428,0x628… of each

page is filled with a guessed value(GA), in
real case we use 0xffffffe00a5d4030

• Each QWORD in page offset 0x30 is filled
with a value to read(VR)

• Each QWORD in page offset 0x568(AW field)
is filled with a specific value(make sure VR is
different with this value)

KASLR bypass

• By first attempt of the exploit, we
then receive the OOL message to
see which message’s AW field has
been changed

• We can then obtain the
information of:
• Which OOL message is allocated at

slot C
• Which OOL message is in GA

address(slot B)

KASLR bypass

• Fill slot B with AGXGLContext
object(also in kalloc.8192)

• Change GA value to
0xffffffe00a5d4000(original GA-0x30,
base address of slot B, vtable of
AGXGLContext object)

• Exploit the OOB bug again

• And we get the lower 4 bytes of
AGXGLContext vtable by receiving OOL
message in slot C

Code execution

• To get code execution, we need to free the
slot C, and fill in an object where its 0x568
offset represents important object

• The offset 0x568 in AGXGLContext is set to
AGXAccelerator object

• Calling AGXGLContext method 0 can reach
the function IOAccelGLContext2::
context_finish

• With its 0x568 field modified to arbitrary
value , we get PC control

Overall exploit workflow

Create IOAccelResource

Obtain IOAccelEvent read-
only buffer

Trigger bug 1, modify
m_channelIndex to

0x9e6185

Prepare initial memory
layout, trigger bug 2, obtain
index of slot B and C

Prepare memory layout for KASLR
bypass, trigger bug 2, obtain vptr of

AGXGLContext

Prepare memory layout for code
execution, trigger bug 2, overwrite
AGXAccelerator pointer in

AGXGLContext

Prepare ROP, call method 0 of
AGXGLContext, obtain tfp0, post
exploitation to jailbreak

Finish

Post exploitation

• By running a piece of ROP gadget, we obtain task_for_pid 0

• Still far away from the jailbreak
• Break AMFI
• Rootfs remount
• KPP/AMCC bypass
• Etc.

• Most of those have public write-ups

• Not a scope of the talk

Demo

Conclusion

• With the first release of iOS 11, Apple fixed the DMA mapping bug
• By adding implementation of read-only mapping at its DART code

• The other OOB write bug, remains unfixed

• A good example of how security can be broken by bad implementation with good
hardware design
• We make possible a complex exploit chain to achieve jailbreak within userland applications

• Should kernel trust the userland read-only mappings?

• Last but not the least, userland read-only memory can be dangerous

Thanks & Questions

