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Preventive and reactive security measures can only partially mitigate the damage caused by modern
ransomware attacks. The remarkable amount of illicit profit and the cybercriminals’ increasing interest in
ransomware schemes demonstrate that current defense solutions are failing, and a large number of users
are actually paying the ransoms. In fact, pure-detection approaches (e.g., based on analysis sandboxes or
pipelines) are not sufficient, because, when luck allows a sample to be isolated and analyzed, it is already too
late for several users! Moreover, modern ransomware implements several techniques to prevent detection by
common AV. Similarly, for performance reasons, backups leave a small-but-important window of recent files
unprotected.

We believe that a forward-looking solution is to equip modern operating systems with generic, practical
self-healing capabilities against this serious threat.

We present ShieldFS, a drop-in driver that makes the Windows native filesystem immune to ransomware
attacks, even when detection fails ShieldFS dynamically toggles a protection layer that acts as a copy-on-
write mechanism whenever its detection component reveals suspicious activity. For this, ShieldFS monitors
the filesystem’s internals to update a set of adaptive models that profile the system activity over time. This
detection is based on a study of the filesystem activity of over 2,245 applications, and takes into account the
entropy of write operations, frequency of read, write, and folder-listing operations, fraction of files renamed,
and the file-type usage statistics. Additionally, ShieldFS monitors the memory pages of each “potentially
malicious” process, searching for traces of the typical block cipher key schedules.

We show how ShieldFS can shadow the write operations. Whenever one or more processes violate
our detection component, their operations are deemed malicious and the side effects on the filesystem are
transparently rolled back.

We demonstrate how effective ShieldFS is against samples from state of the art ransomware families,
showing that it is able to detect the malicious activity at runtime and transparently recover all the original
files.

1 INTRODUCTION
Ransomware [20] is a class of malware that encrypts valuable files found on the victim’s machine
and asks for a ransom to release the decryption key(s) needed to recover the plaintext files. The
requested ransom payment is typically in the order of a few hundreds US dollars [15] (or equivalent
in crypto or otherwise untraceable currency [17]). Clearly, the success of these attacks depends on
whether most of the victims agree to pay (e.g., because of the fear of losing their data). Unfortunately,
according to a thorough survey dated November 2015 [4], about 50 percent of ransomware victims
had surrendered to the extortion scheme, resulting in million of dollars of illicit revenue. In March
2014, Symantec estimated that the Cryptowall gang has earned more than $34,000 in its first month
of activity. In June 2015, the FBI’s Internet Crime Complaint Center [5] reportedly received 992
Cryptowall-related complaints between April 2014 and June 2015, totaling $18M worth of losses.



In the first three months of 2016, according to a recent analysis [13], more than $209 million in
ransomware payments were made in the US alone. From a technical viewpoint, ransomware families
are now quite advanced. While first-generation ransomware were cryptographically weak, the
recent families encrypt each file with a unique symmetric key protected by public-key cryptography.
Consequently, the chances of a successfully recovery (without paying the ransom) have drastically
decreased [1, 10].

Problem Statement and Vision. Kharraz et al. [9] were the first to analyze a large corpus of ran-
somware samples. The authors suggest that the filesystem is a strategic point for monitoring the
typical ransomware activity. In this paper, we set the next research objective: Creating a forward-
looking filesystem that transparently prevents the effects of ransomware attacks on the data. We
make a step toward such vision by proposing, implementing and evaluating an approach that
combines automatic detection and transparent file-recovery capabilities at the filesystem level, all
combined in a ready-to-use Windows driver.

Preliminary Feasibility Assessment. Our first goal is to understand how ransomware compares to
benign software from the filesystem’s viewpoint. We start by analyzing in-depth how benign
software typically interacts with the filesystem on real-world computers. We use the I/O request
packets (IRPs) as the focal point of our analysis, as IRPs are the basic data units originating from
high-level operations (e.g., read file, open file). In practice, we performed the first large-scale data
collection of IRPs from real-world, ransomware-free machines, to profile the low-level filesystem
activity in normal conditions. To this end, we developed IRPLogger, a data-collection agent that we
installed on 11 machines used by volunteers for their typical day-to-day tasks (i.e., personal, office,
and development). We anonymized and collected about a month worth of data, gathering more than
1.7 billion IRPs generated by 2,245 distinct applications (we will made this data available to other
researchers). Using this collected data as a reference, we populated a set of analysis machines with
files and directory trees such that they resemble the typical filesystem organization and content
observed in the 11 real-world machines. This step is essential to create a realistic environment such
that to trigger the ransomware attacks. We then used IRPLogger to monitor the filesystem on such
machines infected by state of the art ransomware samples.

Proposed Approach. Our preliminary assessment guided us to design a detection system based on
the combined analysis of entropy of write operations, frequency of read, write, and folder-listing
operations, dispersion of per-file writes, fraction of files renamed, and the file-type usage statistics.
Our approach is to automatically create detection models that distinguish ransomware from benign
processes at runtime ShieldFS adapts these models to the filesystem usage habits observed on the
protected system. Additionally, ShieldFS looks for indicators of the use of cryptographic primitives.
In particular, ShieldFS scans the memory of any process considered as “potentially malicious,”
searching for traces of the typical block cipher key schedules.

A distinctive aspect of ShieldFS is how it copes with code injection, a common technique used by
modern ransomware (as well as other malware). With code injection, a perfectly legitimate process
suddenly executes malicious code. Our detection mechanism takes into account both the long-
and the short-term history of each process, and of the entire system. Indeed, we are agnostic with
respect to how the infection has bootstrapped (e.g., malicious executable, remote code execution)
and on the availability of the executable. Rather, we focus on the runtime effects on the target
system. In fact, as observed in [19], the activity of modern malware can span across multiple process
and OS facilities, and, more importantly, an isolated sample to analyze is a luxury in early stage of
spreading campaigns. Therefore, detection systems should not assume that a binary executable is
available.
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Fig. 1. On the right ShieldFS shadowing a file offended by ransomware malicious write (MW), in
comparison to standard filesystems (on the left).

We apply our detection approach in a real-time, self-healing virtual filesystem that shadows the
write operations. Thus, if a file is surreptitiously altered by one or more malicious processes, the
filesystem presents the original, mirrored copy to the user space applications. This shadowing mech-
anism is dynamically activated and deactivated depending on the outcome of the aforementioned
detection logic. Figure 1 depicts the logical activity of ShieldFS in comparison with a traditional
filesystem.
Experimental Results Summary.We evaluated ShieldFS on 688 samples from 11 distinct families,
showing that it can successfully protect user data from real-world attacks performed by recent,
state-of-the-art malware families. The system exhibited remarkable accuracy and generalization
capabilities even when evaluated via cross-validation on the large dataset that we collected from
the 11 real-world machines. Also, we installed ShieldFS on the personal machines in use by 3
volunteers, on which it correctly identified ransomware processes, and successfully reverted their
effects. The performance impact of our prototype implementation is such that ShieldFS is applicable
in real-world settings.
Summary of Original Contributions.

• We performed the first, large-scale data collection of I/O request packets generated by benign
applications in real-world conditions. Our dataset contains about 1.7 billion IRPs produced
by 2,245 different applications.
• We propose a ransomware-detection approach that enables a modern operating system to
recognizing the typical signs of ransomware behaviors.
• We propose an approach that makes a modern filesystem resilient to malicious encryption,
by dynamically reverting the effects of ransomware attacks.
• We implemented these approaches as a drop-in, Windows kernel module that we showed
capable of successfully protecting from current ransomware attacks.

2 LOW-LEVEL I/O DATA COLLECTION
To understand how ransomware typically interact with the filesystem in comparison to benign
applications, the main challenge is to be able to observe them in their usual working conditions
(e.g., on a victim’s machine). Since there is no such recent data for this purpose, we collected it from
real, operational desktop computers for several weeks. First, this provided us with a real-world
reference “picture” of how files and folders are organized in a typical computer, which is useful to
reproduce an environment that triggers the ransomware activity. Secondly, this approach provided
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Table 1. Statistics of the collected low-level I/O data from 11 real-world machines.

User Win. Usage Data #IRPs #Procs Apps Period Data Rate
ver. [GB] Mln. Mln. [hrs] [MB/min]

1 10 dev 3.4 230.8 16.60 317 34 7.85
2 8.1 home 2.4 132.1 9.67 132 87 2.04
3 10 office 0.9 54.2 5.56 225 17 0.83
4 7 home 4.7 279.9 18.70 255 122 5.18
5 7 home 2.2 138.1 5.04 141 47 4.10
6 10 dev 1.8 100.4 10.30 225 35 2.42
7 8.1 dev 0.8 49.0 3.28 166 8 5.62
8 8.1 home 0.8 43.9 6.33 148 32 2.16
9 8.1 home 7.7 501.8 24.20 314 215 3.21
10 7 home 0.9 57.6 2.63 151 18 4.60
11 7 office 2.6 175.2 4.69 171 28 8.51

Total 28.2 1,763.0 107.00 2245 643 -

us with a large dataset of filesystem access patterns originating from benign applications while
exercised by real-user interactions. This is essential to verify whether ransomware and benign
applications interact with the filesystem in a significantly different way that could be leveraged for
detection.

To carry out our analysis, we developed IRPLogger, a low-level I/O filesystem sniffer, which we
installed on real-world machines in use by 11 volunteers. We can categorize the participants as
“home,” “developer,” or “office” users. As summarized in Table 1, we collected 28.2 GB of compressed
and anonymized data, corresponding to 1,763 million IRPs.

2.1 Filesystem Sniffer Details
At the first boot, IRPLogger traverses the directory tree of each mounted drive to collect metadata
including total number of files, number of files per extension, and directory depth. The core of
IRPLogger is a minifilter driver [7] that intercepts the I/O requests generated for each filesystem
primitive invoked by userland code (e.g., CreateFile, WriteFile, ReadFile). IRPLogger enriches
the raw IRPs with data including timestamp, writes entropy, and PID. An example log entry (before
anonymization) is as follows:
<time, program name, PID, IRP op, entropy,file info>
When run on the participants’ machines, IRPLogger minimizes and hashes any privacy-sensitive
data such as the file names and paths. We keep the extension of the accessed files in clear, as this
detail is needed for computing per-type file statistics and features. Before collection, the logs are
split into sessions and compressed for space efficiency.

Table 2. Statistics of the collected low-level I/O data from 383 ransomware samples.

Ransomware Family No. Samples Data #IRPs
Millions

CryptoWall 157 (41.0%) 8.0 286.7
Crowti 125 (32.6%) 5.7 173.1
CryptoDefense 77 (20.1%) 4.5 171.6
Critroni 14 (3.7%) 0.6 3.0
TeslaCrypt 10 (2.6%) 0.9 29.2

Total 383 19.7 663.6
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2.2 Ransomware Activity Data Collection
We leveraged IRPLogger also to collect ransomware activity data. During December 2015 we used
the VirusTotal Intelligence API to obtain the most recent Windows executables consistently labeled
with the main ransomware families (i.e., CryptoWall, TeslaCrypt, Critroni, CryptoDefense, Crowti).
We manually ran each sample to ensure that it was fully and properly working (e.g., some samples
did not receive instructions and public encryption keys from the attacker’s control servers), so
obtaining the 383 active ransomware samples summarized in Table 2.
Then, we prepared a set of virtual machines on which we activated IRPLogger running on top

of Windows 7 (64-bit). We installed common utilities such as Adobe Reader, Microsoft Office,
alternative Web browsers, and media players. To create a legitimate-looking system, we included
typical user data such as saved credentials, browser history, and realistic decoy files (e.g., images,
documents), such that to trigger the samples.We used real files—collected by randomly crawlingweb
search-engines results—reflecting file-type and directory tree distribution of the aforementioned 11
clean machines. At runtime, our analysis environment emulates basic user activity (e.g., moving the
mouse, launching applications). Following the best practices for malware experiments suggested
by [14], (1) we let the malware executables run for 90 minutes, (2) we allowed the samples to
communicate with their control servers, and (3) denied any potentially harmful traffic (e.g., spam)
during the experiments. For the sake of scientific repeatability, we are open to provide access to (or
the implementation details of) our analysis environment. After each execution, we saved the IRP
logs and rolled back each virtual machine to a clean snapshot.

2.3 Filesystem Activity Comparison
The remarkable differences in the features distribution shown in Table 3 confirms ransomware and
benign applications are different filesystem-wise, and motivates us to exploit these results to create
a full-fledged remediation system.
We focus our analysis on user data, that is, the main target of ransomware attacks. Contrarily,

benign programs, especially system processes (e.g., services, updates manager), access large portions
of files in dedicated folders, or in the system folders. For this reason, we separate the IRP logs of
user folders from the IRPs of system folders. In practice, we compute the features listed in Table 3
twice: first on IRP logs of user paths only (e.g., excluding WINDOWS or Program Files), and then
on all paths.

3 APPROACH ANDMETHODOLOGY
For clarity, we logically divide our approach into two parts: ransomware activity detection and
file recovery. Our file-recovery approach is inspired by copy-on-write filesystems and consists
in automatically shadowing a file whenever the original one is modified, as depicted in Figure 1.
Benign modifications are then asynchronously cleared for space efficiency, and the net effect is
that the user never sees the effects of a malicious file encryption.
We consider all files as “decoys,” that is, we assume that the malware will reveal its behavior

because, indeed, it cannot avoid to access the files that it must encrypts to fulfill its goal. The features
defined in Table 3 summarize the I/O-level activity recorded on these decoys into quantitative
indicators of compromise. Thus, the detection and file-recovery parts of our approach are tightly
coupled, in the sense that we rely on such decoys to both (1) collect data for detection, and (2)
manage the shadowing of the original files.
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Table 3. We use these features for both our preliminary assessment (Section 2) and as the build-
ing block of the ShieldFS detector (Sections 3 4). ShieldFS computes each feature multiple times
while monitoring each process, on various portions of filesystem activity, as explained in details
in Section 3.1. We normalize the feature values according to statistics of the file system (e.g., total
number of files, total number of folders). This normalization is useful to adapt ShieldFS to dif-
ferent scenarios and usage habits. The rightmost column shows a comparison of benign ( ) vs.
ransomware ( ) programs by means of the empirical cumulative distribution, calculated on the
datasets summarized in Table 1 and 2, respectively. We notice that ransomware activity is signif-
icantly different than that of benign programs according to our features, suggesting that there is
sufficient statistical power to tell the two types of programs apart.

Feature Description Rationale Comparison

#Folder-
listing

Number of folder-listing oper-
ations normalized by the total
number of folders in the system.

Ransomware programs greedily traverse
the filesystem looking for target files. Al-
though filesystem scanners may exhibit
this behavior, we recall that ransomware
programs will likely violate multiple of
these features in order to work efficiently.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

#Files-
Read

Number of files read, normalized
by the total number of files.

Ransomware processes must read all files
before encrypting them.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

#Files-
Written

Number of files written, normal-
ized by the total number of files
in the system.

Ransomware programs typically execute
more writes than benign programs do un-
der the same working conditions.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

#Files-
Renamed

Number of files renamed or
moved, normalized by the total
number of files in the system.

Ransomware programs often rename files
appending a random extension during en-
cryption.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

File type
coverage

Total number of files accessed,
normalized by the total number
of files having the same exten-
sions.

Ransomware targets a specific set of ex-
tensions and strives to access all files with
those extensions. Instead, benign appli-
cation typically access a fraction of the
extensions in a given time interval.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1

Write-
Entropy

Average entropy of file-write op-
erations.

Encryption generates high entropy data.
Although file compressors are also
characterized by high-entropy write-
operations, we show that the combined
use of all these features will mitigate such
false positives. Moreover, we notice that
our dataset of benign applications con-
tains instances of file-compression utili-
ties.

0 0.20.40.60.8 1
0

0.2
0.4
0.6
0.8
1
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3.1 Ransomware FS Activity Detection
Given the results of our preliminary data analysis in Section 2.3, and the aforementioned assump-
tions and design decisions, we approach the detection problem as a supervised classification task.
Specifically, we propose a custom classifier trained on the filesystem activity features defined in
Table 3, extracted from a large corpus of IRP logs obtained from clean and infected machines. Once
trained, this classifier is leveraged at runtime to decide whether the features extracted from a live
system fit the learned feature distributions (i.e., no signs of malicious activity) or not.

Process- and System-centric FS Models. A malware can perform all its malicious actions on a single
process, or split it across multiple processes (for higher efficiency and lower accountability). For this
reason, our custom classifier adopts several models. One set of models, called process centric, each
trained on the processes individually. A second model, called system centric, trained by considering
all the IRP logs as coming from a single, large “process” (i.e., the whole system). The rationale is
that the system-centric model has a good recall for multi-process malware, but has potentially
more false positives. For this reason, the system-centric model is used only in combination to the
process-centric model.

Incremental, Multi-tier Classification. Although our file-recovery mechanism is conservative, we
want to minimize the time to decision. Moreover, since the decision can change over time, all
processes must be frequently and efficiently monitored. To obtain an acceptable trade off between
speed and classification errors we adopt two orthogonal approaches.

First, (1) instead of running our classifiers on the entire available process data, we split the data in
intervals, or ticks. Ticks are defined by the fraction of files accessed by the monitored process—with
respect to the total number of files in the system. In this way, we obtain an array of incremental,
“specialized” classifiers, each one trained on increasingly larger data intervals. For instance, when a
process has accessed 2% of the files, we query the “2%-classifier” only, and so on. Our experiments
(Figure 5) show that this technique reduces the #IRPs required to cast a correct detection by three
orders of magnitude, with a negligible impact on the accuracy.
Secondly, (2) to account for changes during a process’ lifetime, we monitor both the long- and

short-term history. In practice, we organize the aforementioned incremental classifiers in a multi-
tier, hierarchical structure (as depicted in Figure 2), with each tier observing larger spans of data.
At each tick, each tier analyzes the data up to N ticks in the past, where N depends on the tier level.
We label a process as “ransomware” as soon as at least one of tiers agrees on the same outcome for
K consecutive ticks. In Section 5 we show that the choice of K has negligible impact on the false
positives.

Example (Code Injection). This example explains how our incremental, multi-tier models handle
a typical case. A benign process (e.g., Explorer) is running, and has accessed some files. For the
first i ticks ShieldFS will classify it as benign. Now, the Ransomware process injects its code into
Explorer’s code region. Referring to Figure 2, if Ransomware does code injection after the 3rd tick,
the global-tier model classifies Explorer as benign, because the long-term feature values are not be
affected significantly by the small, recent changes in the filesystem activity of Explorer. Instead,
the tier-1 model identifies Explorer as malicious, because the tier-1 features are based only on the
most recent IRPs (i.e., those occurring right after the code injection). The same applies for tier-2
models after the 4th tick, and so on. If K = 3, for instance, and all the triggered tiers agree on a
positive detection, the Explorer process is classified as malicious at this point in time. This decision,
clearly, can change while more process history is examined.
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Fig. 2. Example of the use of incremental models. At each interval, we check simultaneously mul-
tiple incremental models at all applicable tiers.

3.2 Cryptographic Primitives Detection
Detecting traces of a cipher within a suspicious process memory, in addition to malicious filesystem
activity, is a further indication of its ransomware nature. The malware authors’ goal is to efficiently
encrypt large sets of files, using a single master key per victim. Thus, instead of relying directly on
asymmetric cryptography, which is resource intensive, the strategy is to encrypt each file with a
symmetric cipher and a per-file random key, each encrypted with an asymmetric master secret
obtained from the attacker’s control server.
Efficient Block Ciphers. The most widespread, efficient symmetric-encryption algorithms of choice
are fast block ciphers. These ciphers combine the plaintext with a secret key through a sequence of
iterations, known as rounds. In particular, the key is expanded in a sequence of values, known as
the key schedule, which is employed to provide enough key material for the combination during
all the rounds. Since the key expansion is deterministic and depends on the key alone, it can be
pre-computed and reused, with a significant performance gain (e.g., 2 to 4× in case of AES-128).
Indeed, all the mainstream cryptographic libraries (e.g., OpenSSL, mBED TLS) and the vast majority
of ransomware families do pre-compute the key schedule.
Side Effects. The main side effect of such a pre-computation technique is that the entire key schedule
is (and must remain) materialized in memory during all the encryption procedure. We leverage this
side effect, and perform a scan of the memory of the running process, checking, at every offset,
whether the content of the memory can be obtained as a result of a key schedule computation. Due to
the tight constraints present between the key and the expanded key (i.e., sound key schedules impose
a bijection between them) it is extremely unlikely that a random sequence of bytes accidentally
matches the result of a key expansion, making false positives very unlikely. False negatives may
occur if the key schedule is not contiguously stored in memory. However, due to the small size
of the involved data (i.e., less than a single 4kiB page), such an event is unlikely to happen due to
memory allocation fragmentation.
Note. Although this technique has the benefit of recovering the secret keys used during the encryp-
tion, relying exclusively on this criterion for file recovery would not be generic and future-proof:
Since each file may be encrypted with a dedicated symmetric key, to guarantee the recoverability of
all files, the memory scanning action should be continuous, and there is the risk that some keys are
simply missed. Instead, by using our dual approach (i.e., filesystem and memory analysis) ShieldFS
can guarantee the recoverability of all files, regardless of how they are encrypted.

3.3 Automatic File Recovery Workflow
When ShieldFS is active, any newly created process enters a so-called “unknown” state. Whenever
such a process opens a file handle in write or delete mode for the first time (only), ShieldFS copies
the file content in a trusted, read-only storage area. This storage can be on the main drive or on a
secondary drive. In either case, ShieldFS denies access to this area from any userland process by
discarding any modification request coming from the upper I/O manager. From this moment on,
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the process may read or write such file, while ShieldFS monitors its activity. When ShieldFS has
collected enough IRPs, the process goes into a “benign,” “suspicious,” or “malicious” state.
File copies belonging to “benign” processes can be deleted immediately or, as ShieldFS does,

scheduled for asynchronous deletion. Since storage space is convenient nowadays, leaving copies
available for an arbitrarily long time delay does not impose high costs. In turns, it greatly benefits
the overall system performance because, by acting as a cache, it limits the number of copy operations
required when the same files are accessed (and would need to be copied) multiple times.
For any process that enters the “malicious” state for at least one tick, ShieldFS checks the

presence of ciphers within the process. If any are found, it immediately suspends the process and
restores the offended files. Otherwise, it waits until K positive ticks are reached before suspending
the process, regardless of whether a traces of ciphers are found.
Processes can enter a “suspicious” state when the process-centric classifier is not able to cast a

decision. In this case, ShieldFS queries the system-centric model. If it gives a positive outcome,
then the process enters the “malicious” state. Otherwise the process is classified as “benign.”

4 SHIELDFS SYSTEM DETAILS
We implemented ShieldFS following the high-level architecture depicted in Figure 3, and the
detection loop defined in Algorithm 1. We focused on Microsoft Windows because it is the main
target of the vast majority of ransomware families. We argue that the technical implementation
details may change depending on the target filesystem and OS’s internals. However, our approach
does not require any special filesystem nor OS support. Thus, we expect that it could be ported to
other platforms with modest engineering work.

4.1 Ransomware FS Activity Detection
To intercept the IRPs, ShieldFS registers callback functions through the filter manager APIs (i.e.,
FltRegisterFilter). For each IRP, the called function updates the feature values, using separate
kernel worker threads for computation-intensive functions (e.g., entropy calculation).
Feature Normalization. To keep the feature values normalized (e.g., number of files read, normalized
by the total number of files), the first time the ShieldFS service is run, it scans the filesystem to
collect the file extensions, number of files per extensions, and overall number of files.

Since the normalization factors change over time (i.e., new, deleted, or renamed files), ShieldFS
updates them in two ways. One mechanism uses a dedicated kernel thread to update the normal-
ization factors in real time. This has no performance impact, since ShieldFS already keeps track
of the relevant file operations. However, an attacker could exploit it to bias the feature values, by
manipulating the normalization factors (e.g., by creating many legitimate, low-entropy files). The
second mechanism raises the bar for the attacker because it updates the normalization factors
periodically (e.g., once a day). In this way, even if an attacker tries to manipulate our normalization
factors, she will need to wait until the next update before starting to access files without triggering
any of the features. Although the second mechanism is more resilient to such attacks, it is prone to
false positives if users create many files between updates. False positives, however, occur only if a
significant number of files are accessed in a way that resembles a ransomware activity (i.e., several
folder-listing operations, followed by file reads or renaming, and high-entropy writes). Taking our
dataset of benign machines monitored for about a month as a reference, the impact of these false
positives is very low compared to the benefits of increased resiliency.
Classifier Details. Each classifier is implemented as a random forest of 100 trees. Each tree outputs
either −1 (benign) or +1 (malicious). The overall outcome of each process-centric classifier is the
sum of its trees’ outcome, from −100 (highly benign) to 100 (highly malicious). In case of a tie
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Fig. 3. High-level overview of ShieldFS. The Detector and the Shielder are Windows minifilter
drivers, and the CryptoFinder is kernel driver.

(i.e., zero), ShieldFS marks the monitored process as “suspicious,” and invokes the system-centric
classifier to take the decision. In case of a second tie, we conservatively consider the process as
malicious.

Monitoring Ticks. ShieldFS gives more relevance to small variations in a feature value when a
process has only accessed a few files. At the same time it minimizes the total number of models
needed, so as to contain the performance impact. For these reasons, the size of each tick grows
exponentially with the percentage of files accessed by a process. After careful evaluation, we used
28 tiers, for intervals ranging from 0.1 to 100%, each one corresponding to a distinct model tier.
Adding other ticks beyond 28 would yield no improvements in detection rates, and would instead
penalize the performance.

Countermeasure for Buffer-file Abuse. Some versions of Critroni exploit one single file as a write-and-
encrypt-buffer. Specifically, the malware moves the target original file in a temporary file, encrypts
it, and then overwrites the original file with it. As a result, ShieldFS observes many renaming
operations, followed by many read-write operations on a single file, thus biasing the feature values.
To counteract this evasion technique, ShieldFS keeps track of when a file is read (or written)

right after being renamed (or moved), such that to update the feature values taking into account
the net, end-to-end effect, as if the buffer file was not used. This mechanism comes at no extra cost,
since ShieldFS already keeps track of file-renaming operations.
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Algorithm 1 Detection routine for each process.
1: procedure isRansomware(PID, f s_f eatures)
2: crypto ← ⊥
3: for tier ∈ {1, ..., top} do
4: if enouдhFilesAccessedForTickO f (tier ) then
5: result ← ProcessClassifiert ier ( f s_f eatures )
6: resetFeatureValues (tier )
7: if result < 0 then
8: Kt ier ← 0
9: else
10: crypto ← CryptoFinder(PID)
11: if result = 0 then
12: if SystemClassifiert ier ( f s_f eatures ) ≥ 0 then
13: Kt ier + +

14: else
15: Kt ier + +

16: if crypto ∨ ∃tier : Kt ier ≥ Kthreshold then
17:
18: return malicious
19:
20: return benign

4.2 Cryptographic Primitives Detection
ShieldFS checks the memory of processes classified as “suspicious” or “malicious” for the presence
of symmetric cryptographic primitives. For the sake of clarity, we remark that the output of
CryptoFinder is used as an additional, non-essential feature. Hence, ShieldFS is able to detect even
samples that do not show any encryption process, as long as the filesystem activity models are
sufficiently (i.e., at least K positive ticks) triggered.

ShieldFS does not make any assumption on how the cipher is implemented by the malware, save
for the materialization of the key schedule. As a proof of concept, we select AES as our target block
cipher, due to its widespread use. AES’s key schedule expands 128, 192 or 256 key bits into 1408,
1664 or 1920 key schedule bits, respectively. As a consequence, taking all the 264 possible positions
in the address space as candidates, and assuming that the accidental occurrence of a key expansion
for a location is independent from it occurring for a different one, the probability of a false positive
is 2642−1408 = 2−1344 (in the most favorable case), which is negligible for practical purposes.

CryptoFinder receives the PIDs of suspicious processes by the Detector, through IOCTL. When
triggered, CryptoFinder attaches to a process and obtains the list of its memory pages. Specifically,
CryptoFinder looks only at the committed pages, defined inWindows as the pages for which physical
storage has been allocated—either in memory or in the paging file on disk. Then, CryptoFinder runs
the key-schedule algorithm on these memory regions and checks whether its expansion occurs. For
efficiency reasons, we stop the inspection of a location as soon as there is a single byte mismatch.

4.3 Automatic File Recovery
We implemented Shielder as a Windows minifilter driver that monitors file modifications by
registering a callback for those IRP_MJ_CREATE operations which security context parameter
Parameters.Create.SecurityContext indicates a “write” or “delete” I/O request. If the target
file is not shadowed yet, ShieldFS creates a copy before letting the request through. With the
same technique it monitors the destination of (potentially malicious) file-renaming operations,
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by hooking the IRP_MJ_SET_INFORMATION requests having the ReplaceIfExists flag set. File
handing and indexing in the shadow drive is based on the FILE_ID identifier assigned by NTFS to
each file.
Transaction Log. ShieldFS maintains a transaction log of the relevant IRPs (e.g., those resulting
from file modifications). Whenever a process is classified as malicious, ShieldFS inspects such log
and restores each file affected by the offending process.

File copies are deleted only when the processes that modified the original file have been cleared
as “benign.” ShieldFS treats the shadow drive as a cache: It avoids shadowing the same file if a
fresh copy (i.e., not older than T hours) already exists. According to our experiments, based on the
workload of real-world users (obtained form our large-scale data collection), the age T imposes
acceptable overhead (below 1%) and can be safely set to any number between 1 and 4. In Section 6
we discuss how the choice of T raises the bar for the attacker who wants to successfully encrypt a
large portion of files.
Whitelisting of Support Files. Files that have no value for a user are of no interest for ransomware
attacks. An example are application-support directories, which contain cache or temporary files,
which are frequently accessed by benign applications. These folders can be safely whitelisted to
reduce the performance overhead due to the frequent operations on such files. To avoid that an
attacker could exploit the whitelisted folders as a “demilitarized zone” where to copy the target files
(prior to encrypting them), we adopt the following solution. Any process that has never accessed a
whitelisted folder is considered “suspicious” as soon as it attempts to move files into it. The files
offended by this operation are preemptively shadowed.
Windows Shadow Copy. Recent Windows versions have a so-called Volume Shadow Copy Service.
However, Windows shadow copies have two issues. First, the copies are created only during the
next power down and boot cycle. Instead, as we already mentioned, our approach is designed for
short-term backup that can allows users to restore recently modified files. Secondly, shadow copies
can be easily bypassed and deleted, as most of recent ransomware families do before starting the
encryption process [10].

5 EXPERIMENTAL RESULTS
As we did for our preliminary analysis (Section 2.2), we evaluated ShieldFS on an analysis envi-
ronment with virtual machines provisioned so as to mimic the file content and organization of
potential victim machines.
We first performed a thorough cross validation to assess (1) the generalization capabilities of

our classifiers, and (2) the impact of the parameter choice on the overall detection quality and
performance. Second, we infected physical machines in use by real users (for their day-to-day
activities) with 3 samples of ransomware families. ShieldFS was able to detect their activity
and fully recover all the compromised files. Third, we evaluated the detection and file-recovery
capabilities against ransomware samples that ShieldFS has never seen before. Last, we measured
the performance overhead of ShieldFS by considering the typical usage workload, where “typical”
refers to our initial large-scale collection of I/O filesystem logs.

A video demo of ShieldFS in action is available on YouTube at [2].

5.1 Detection Accuracy
Cross validation allows to reveal the presence of overfitting-induced biases and thus is a crucial
aspect of any machine-learning-based approach. We conducted three cross-validation experiments
to evaluate the quality of the Detector on our dataset of 383 ransomware samples and 2,245
benign applications from the 11 user machines. We count positive or negative detections at the
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process granularity, and calculate the TPR and FPR based on the true overall number of benign and
ransomware processes.
10-fold Cross Validation. We calculated the true- and false-positive rate on 10 random train/test
splits. Figure 4 and 5 show the TPR and FPR in function of the minimum percentage of files, and
#IRPs, respectively, needed to cast the decision. The results show the benefit of the system-centric
model as a tie breaker, and the incremental approach as an early detector, which requires orders of
magnitude less IRPs to cast a decision, with almost no impact on the FPR (i.e., from 0.0 to 0.00015
in the worst case).
One-machine-off Cross Validation. To further show the independence of our detection results from
the specific machine that generates the benign subset of training and testing data, we performed a
per-machine cross validation. We selectively removed the data of one machine from the training
set, and used it as the testing set. We repeated this procedure for each of the 11 machines.
Table 4 shows (1) that ShieldFS has no strong dependency from the training-testing data split,

and (2) confirms that the system-centric model is useful to reduce FPs by acting as a tie breaker.
Causes of False Positives. We found only two cases of false positives. For the first user machine,
the detector triggered because explorer.exe biased the normalization, by accessing a very large
number of files (more than the normalization factors, which were not up to date). This motivated us
to implement the mechanism that live-updates the system-wide, feature counts for normalization
(rather than doing such an update periodically). This eliminates the false positives, creating however
a small opportunity for the attacker to bias the normalization factors. This trade off is clearly
inherent in the statistical nature of ShieldFS.
Interestingly, in 4 out of 11 machines we found activity of the WinRar file-compression utility,

which performed high-entropy writes. Nevertheless, WinRar was correctly classified as benign,
thanks to the contribution of the remainder features.
The second false positive was Visual Studio, which wrote 175 files, with a very high average

entropy (0.948). This was an isolated case, which happened only on one of the 32 Visual Studio
session recorded in our dataset.
Parameter Setting. The choice of K , the number of consecutive positive detections required to
consider a process as malicious, can be set to minimize the FPR to zero, at the price of a very
small variation (within +/-0.5%) of TPR. Or vice versa. Table 5 shows that setting K = 3 maximizes
the TPR, with very few false positives. Instead, with K = 6, ShieldFS did not identified a sample
that performed injection into a benign process and that encrypted files very slowly. Generally,

Table 4. FPR with One-machine-off Cross Validation

User False positive rate [%]

Machine Process System Outcome

1 0.53 23.26 0.27
2 0.00 0.00 0.00
3 0.00 0.00 0.00
4 0.00 1.20 0.00
5 0.22 45.45 0.15
6 0.00 4.76 0.00
7 0.00 88.89 0.00
8 0.00 0.00 0.00
9 0.00 0.00 0.00
10 0.00 0.00 0.00
11 0.00 0.00 0.00
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Fig. 4. 10-fold Cross Validation: Average and standard deviation of TPR and FPR with process- vs.
system-centric detectors.

false negatives are more expensive than false positives in ransomware-detection problems, thus
we advise for values of K that maximize the TPR. This has the additional benefit of reducing the
number of IRPs required for a correct detection.

5.2 Protection of Production Machines.
In order to evaluate our system in real scenarios, we tested ShieldFS on three distinct real machines
(running Windows 7 and 10), in use by real users for their day-to-day activities for years, containing
2,319, 165,683, and 144,868 files, respectively. We randomly selected 3 samples1 from our dataset
(Critroni, TeslaCrypt, and ZeroLocker) and manually analyzed them to ensure that they were not
stealing any personal information. After cloning the hard drives as a precaution, we installed
ShieldFS, and infected the machines. All the three samples were correctly detected and all the
affected files were correctly restored automatically.

5.3 Detection and Recovery Capabilities
We setup an environment as described in Section 2.2, with dummy files to reproduce a real-user
setting. Moreover, we stored 9,731 files typically targeted by ransomware attacks (e.g., images and
documents of various formats), of which we pre-calculated the MD5 for integrity verification after
each experiment. We then trained ShieldFS on the large dataset of IRP logs collected as part of our
preliminary analysis.
Dataset of Unseen Samples. In addition to the cross-validation experiments on 383 samples, which
already show the predictive and genralization capabilities of ShieldFS, we obtained 305 novel,
1e89f09fdded777ceba6412d55ce9d3bc, 209a288c68207d57e0ce6e60ebf60729, bd0a3c308a6d3372817a474b7c653097

Table 5. 10-fold Cross-Validation: Choice of K .

K FPR TPR IRPs

1 0.208% 100% 35664
2 0.076% 100% 43822
3 0.038% 100% 67394

4 0.019% 99.74% 80782
5 0.019% 99.74% 104340
6 0.000% 99.74% 135324
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working ransomware samples and let them run for 60 minutes on the machines protected by
ShieldFS. This dataset (Table 6) is completely disjoint from the training dataset and was collected
from VirusTotal as of May 2016. Interestingly, seven families (Locky, CryptoLocker, TorrentLocker,
DirtyDecrypt, PayCrypt, Troldesh, ZeroLocker) are not present in the training dataset.

Detection of Unseen Samples. ShieldFS prevented malicious encryption in 100% of the cases, by
restoring the 97,256 compromised files, and correctly detected 298 (97.70%) of the samples without
any false positive. The top-tier, process-centric model contributed to detecting 95.2% of the samples,
the incremental models were effective mainly in the case of ransomware performing code injections
(4.3%), as expected. In one case, the incremental process-centric models identified the malicious
process as suspicious and ShieldFS invoked the system-centric model to take a final decision.
CryptoFinder contributed to the detection of 69.3% of the samples.

Causes of False Negatives. Seven samples remained inactive for most of our analysis and encrypted
just few files (less than 30). Fortunately, thanks to our conservative file-shadowing strategy,
ShieldFS had copied the original files, allowing their recovery. We investigated the cause of
false negatives in the detection of cryptographic primitives and we found no evidence showing

Table 6. Dataset of 305 unseen samples of 11 different ransomware families.

Ransomware No. Detection
Family Samples Rate

Locky 154 (50.5%) 150/154
TeslaCrypt 73 (23.9%) 72/73
CryptoLocker 20 (6.6%) 20/20
Critroni 17 (5.6%) 17/17
TorrentLocker 12 (3.9%) 12/12
CryptoWall 8 (2.6%) 8/8
Troldesh 8 (2.6%) 7/8
CryptoDefense 6 (2.0%) 5/6
PayCrypt 3 (1.0%) 3/3
DirtyDecrypt 3 (1.0%) 3/3
ZeroLocker 1 (0.3%) 1/1

Total 305 298/305
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Fig. 6. Average (and standard deviation) perceived overhead introduced by ShieldFS on 5 real-
users machines.

that the remaining samples were using AES. Therefore, we conclude that CryptoFinder’s detection
capability of AES key schedule is 100%.

5.4 System Overhead
We evaluated the performance overhead and additional storage space requirements of ShieldFS.

User-Perceived Overhead. Our goal is to quantify, with good approximation, how much would
ShieldFS slow down the typical user’s tasks, on average. To this end, we distributed to 5 users a
new version of IRPLogger that collected file-size information in addition to the usual IRP logs.
Then, we reconstructed 6 hours worth of sequences of high-level system calls by analyzing

about one month of low-level IRPs. For example, one IRP_MJ_CREATE followed by one or more
IRP_MJ_READ corresponds to a FileRead call, and so on, by abstraction. Then, we estimated the
perceived overhead for a user-level task as the average overhead due to all the filesystem calls
executed during such task, taking into account the size of the affected files.We fixed 10minutes as the
duration of a user-level task, that is, while the user is interacting with the computer uninterruptedly.
Figure 6 shows that the average estimated overhead is 0.26×. Indeed, we barely perceived it while
using a machine protected by ShieldFS.

Runtime Overhead: Micro Benchmarks.We also evaluated the in-the-small performance impact of
ShieldFS. We considered three sequences of filesystem operations on a series of 1,800 files of 18
varying sizes (from 1 KB to 128 MB): (1) open and read the files, (2) open and write them when
they are not backed up already, and (3) open and write them when they are already backed up. We
run each sequence 100 times on a Windows 10 machine equipped with a rotational hard disk drive,
with and without ShieldFS, rebooting the machine after each test to avoid caching side effects.
Figure 7 shows the overhead of each sequence. The overhead is higher (1.8–3.8×) when files need
to be backed up, and remarkably lower (0.3–0.9×) when files are already backed up.

Table 7. Measured storage space requirements on real-users machines (T = 3h) and cost estimation
considering $3¢/GB.

User Period Storage Required Storage Overhead Max Cost
[hrs] Max [GB] Avg. [GB] Max [%] Avg [%] [USD]

1 34 14.73 0.63 4.29 0.18 44.2¢
2 87 0.62 0.19 0.95 0.29 1.86¢
4 122 9.11 0.73 8.53 0.68 27.3¢
5 47 2.41 0.56 5.49 1.29 7.23¢
7 8 1.00 0.39 3.35 1.28 3.00¢
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Fig. 7. Micro Benchmark: Average overhead.

Storage Space Requirements. During our experiments we kept track of the storage space required by
ShieldFS to keep secure copies. Table 7 shows that withT = 3h, in the worst case (i.e., all files need
to be backed up within T ), ShieldFS requires 14.73 GB of additional storage space (i.e., $44.2¢).
Parameter Setting. The T parameter determines how often ShieldFS creates copies of the files
that require to be shadowed. Table 8 shows the average overhead and storage space required for
T ∈ [1, 4] hour(s) measured during our experiments. We can conclude that T does not significantly
influence the overall performance overhead. Thus, as further discussed in Section 6, we advise to
set it as high as to match the on-premise, long-term backup schedule.

6 DISCUSSION OF LIMITATIONS
From the results of our experiments we discuss the following list of limitations, in decreasing order
of importance.
Susceptibility to Targeted Evasion. Ticks are essentially the “clock” of ShieldFS. At each tick, a
decision is made. Since ticks are not based on time, but on the percentage of files accessed, an
adversary may be interested in preventing to trigger the ticks, so to avoid detection. However, the
only way to do it is to access zero or very few files, which is clearly against the attacker’s goal.
Alternatively, in order not to cause a significant change in the feature values after code injection,
an adversary may try to find an existing, benign host process that has already accessed about as

Table 8. Influence of T on runtime and storage overhead.

T Runtime Overhead Storage Space Overhead

[hrs] Avg [×] Std.dev [×] Max [GB] Avg [GB] Max [%] Avg [%]

1 0.263 0.0404 5.4838 0.4040 4.353 0.586
2 0.262 0.0404 5.8402 0.4875 4.762 0.720
3 0.261 0.0403 5.5768 0.4994 4.522 0.746
4 0.260 0.0403 5.5927 0.5150 4.545 0.766
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many files as the attacker wants to encrypt. This is very unlikely because, by design, such process
can exist only if it has not already triggered the detection (otherwise ShieldFS would have already
killed it already). That is, only if it has accessed a large number of files without violating the other
features (e.g., mainly read operations, low entropy files). Assuming that the malware can find such
a benign process to inject its malicious code, the process’ features will start to change as soon as
the malicious code will start encrypting the aforementioned files. At some point, the malicious
code cannot avoid performing many write operations of high-entropy content.
If the malware knows precisely the thresholds of the classifiers and value of the parameter T ,

it could attempt to perform a mimicry attack [18] encrypting few files so as to remain below the
thresholds until T hours. In this way, it will be identified as benign and the victim will loose the
original copies. However to remain unaccountable, a ransomware cannot encrypt all the files in one
round, so it would need to repeat this procedure every T hours. Setting T to large values will raise
the bar, by forcing the attacker to wait for long. On the other hand, setting T very low guarantees
that the recent (benign) modifications are accounted in the secondary drive. In this way, if a restore
is needed, a very recent (up to T ) copy is available. In other words, T allows to trade off mimicry
resilience versus data freshness.

Multiprocess Malware. Ransomware injecting malicious code into many benign processes, each of
them performing a small part of the malicious activity, could evade our detector if the attacker
knows the feature values—which, is challenging for a userland malware. Multiprocess malware is
partially mitigated by the combination of system-centric models with the incremental, multi-tier
strategy. Nevertheless, ransomware could perform encryption very slowly. This however, is against
the attackers’ goal, who wants to encrypt all files before users can notice any change. Last, even if
a malicious process is not detected, thanks to our conservative file-shadowing approach, a user
noticing the encrypted files can manually restore the original files from the copies.

Cryptography Primitives Detection Evasion. A possible cause of false negatives of our approach is the
use of dedicated ISA extensions of modern CPUs (e.g., Intel AES-NI [6]) to perform the encryption
off memory, using a dedicated register file. However, in such case the malware binary code would
contain those specific instructions, not to mention that the malware will work only if the victim
machine supports the Intel AES-NI extensions.
The current proof-of-concept implementation of ShieldFS supports only the detection of AES.

Supporting other ciphers is an implementation effort, as our approach is valid for the majority of
symmetric block ciphers.

Tampering with the Kernel. ShieldFS runs in a privileged kernel mode. We implemented ShieldFS to
be “non unloadable” at runtime, even by administrator users. Furthermore, ShieldFS is able to deny
any operation that attempts to delete or modify the driver binaries. An administrator-privileged
process, however, could try to prevent ShieldFS service from starting at boot, by modifying the
Windows registry, and force a reboot. This limitation can be mitigated by embedding our approach
directly in the kernel without the need for a service. Doing so, the only chance to bypass our system
is to compromise the OS kernel.

Preventing Denial of Service. A malware could attempt to compromise ShieldFS itself by filling up
the shadow drive. First, in this scenario it is likely that ShieldFS detects and stops the malicious
process before it fills the entire space. Second, ShieldFS makes the shadow drive read-only, denying
any modification request coming from userland processes. Last, ShieldFS could monitor the shadow
drive and alert the user when it is running out of space.
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7 RELATEDWORKS
Kharraz et al. [9] studied the behavior of scareware and ransomware, observing its evolution during
the last years, in terms of encryption mechanisms, filesystem interactions, and financial incentives.
They suggested some potential defenses, but evaluating them was out of the scope of their paper.
Indeed, while [9] analyzed the filesystem activity of ransomware, the authors (and any other work)
did not focus on analyzing the filesystem activity of benign applications, which we found crucial to
build a robust detector.
Concurrently and independently to our work, Kharraz et al. [8] and Scaife et al. [16] published

two ransomware detection approaches, respectively UNVEIL and CryptoDrop. Although they
both look at the filesystem layer to spot the typical ransomware activity, they do not provide any
recovery capability. Also, their approaches do not include identification of cryptographic primitives.
Differently from our work, UNVEIL includes text analysis techniques to detect ransomware threat-
ening notes and screen lockers, along the line of [3], and CryptoDrop uses similarity-preserving
hash functions to measure the dissimilarity between the original and the encrypted content of each
file. These two techniques are complementary to ours, and can be added to ShieldFS as additional
detection features.
Andronio et al. [3] studied the ransomware phenomenon on Android devices, proposing an

approach, HelDroid, to identify malicious apps. Besides the difference in the target platform,
HelDroid looks at how ransomware behaves at the application layer, whereas we focus on its
low-level behavior. Thus, their approach is complementary to ours, also because it is based on
static analysis.

Our data-collection and mining phase is somehow akin to what Lanzi et al. [11] did to perform a
large-scale collection of system calls, with the purpose of studying malware behavior by means
of the system and API call profiles. We focus on IRPs instead as they better capture ransomware
behavior.
Lestringant et al. [12] applied graph isomorphism techniques to data-flow graphs in order to

identify cryptographic primitives in binary code. Although [12] works at binary level, whereas
ShieldFS identifies usage of cryptographic primitives at runtime, it is a valid alternative that can
be used to complement our CryptoFinder.

8 CONCLUSIONS
In this paper, we proposed an approach to make modern operating systems more resilient to
malicious encryption attacks, by detecting ransomware-like behaviors and reverting their effects
safeguarding the integrity of users’ data.

We foresee ShieldFS as a countermeasure that keeps an always-fresh, automatic backup of the
files modified in the short term. We argue that, although older files can be asynchronously backed
up with on-premise systems (because they have less strict time constraints), recent files may be
of immense value for a user (e.g., time-sensitive content); even the loss of a small update to an
important file may end up in the decision to pay the ransom, because the existing backup is simply
too old. With traditional backup solutions alone there exist a trade off between performance, space
and “freshness,” not to mention that a ransomware may encrypt the backups as well! Generally,
traditional solutions work well for incremental backups, long-term archives with no real-time
constraints. Pushing such backup solutions to tighter time constraints while keeping reasonable
system performancemay result in side effects. For instance, once a file is encrypted by a ransomware,
there exists a risk that it may replace the plaintext backup. Instead, ShieldFS works at a lower
level. Thus, it is transparent to a ransomware that works at the filesystem’s logical view. Therefore,
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it is best suited for the protection of short-term file changes, leaving traditional backups protecting
from long-term file changes.
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