) DOYENSEC

Electronegativity
A Study of Electron Security

A

Luca Carettoni - luca@doyensec.com

‘ ‘ WWW.DOYENSEC .COM

L inaenminnionniehoiiiening
About me

. Q) AppSec since 2004
« Doyensec Co-founder

« Former Lead of
AppSec (LinkedIn),
Director of Security
(Addepar), Senior
Security Researcher
(Matasano),

I § 8 W10 ST o T O
Agenda

1. Electron Overview

2. Ecosystem

3. Security Model

4. Attack Surface

5. Apps Security Checklist
* Electronegativity

6. Conclusion

L inaenminnionniehoiiiening
Thanks to:

» Electron Core and Github Security Teams

* For the best disclosure experience in 15
years of vulnerability research

 Claudio Merloni
» For the help on Electronegativity code

1. Electron Overview

https://electron.atom.io/

* OpenSource

framework to build ZPELECTRON

desktop apps using \"c

HTML, CSS and [t you can build a

JavaScript webgite, you can
build a desktop app”

« Maintained by O

S €08 18 IR s LTI O
Principles

* Cross-platform. runtime with self-contained
dependencies

» Modular. To facilitate re-use and keep Electron
small and simple

« Easy to use. You shouldn't worry about
installers, profiling, debugging, notifications,
updates, ...

I] T B o OO
Back and forth

« Web Development is fun, but...

e Conditional rules for all different
browsers and versions

 Limited I/0O with the OS
« Performance and network latency

Ingredients

Lifecycle

render process HTML

0\ render process —»C55
o

(¢ 7 —» package.json —» main process / \JS

v o render process
main. js

render.js

app.asar

Processes

Main Renderer

Node.js API

. : communicates .
ipcMain > ipcRenderer

Node.js API <webview>

Menu, Tray, ... DOM

creates
webFrame

BrowserWindow

S €08 18 IR s LTI O
IpcMain and ipcRenderer 1/2

* Synchronous and Asynchronous messages
from the renderer (web page) to the main

Process

S €08 18 IR s LTI O
IpcMain and ipcRenderer 2/2

* Interestingly, this is also used for
implementing native Electron APIs

 /lib/browser/rpc-server.js

ipcMain.on('ELECTRON_BROWSER_WINDOW_ALERT', function (event, message, title) {
if (message == null) message = "'
if (title == null) title = "'

event.returnValue = electron.dialog.showMessageBox(event.sender.getOwnerBrowserWindow(), {
message: " ${message}’,
title: “${title}",
buttons: ['0K']
})
})

2. Ecosystem

I £ & 0L 0 1 I s LRI O
Many Electron-based Apps

o O @ O
O ® e %

> @ @
— _ ..and 350*

more

* Registered on https://electron.atom.io/apps/

L nnigdetinonhomriend il
Electron € NPM

« SO, you can import custom NPM modules
« ~Half a million packages of vulrerable reusable code

« “How | obtained publish access to 13% of npm
packages (including popular ones)”

« “LeftPad broke the Internet”

« There are also Electron-specific modules:
* Tools
 Boilerplates
« Components

3. Security Model

Browser Security Model

“Several experte have told me in all geriougnesg

.l,
.‘.

nat browger gecurity modelg are now go complex

hat | should not even write a gection about thig”

Threat Modeling - Adam Shostack

Browser Threat Model

Browser Threat Model

From Browser to Electron - Malicious Content

« Untrusted content from the web
« Limited interaction, compared to a browser
* E.g. opening a <webview> with a remote origin

e Untrusted local resources

 Extended attack surface
+ E.g. loading subtitle files

From Browser to Electron - Isolation

» Potential access to Node.js primitives
* Limited Chrome-like sandbox
* From XSS to RCE

» Exploits are reliable

L inaenminnionniehoiiiening
Electron is NOT a browser

« While it is based on Chromium'’s Content
module, certain principles and security
mechanisms implemented by modern

browsers are not enforced in today’s
Electron

» Things will change in Electron v2.x

nodelntegration / nodelntegrationin\Worker

» Control whether access to Node.js
primitives is allowed from JavaScript

 Part of webPreferences

* |n recent versions, Chrome's Isolated
Worlds is used

* New v8 context with proxies to the
window and document object (ro)

i e
nodelntegration

TRUE FALSE

] cal ESNEE)
iew Help
1
%
MC M-
— v
7l 8 || o L 9K
15
4l s e /
1 2 3 _
0

L libdshemiol i aRent niilielingd
Renderer Isolation

1. BrowserWindow (nodelntegration enabled by default)

2. <webview> tag (nodelntegration disabled by default)

Sandboxing 1/2

* sandbox - Experimental feature
* Currently supports BrowserWindow only

. T
C
. A

nis will allow renderer to run inside a native
nromium OS sandbox

| communication via IPC to the main process

« When sanbox is enabled, nodeintegration is
disabled

I § 8 W10 ST o T O
Sandboxing 2/2

» Sandboxing needs to be explicitly enabled:

» To enable it for all BrowserWindow instances, a
command line argument is necessary:

Lol niiehnloibiiiond:
Resistance is futile

* Preload scripts still have access to few modules

 child_process, crashReporter, remote, ipcRenderer, fs, 0s, times,
url

1. Sandbox bypass in preload scripts using remote

2. Sandbox bypass in preload scripts using internal Electron IPC
messages

L inaenminnionniehoiiiening
Contextlsolation

 This flag introduces JavaScript context isolation for

preload scripts, as implemented in Chrome Content
Scripts

 Preload scripts still have access to global variables (ro)

Electron vs Muon

L libdshemiol i aRent niilielingd
Muon

. @ Brave's fork of Electron

 Direct use of Chromium source code
« Support for Chrome extensions
* Node.js removed from the renderer

» |PC still supported in the renderer
process through custom chrome.* APIs

« Chromium OS sandbox

L inaenminnionniehoiiiening
Research idea

Luca Carettoni @lucacarettoni 5d
@bcrypt @brave Quick question: do you have a technical doc

with the diff between Electron and Muon - around sandboxing/
nodeintegration?

4« Iy V1

Replying to @lucacarettoni and 1 other

' yan
@bcrypt

there is an open issue for it github.com/brave/muon/
ISS...

ﬁ ' [docs] needs docs on how/why to use Muon instead of Electron -
Issue #...

i have gotten some questions from devs about whether they should use
Muon instead of Electron. we should document the reasons to do so
(and how to do it) somewhere, maybe a wiki page. this is espec...

 https://github.com/brave/muon/issues/165

4. Attack Surface

Electron App Attack Surface

Custom Code
Insecure use of APIs
Untrusted resources
Custom protocol handlers
Preload scripts

TLS validation disabled

Dependencies
Vulherable or unmaintained NPM

Framework

Outdated vulnerable versions
Glorified APIs
Custom Flags

Foundation
Outdated vulnerable versions
Runtime Flags

Focus of my research

Custom Code
Insecure use of APIs
Untrusted resources
Custom protocol handlers
Preload scripts

TLS validation disabled

>

Framework
o OQutdated vulnerable versions
e Glorified APIs
o Custom Flags

Foundation - Outdated Chromium and Node.js

 Electron-dev community is well aware
* They've established an upgrade policy*:
« ~2 weeks after new stable Chrome
« ~4 weeks after new Node.js
» V8 upgrades already there

* see https://electron.atom.io/docs/faq/#when-will-electron-upgrade-to-
latest-chrome “This estimate is not guaranteed and depends on the
amount of work involved with upgrading”

Foundation - Outdated Chromium and Node.js

¥y SUCHIPULL » Keeping track of all
EEB@ TC changes is hard

. « Making sure that all
' security changes have

g MUCH|COMN agfﬁgn been back-ported is
COMMITS SR even harder

p—

WWW.DOYENSEC.COM w\ T

T § & B s I LI
| ¥ Changelogs

« On 2017-02-21, Node 7.6.0 release
included the following pull request:

Distrust certs issued after 00:00:00 Oct. 21, 2016 by
StartCom and WoSign

WY LECL M shigeki wants to merge 2 commits into nodejs:master from shigeki:WoSign_StartCom_check

 Until May, Electron was still on Node 7.4.0
* Notified the team on May 12, 2017
* Fixedinv1.6.11 on May 25, 2017

Framework - Weaknesses and bugs

* Framework level bugs are particularly
Interesting:

1. Deviations from browser principles and
security mechanisms

2. Implementation bugs

» Mostly discovered reading source code
and documentation

Framework - Outdated vulnerable versions

« Apps are shipped with a build of Electron

* nodelntegration bypasses are tickets:
1. Find XSS
2. Exploit the nodelntegration bypass
3. Use Node.js APIs to obtain reliable RCE

History of nodelntegration bypasses

* Limited disclosure of this type of vulnerabilities
* “As it stands Electron Security” by Dean Kerr - 9 March 2016

« Window.Open - Fixed in v0.37.4 (Issue 4026)
* Credit: Jeffrey Wear

- WebView Attribute - Fixed in v0.37.8 (Issue 3943)
* Credit: Cheng Zhao

S & U Cr IR ISP roT
Have | told you that | € ChangelLogs?

» Goal: study all past vulnerabilities
 Starting from Electron v1.3.2, each release

includes changelog entries
* Reverse psychology before reverse engineering

Never
Look

Here

S € 0L 8 1O (IR B RN HIT T
Spot the security fix 1/2

Bug Fixes

 The about: protocol is now correctly supported by default. #7908

» Menu item keyboard accelerators are now properly disabled when the menu item
is disabled. #7962

» The check for disabling ASAR support via the ELECTRON_NO_ASAR environment
variable is now cached for better performance. #7978

» Fixed a crash when calling app.setAboutPanelOptions(options) witha
credits value. #7979

» Fixed an issue where an error would be thrown in certain cases when accessing
remote objects or functions. #7980

» Fixed anissue where the window.opener API|did not behave as expected.

S € 0L 8 1O (IR B RN HIT T
Spot the security fix 2/2

Bug Fixes

 The about: protocol is now correctly supported by default. #7908

» Menu item keyboard accelerators are now properly disabled when the menu item
is disabled. #7962

» The check for disabling ASAR support via the ELECTRON_NO_ASAR environment
variable is now cached for better performance. #7978

» Fixed a crash when calling app.setAboutPanelOptions(options) witha
credits value. #7979

» Fixed an issue where an error would be thrown in certain cases when accessing
remote objects or functions. #7980

» Fixed anissue where the window.opener AP}did not behave as expected E —
-~

Lol niiehnloibiiiond:
Results:

e v1.4.15: The webview element now emits the context-menu event from the
underlying webContents object

* v1.4.11: Fixed an issue where window.alert, window.close, and window.confirm
did not behave as expected

« v1.3.13: Fixed an issue where window.alert, window.close, and window.confirm
did not behave as expected

« v1.4.10: Fixed an issue where the window.opener API did not behave as
expected

« v1.3.12: Fixed an issue where the window.opener API did not behave as
expected

« v1.4.7: Fixed an issue where the window.opener API did not behave as expected
» v1.3.9: Fixed an issue where the window.opener API did not behave as expected
- v0.37.8: Disable node integration in webview when it is disabled in host page

- v0.37.4: Disable node integration in child windows opened with window.open
when node integration is disabled in parent window

Electron core team is awesome!

1.6.8 Mayo01,2017

Bug Fixes

« [SECURITY] Fixed an issue where the default app could render incorrectly depending on the path Electron was
installed into. #9249

[SECURITY] Fixed an issue where certain built-in window APIs like alert, confirm, open, history.go,
and postMessage would throw errors in the main process instead of the renderer processes when the
arguments were invalid. #9252

[SECURITY] Fixed an issue where chrome-devtools: URLs would incorrectly override certain window
options. #9278

[SECURITY] Fixed an issue where certain valid frame names passed to window.open would throw errors in
the main process. #9287

Fixed a memory leak in windows that have the sandbox option enabled. #9314

Fixed a crash when closing a window from within the callback to certain emitted events. #9113

[SECURITY] Fixed an issue when using postMessage across windows where the targetOrigin parameter
was not correctly compared against the source origin. #9301

Fixed a debugger crash that would occur parsing certain protocol messages. #9322

[SECURITY] Fixed an issue where specifying webPreferences inthe features parameterto window.open
would throw an error in the main process. #9289

macO0S

« Fixed an issue where the Error emitted on autoUpdater error events would be missing the message
and stack properties when serialized to JSON or sent over IPC. #9255

API Changes

* The module search path used by require is now set to the application root for non- file: URLs such as
about:blank . #9095

« [SECURITY] The javascript option is now disabled in windows opened from a window that already has it
disabled, similar to the nodeIntegration option. #9250

macO0S

¢ sheet-begin and sheet-end events are now emitted by BrowserWindow instances when dialog sheets are
presented/dismissed. #9108

Windows

* A session-end eventis now emitted by BrowserWindow instances when the OS session is ending. #9254

I § 8 W10 ST o T O
Case Study: v1.3.9 Changes

* Protip: reversing a back-port is easier, smaller diff

* Included code changes to check whether the sender is

parent of target, nodelntegration is enabled and same origin
 So it had something to do with window.open without Node,
but enabled in the parent

* Proof-of-Concept:

L inaenminnionniehoiiiening
We're on 1.6.X

* Apparently, no bypasses fixed in recent versions

 Started reading the documentation and realized that |
could bypass SOP using one of the following:

I § 8 W10 ST o T O
SOP-Bypass As a Feature

* The current implementation does not
strictly enforce the Same-Origin Policy

» Still work in progress
 https://github.com/electron/electron/pull/8963

« —disablewebsecurity exists, but it's kind of irrelevant

BrowserWindowProxy and Eval

« A good example of Electron’s “Glorified” APIs

« When you open a new window with open(), Electron
returns a Browser\WindowProxy object

1 - windows.open()

2 - BrowserWindowProxy obj
Parent Child

3 - windows.eval(js_code) N -5

4 - js_code

S S BB 1 SR i R NG
SOP2RCE

* How can we leverage the SOP-bypass to
obtain code execution?

* lib/renderer/init.js

if (window.location.protocol === 'chrome-devtools:') {
require('./inspector"')
nodeIntegration = 'true’

PoC - Reported on May 10
Fixedinv1.6.8

<IDOCTYPE htm[>
<html>
<head>
<title>Electron 1.6.7 BrowserWindowProxy SOP -> RCE</title>
</head>
<body>
<script>

</script>
</body>
</htm[>

Framework - “Glorified” APIs

» Electron extends the default JavaScript APIs
* nodelntegration doesn't affect this behavior

 However, sandboxed renderers are supposed
to have native Chromium-like APls

* Current implementation does not revert the
behavior of ALL “glorified” APls

S €08 18 IR s LTI O
Example: HTMLS File path attribute

« HTMLS File API capabilities was extended
in Electron with the path attribute

« Path exposes the file's real path on the fs

* For reference, modern browsers do limit
path exposure during files upload

* E.g. IE8 replaces the filename property with
a bogus value c:\fakepath\file.txt

) DOYENSEC

I £ & 0L 0 1 I s LRI O
Framework - “Glorified” APIs bug

* The extended behavior is still exposed even
when sandbox:true

* A remote origin could leverage this bug to
leak the full path and username

» Reported on May 10th, still open

Framework - Deviations from browser standards

« We have already discussed SOP enforcement
* file:// handler can be abused to read arbitrary files

« Untrusted page can read local resources without user
interaction

* Open issue https://github.com/electron/electron/issues/5151

» Fewer restrictions around privacy and secure UX

Example: HTMLS Media Capture API

« HTML5 allows access to local media devices,
thus making possible to record video and

audio

* Browsers have implemented notification to
inform the user that a remote site is capturing
the webcam stream

@ Accessing Your Webcam in H' X

& > C | & Secure https://www.kirupa.com/htmli5/acc
» www.Kirupa.com wants to
|
@ e,
IIIIIIIIII

ACCel oo T

N & 0 014/ AT T VIS
HTMLS Media Capture APl in Electron

 Electron does not display any notification

« XSS on Electron apps can be leveraged to
silently capture screenshots, video and

audio recording

5. Electron-based Apps
Security Checklist

Custom Code - Vulnerabilities in your app

» On top of what we discussed so far, there are
also application vulnerabilities

* Traditional web vulnerabilities

* Insecure use of Electron’s APIs
« Wrong assumptions (Browser vs Electron)

Our practical checklist

. Disable nodelntegration for untrusted origins
. Use sandbox for untrusted origins

. Review the use of command line arguments

. Review the use of preload scripts

. Do not use disablewebsecurity

. Do not allow insecure HTTP connections

. Do not use Chromium'’s experimental features
. Limit navigation flows to untrusted origins

. Use setPermissionRequestHandler for
untrusted origins

10. Do not use insertCSS, executeJavaScript or
eval with user-supplied content

11. Do not allow popups in webview
12. Review the use of custom protocol handlers
13. Review the use of openExternal

© 00 NO O~ DN =

S € 0L 8 1O (IR B RN HIT T
Electronegativity

 To facilitate secure development and security
testing, we are also releasing a tool

» Leverages AST parsing to look for all issues
discussed in the checklist

» Our checklist white paper and Electronegativity
code will be available at:
https:/www.doyensec.com/research.html

Demo - Electronegativity

6. Conclusions

L libdshemiol i aRent niilielingd
Conclusions

« We have examined and exposed Electron’s design and
implementation flaws

« We have derived a comprehensive checklist for developers
and auditors

« Hopefully, our study will lead to more secure Electron apps

« Today'’s Electron is not secure (by default) to render untrusted
content:

« Having a good understanding of Electron’s internals,
secure apps can be built

« V2.Xis expected to be the security game-changer

L inaenminnionniehoiiiening
Future Work

e Electron vs Muon

 |Leverage Electronegativity to understand
the state of Electron Apps security

* More vulnerability research on Electron

I] T B o OO
Thanks!

 Feel free to reach out
» @lucacarettoni
 luca@doyensec.com

