ok e
2 d 4 providing security. - - M : I, i e "\ AR R e R
, oty . . B ek T ; s " - ¢ 29, v G ;' e P ’ ok j

S
S

Xenpwn - Breaking Paravirtualized Devices

Felix Wilhelm

~®) ERNW
O/ providing s

#whoami

o Security Researcher (@ ERNW Research
o Applicationand Virtualization Security
o RecentResearch

o Security Appliances (Palo Alto, FireEye)
o Hypervisors

o (@ _fellxon twitter

~®) ERNW
O/ providing se

Agenda

Device Virtualization & Paravirtualized Devices
Double Fetch Vulnerabilities

Xenpwn: Architecture and Design

Results

O O O O O

Case Study: Exploiting xen-pciback

o—

ERNW

providing security.

Device Virtualization

Virtualized systems need access to virtual
devices

o Disk, Network, Serial, ...
Traditionally: Device emulation

o Emulate old and well supported hardware
devices

o Guest OS does not need special drivers

o Installation with standard installation sources
supported

intel.

2078 44 PIN

8
CHMOS SINGLE-CHIP FLOPPY DISK CONTROLLER

m Small Footprint and Low Height
Package

] Power

m Integrated Tape Drive Support
— Standard 1 Mbps/500 Kbps/
250 Kbps Tape Drives

— Application Software Transp:

— Programmable Powerdown
Command

— Save and Restore Commands for
Zero-Volt Powerdown

— Auto Powerdown and Wakeup
Modes

— Two External Power Management
Pins

— Consumes No Power While in
Powerdown

m Integrated Analog Data Separator
— 250 Kbps
— 300 Kbps
— 500 Kbps
— 1 Mbps
m Programmable Internal Oscillator

m Floppy Drive Support Features

— Drive Specification Command

— Selectable Boot Drive

— Standard IBM and ISO Format
Features

— Format with Write Command for
High Performance in Mass Floppy
Duplication

m Perp i Recording Support for
4 MB Drives

m Integrated Host/Disk Interface Drivers

m Fully Decoded Drive Select and Motor
Signals

m Progr Write
Delays

W Addresses 256 Tracks Directly,
Supports Unlimited Tracks

m 16 Byte FIFO

m Single-Chip Floppy Disk Controller
Solution for Portables and Desktops
—100% PC/AT* Compatible
— Fully Compatible with Intel386™ SL
— Integrated Drive and Data Bus

Buffers

B Separate 5.0V and 3.3V Versions of the
44 Pin part are Available

m Available in a 44 Pin QFP Package

—(®) ERNW
d providing security.

Paravirtualized Devices

o Mostimportantdownsides of emulated devices:
o Hard to implement securely and correctly
o Slow performance
o No support for advanced features

o Solution: Paravirtualized Devices
o Specialized device drivers for use in virtualized systems
o ldea: Emulated devices are only used as fallback mechanism
o Used by all major hypervisors
o Not the same as Xen paravirtualized domains!

~(®)

ERNW

providing security.

Paravirtualized Devices

Split Driver Model

o Frontend runs in Guest system
o Backend in Host/Management domain

Terminology differs between hypervisors
o VSC/VSP in Hyper-V
o Virtio devices and drivers

Implementations are quite similar

Management
Domain

User Applications

Guest

User Applications

Kernel

Backend

Kernel

Frontend

Shared Memory

'
R

~(®)

ERNW

providing security.

Paravirtualized Devices

PV devices are implemented on top of shared
memory

o Great Performance

o Easyto implement

o Zero copy algorithms possible

Message protocols implemented on top
o Xen, Hyper-V and KVM all use ring buffers

Shared memory mappings can be constant or
created on demand

dom@

domU

(Paravirtualized)

Xen
Management
Stack

QEMU
System
Process

Backend
Driver

User Applications

Modified Kernel

Fronted
Driver

H

—(®) ERNW
d providing security.

Security of PV Devices

o Backend runs in privileged context =» Communication between
frontend and backend is trust boundary

o Low level code + Protocol parsing = Bugs
o Examples
o Heap based buffer overflow in KVM disk backend (CVE-2011-1750]
o Unspecified BO in Hyper-V storage backend (CVE-2015- 2361)
o Notas scrutinized as emulated devices
o Device and hypervisor specific protocols
o Harder to fuzz

~(®) ERNW

o

providing security.

Very Interesting Target

Device emulation oftendone in user space €<-> PV backend often
In kernelfor higher performance

o Compromise of kernel backend is instant win ©
PV devices are becoming more important

o More device types (USB, PCI pass-through, touch screens, 3D
acceleration]

o More features, optimizations

Future development: Removal of emulated devices
o see Hyper-V Gen2 VMs

~®) ERNW
O/ providing s

Research Goal

o "Efficientvulnerability discoveryin Paravirtualized Devices”

o Coreldea: No published researchon the use of shared memory
in the context of PV devices

o Bug class that only affect shared memory? =» Double fetches!

10

~®) ERNW
O/ providing s

Double Fetch Vulnerabilities

o Specialtype of TOCTTOU bug affecting shared memory.

o Simple definition: Same memory addressis accessed multiple
times with validation of the accessed data missing on at least one
access

o Can introduce all kinds of vulnerabilities

o Arbitrary Write/Read
o Buffer overflows
o Direct RIP control ©

11

o—

ERNW

providing security.

Double Fetch Vulnerabilities

Term “double fetch” was coined by Fermin J. Serna in 2008
o Butbug class was well known before that

Some interesting research published in 2007/2008

o Usenix 2007 “Exploiting Concurrency Vulnerabilities in System Call
Wrappers” - Robert N. M. Watson

o CCC 2007: "From RING 0 to UID 0" and Phrack #64 file 6 - twiz,
sgrakkyu
First example | could find is sendmsg() linux bug reported in 2005

o Happy to hear about more ©
12

1 int cmsghdr_from_user_compat_to_kern(..)

2 {

o- ERNW s [...]

o providing security + while(ucmsg '= NULL) {

memmmmpe) if (get_user (ucmlen, &ucmsg->cmsg_len))
6 return -EFAULT;
7 [...]
8 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof (*ucmsg))) +
9 CMSG_ALIGN (sizeof (struct cmsghdr)));
10 kcmlen += tmp;
11 [- . -]
12 }
13
14 if (kcmlen > stackbuf_size)
15 kcmsg_base = kcmsg = kmalloc(kcmlen, GFP_KERNEL) ;
16
Example: 17 while(ucmsg != NULL) {

sendmsg() — __get_user(ucmlen, &ucmsg->cmsg_len);

19

20 if (copy_from_user (CMSG_DATA(kcmsg) ,

21 CMSG_COMPAT_DATA (ucmsg) ,

22 (ucmlen - CMSG_COMPAT_ALIGN(sizeof (*ucmsg)))))
23 [...]

24 }

-(®) ERNW
d providing security.

Bochspwn

o “ldentifyingand Exploiting Windows Kernel
Race Conditionsvia Memory Access
Patterns” (2013])

o by j00ru and Gynvael Coldwind

Shochs

o Uses extendedversionof Bochs CPU
emulator to trace all memoryaccess from
kernelto user space.

14

o—

@

ERNW

providing security.

Bochspwn

Resulted in significant number of Windows bugs (and a well
deserved Pwnie)

o but not much published follow-up research

Whitepaper contains detailed analysis on exploitability of double
fetches

o On multi core system even extremely short races are exploitable

Main inspiration for this research.

15

>(®) ERNW === !
2

Example:
Bochspwn

meessm——) 9

mov
;L.
push
push
push
call
push
push
push
call

ecx, [edi+18h]

L

eax

ecx

_ProbeForWrite
dword ptr [esi+20h]
dword ptr [esi+24h.
dword ptr [edi+18h]

_memcpy

~(®) ERNW

o

providing security.

Xenpwn

o Adapt memoryaccesstracing approach used by Bochspwn for
analyzing PV device communication.

o Why not simply use Bochspwn?
o Extremely slow
o Passive overhead (no targeted tracing)
o Compatibility issues
o Dumping traces to text files does not scale

o ldea: Implementmemoryaccess tracing on top of hardware
assisted virtualization

17

—(®) ERNW
d providing security.

Trace | _|Analysis
Storage Client
H
i___ . L2 domO L2 domU
Collector
Backend S g Frontend
VMl - l _________
L1 domO 5 L1 Hypervisor
" LOHypervisor

Trace _| Analysis
o- E R N W Storage - Client
d providing security. f

! Trace L2 domO L2 domU

" | Collector
Backend [+ g Frontend

Xenpwn Architecture wi | l——J L
L1 domO E L1 Hypervisor

O N este d Vi rtua“ Zati on I-"LE)_IZIEI_p-e-r;/Es-(;r_“"""“"""J

o Target hypervisor (L1) runs on top of base
hypervisor (LO)

o Analysis componentsrunin user space of LT
management domain.
o No modification to hypervisor required

o Bugsin these components do not crash whole
system

o LO hypervisoris Xen

19

libVMI

o Great library forvirtual machine
introspection (VMI)

o Hypervisor agnostic (Xen and KVM]
o User-space wrapper around hypervisor APls

o Allows access to and manipulation of guest
state [memory, CPU registers]

o Xenversionsupports memory events

20

auto event = new vmi_event_t();

event->type = VMI_EVENT_MEMORY;
0—@ ERNW event->mem_event.physical_address = paddr;
providing security. event->mem_event.npages = 1;
event->mem_event.granularity = granularity;
event->mem_event.in_access = access;
event->callback = callback;

li bVM I M emo ry Eve n tS ii ﬁxffjriiﬁster_event(s—>vmi, event) != VMI_SUCCESS)

Trap on access to a guest physical address

Implemented on top of Extended Page Tables
(EPT)

o Disallow access to GPA
o Access triggers EPT violation and VM exit
o VM exitis forwarded to libvmi handler

21

~®) ERNW
d providing s

Memory Access Tracing with
libvmi

1. Find shared memory pages
2. Register memoryevent handlers

3. Analyze memory event, extract needed
Information and store in trace storage.

4. Run analysis algorithms (can happen much
later]

Trace

Storage

| Analysis

Client

3

Trace

Collector

;

VMI

L1 domO

22

-— e - ——d

o—

ERNW

providing security.

Trace Collector

Use libvmi to inspect memory and identify shared memory pages
o Target specific code.

o ldentify data structures used by PV frontend/backend and addresses
of shared pages

Registers memory event handlers

Main work is done in callback handler
o Disassemble instructions using Capstone

23

—(®) ERNW
d providing security.

Callback handler

extract domain id

privileged domain?

e e e e e e e e e e e A — — — — — — — —— — ——————— ————

es |
Y A

new instruction?

disassemble
instruction

v

add to cache /
instruction stream

single step and
continue

no

create empty trace
entry

fetch from cache

v

create trace entry

add to tracing stream

o—

ERNW

providing security.

Trace Storage

Storage needs to be fast and persistent

o Minimize tracing overhead

o Allow for offline analysis

Nice to have: Efficientcompression

o Allows for very long traces

Tool that fulfills all these requirements: Simutrace
o simutrace.org

25

~(®) ERNW

o

providing security.

Simutrace

Open source project by the Operation System
Group at the Karlsruhe Institute of Technology

Designed for full system memory tracing
o AWl memory accesses including their content
C++ daemon + client library

o Highly efficient communication over shared
memory pages

Uses specialized compression algorithm
optimized for memory traces
o High compression rate + high speed

Highly recommended!

26

—(®) ERNW
d providing security.

Trace Entries

For every memory access:

cycle count |[f| tag f
instruction pointer
32 bytes
memory address
data + size
\

For everyunique instruction:

rip

cr3

offset

instruction bytes

module_name

f

96 bytes

27

-(®) ERNW
d providing security.

read next entry from

|mm e e m e > € - - — - m - e e '
e > trace !
- a a
! ! T T T T T T T T T T T T T T T T T Ty T T T T T T T T T 1 :
b yes ! empty entry? ' no :
- Y |
L] agla;gemrzgp read access type !
| i
| = i
e : !
i yes : read access? | no E
Double Fetch | v L ;
| 1

Algorithm

______ add instruction pointer

to mapladdress] clear map[address]

Simplified version

28

—(®) ERNW
d providing security.

Advantages & Limitations

o Good:
o Low passive overhead
o Largely target independent
o only Trace collector requires adaption
o Easyto extend and develop

o Bad
o High active overhead
o VM exits are expensive
o Reliance on nested virtualization

29

~®) ERNW
O/ providing s

Nested Virtualization on Xen

o Xen Doku: Nested HVM on Intel CPUs, as of Xen 4.4, is considered
“tech preview". For many common cases, it should work reliably
and with low overhead

o Reality:

o Xen on Xen works
o KVM on Xen works (most of the time)
o Hyper-V on Xen does not work ®

30

o—

ERNW

providing security.

Results

KVM: no security critical double fetches

o Main reason seems to be endian independent memory wrappers

o .. butdiscovered other interesting issues while reading the virtio code
;)

bhyve: one very interesting result

o Ongoing disclosure process

Xen: Three interesting double fetches

31

o- ERNW void blkif_get_x86_64_req(blkif_request_t *dst,
d providing security blkif_x86_64_request_t *src)

{
int i, n = BLKIF MAX_ SEGMENTS_PER_REQUEST;

dst->operation = src->operation;
memmmmm——) dst->nr_segments = src->nr_segments;

/...
if (src—>operation == BLKIF_0OP_DISCARD) {
/..
+
QEMU xen_disk if (n > src->nr_segments)
Normally not > n = src->nr_segments;
exploitable thanks for (i = 0; i < n; i++)
to compiler dst->segl[i] = src->seglil;

optimizations }

—(®) ERNW
d providing security.

1 for (n = 0, i = 0; n < nseg; n++) {

2 //. ..
3 i = n % SEGS_PER_INDIRECT FRAME;
) seg[n] .nsec = segments[i].last_sect -
5 segments[i] .first_sect + 1;
6
7 seg[n] .offset = (segments[i].first_sect << 9);
8
9 if ((segments[i].last_sect >= (PAGE_SIZE >> 9)) ||
—— (segments[i] .last_sect < segments[i].first_sect)) {
11 rc = -EINVAL;
xen-blkback 12 goto unmap;
13 }
OOB Read/Write 14 /...
15

33

~®) ERNW
O/ providing s

xen-pciback

34

—(®) ERNW
d providing security.

xen-pciback: xen_pcibk_do_op

1 switch (op->cmd) {

2 case XEN_PCI_OP_conf_read:

3 op—>err = xen_pcibk_config_read(dev,

4 op—>offset, op->size, &op->value);
5 break;

6 case XEN_PCI_OP_conf_write:

7 /...

8 case XEN_PCI_0OP_enable_msi:

9 /...

10 case XEN_PCI_0OP_disable_msi:

1 /...

12 case XEN_PCI_OP_enable_msix:

13 /...

14 case XEN_PCI_0OP_disable_msix:

15 /...

16 default:

17 op->err = XEN_PCI_ERR_not_implemented;
18 break;

w

9]

cmp
mov
ja

mov
jmp

DWORD PTR [r13+0x4],0x5
DWORD PTR [rbp-0Ox4c],eax
0x3358 <xen_pcibk_do_op+952>
eax,DWORD PTR [r13+0x4]
QWORD PTR [rax*8+off_77DO0]

35

—(®) ERNW
d providing security.

xen-pciback

o switch statement is compiledintojump table
L 1 cmp DWORD PTR [r13+0x4],0x5
o op->cmd== $r13+0x4 »mov DWORD PTR [rbp-Oxdcl,eax
o POintS intO Shared memory 3 ja 0x3358 <xen_pcibk_do_op+952>
4 MOV eax,DWORD PTR [r13+0x4]
o Range check and jump use two different sjup QWORD PIR [rax+8+off_77DO0]
memory accesses

o Valid compiler optimization
o op is not marked as volatile

36

~(®)

ERNW

providing security.

Exploiting pciback

Race is very small: 2 Instructions

o Butcan be reliably won if guest VM has
multiple cores

Lost race does not have any negative side
effects

o Infinite retries possible
Simple to trigger

o Send PCIl requests while flipping value using
XOR

1 cmp
2 mov
3 ja

4 MOV
s jmp

DWORD PTR [r13+0x4],0x5
DWORD PTR [rbp-0Ox4c],eax
0x3358 <xen_pcibk_do_op+952>
eax,DWORD PTR [r13+0x4]
QWORD PTR [rax*8+off_77DO0]

"loop_header_%=:\n"

"inc rcx\n"

"xor dword ptr [rax], 25\n"
"cmp rcx, 5000\n"

"jnz loop_header_%=\n"

37

~®) ERNW

O

providing se

Exploiting pciback

Indirectjump =» No immediate RIP control
o Need to find reliable offset to function pointer

Load address of xen-pciback.ko israndom

Virtual address of backend mapping also not known

A lot of similaritiestoa remote kernelexploit

Chosen approach: Trigger type confusionto get write primitiv

38

o—

1 void xen_pcibk_frontend_changed(struct xenbus_device *xdev,

ERNW

providing security.

® N o v s W N

9
10
11
12
13

Type Confusion :

15

16 }

Second jump table generated for xen-pciback

o Almost directly behind the jump table
generated for vulnerable function

enum xenbus_state fe_state)
struct xen_pcibk_device *pdev = dev_get_drvdata(&xdev->dev);

switch (fe_state) {

case XenbusStateInitialised:
xen_pcibk_attach(pdev) ;
break;

case XenbusStateReconfiguring:
xen_pcibk_reconfigure(pdev) ;
break;

/7.

/7.

XenbusStatelnitialized usesvalue of r13 1 mov rdi, ri3

register as firstargument

o Should be a pointer to a xen_pcibk_device
structure

o Isa pointer to the start of the shared memory
page ©

2 call 0x3720 <xen_pcibk_attach>

39

struct xen_pcibk_device {
O—@ ERNW void *pci_dev_data;
providing security. struct mutex dev_lock;
struct xenbus_device *xdev;
struct xenbus_watch be_watch;
u8 be_watching;
int evtchn_irq;
. . . . struct xen_pci_sharedinfo *sh_info;

Getting a write primitve unsigned long flags;
struct work_struct op_work;
struct xen_pci_op op;

o xen_pcibk_attach firsttries to lock the i

dev_lock mutex of referenced structure.

o Givesus the possibility to call mutex_lock
with a fake mutex structure

void __sched mutex_lock(struct mutex *lock)

{

o mutex_lock might.sleepO;
. * The locking fastpath is the 1->0 transition from
o Fastpath: Switch lock count from 1->0 « “unlocked" into 'locked" state.
*/
o Slowpath: Triggered when lock count != 1 P osk(ladk->count, muteclockslompath;
}

40

~(®) ERNW

o

providing security.

Getting a write primitive:

/* add waiting tasks to the end of the waitqueue (FIFO):

mu tex_lo ck slow pa th list_add_tail(&waiter.list, &lock->wait_list);

waiter.task = task;

1. mutex_optimistic_spin needs to fail.

o Can be achieved by setting lock->owner to a
readable zero page

2. If lock count still not 1, mutex_waiter
structureis created and stored on stack

3. mutex_waiter structure is added to lock-
>walt_list and kernelthread goesto sleep
till wake up.

=» Pointer to waiter is written to attacker

controlled location.

wait_list->prev = new;
waiter->next = wait_list;
waiter->prev = WRITE_TARGET;
WRITE_TARGET->next = new;

41

¥/

—(®) ERNW
d providing security.

Write Primitive

o write-where but not write-what
o Pointer to pointer to attacker controlled data _
‘) _)) struct list_head {
o Can't simply overwrite function pointers) struct list_head *next, *prev;
o 0One shot

o pcibackis locked due to xen_pcibk_do_op
never returning

o ldea: Add faked entriesto a global linked list.

o Requires known kernel version + no KASLR or
infoleak

42

—(®) ERNW
d providing security.

fake_prev

controlled data

//
/
/
/
/
/
/
/
L
e e R
I f” \\\
, -
y P
list_head.next f-------- > entryl.next f-------
- ___ -
list_head.prev entry1.prev

~ - -

% entry2.next
- entry2.prev

43

—(®) ERNW
d providing security.

list_ head.next

list_head.prev

fake_prev

controlled data

L4

o—

ERNW

providing security.

Overwrite target

Global data structure
o Need to know address of list_head

No new elements should be attached during run time

o list_head.prev is not changed, new entry might be added directly
behind list_head

Needs to survive one “junk” entry
o No full control over waiter structure / stack frame

45

-(®) ERNW
d providing security.

1%

2 * linux/fs/exec.c

3 *

4 * (opyright (O 1991, 1992 Linus Torvalds
5

6

7/

8 * #!l-checking implemented by tytso.

9 v

10 /*

11 * Demand-loading implemented 01.12.91 - no need to read anything but

12 * the header into memory. The inode of the executable is put into

13 * "current->executable"”, and page faults do the actual loading. Clean.

14 *

15 * Once more I can proudly say that linux stood up to being changed: it

16 * was less than 2 hours work to get demand-loading completely implemented.
17 *

18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary

22 ¥ formats.

23 */

~®) ERNW
O/ providing s

fs/exec.c: formats

o formats linked list contains entries for differentfile formats
supported by exec

o ELF
o #! shell scripts
o a.out format
o Walked everytime exec* syscall is called to load input file.

o waiter entryis skipped because try_module_get function fails

47

~®) ERNW
O/ providing s

Getting Code Execution

o Setaddressof load_binary pointerto stack pivot

o ROP chain to allocate executable memoryand copyshellcode
o vmalloc_exec + memcpy

o Restoreoriginalformats list
o $shellcode
o Returnto user space

48

~®) ERNW
O/ providing se

Demo

49

—(®) ERNW
d providing security.

Open Source

o Xenpwn opensource release:
o https://github.com/felixwilhelm/xenpwn

o Whitepaper contains a lot more technical details
o Implementation details
o Performance evaluation

O

50

~®) ERNW
O/ providing s

Future Work

o Use Xenpwn against Hyper-Vand VMWare

o Requires improved support for nested virtualization

o ldentifyand analyze other shared memorytrust boundaries
o Sandboxes?

o What types of bugs can we find with full memorytraces?

51

Thanks for your Attention!

Q&A

52

