
Wen `Memeda` Xu
@K33nTeam

AH! UNIVERSAL ANDROID
 ROOTING IS BACK

Wen Xu a.k.a Memeda @antlr7

ABOUT ME
• Security research intern at KeenTeam

• Main focus on Android rooting and software exploitation

• Pwn2Own 2015, Adobe Reader category

• Senior student at Shanghai Jiao Tong University

• Member of LoCCS

• Vice-captain of CTF team 0ops

• CodeGate Champion

• Rank 2rd in the world on CTFTIME

AGENDA
• Present Situation of Android Rooting

• Awesome Bug (CVE-2015-3636)

• Fuzzing

• Analysis

• Awesome Exploitation Techniques

• Object Re-filling in kernel UAF

• Kernel Code Execution

• Targeting 64bit Devices

• Future

Present Situation

PART I

PRESENT SITUATION
• Goal

• uid=0(root) gid=0(root) groups=0(root)

• Kernel arbitrary read/write

• Cleaning

• SELinux

• …

Root for what?

PRESENT SITUATION
• SoC (Driver)

• Missing argument sanitization (ioctl/mmap)

• Qualcomm camera drivers bug CVE-2014-4321,
CVE-2014-4324, CVE-2014-0975, CVE-2014-0976

• TOCTOU

• Direct dereference in user space CVE-2014-8299

• Chip by chip ?

A BIG DEAL
• Universal root solution

• Once Towelroot(futex bug) by Geohot(Pinkie Pie)

• Universally applied bug

• Confronting Linux kernel

• Universally applied exploitation techniques

• One exploit for hundreds of thousands of devices

• Adaptability (Hardcode)

• User-friendly (Stability)

• COMING BACK AGAIN!

Bug Hunting

PART II

Open source kernel syscall fuzzer
Trinity

FUZZING

• https://github.com/
kernelslacker/trinity

• Easy to use

• Scalability

• Ported to ARM Linux

https://github.com/kernelslacker/trinity

Let’s take a look at our log when we wake up ;)

FUZZING
• Critical paging fault at 0x200200?!!

user_sock_fd = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);

SK: PING SOCKET OBJECT IN KERNEL

ping_unhash(__hlist_nulls_del)

TWO times

LIST_POISON2 == 0X200200

1

2
3

0x200200 not mapped
kernel crash

disconnect() in kernel through connect() in user program

ROAD TO PING_UNHASH

Local denial of service? Not enough!

USE-AFTER-FREE
• Avoid crash: map 0x200200 in the user space

• Then hmm…

• sock_put(sk) can be
called twice ;)

• What’s PUT?

CVE-2015-3636

USE-AFTER-FREE
• sock_put(sk) twice Ref count to 0 sk_free !

• BUT a dangling file descriptor left in the user program

Exploitation

PART III

ANNOYING PROBLEM RE-FILLING

WHEN IT COMES TO UAF

• Our target: struct sock

• kmem_cache_alloc(“PING”, priority &
~__GFP_ZERO);

• Custom use cache ;(

A specific area for the allocation of kernel objects of particular type
Here we meet the type called “PING” xD

SLAB CACHE

RE-FILLING IS REALLY A TOUGH JOB

WE ARE IN THE KERNEL
• Slab allocator

• Hmm…Just like
Isolated Heap

• Multi-thread/core

• Hard to achieve
fully predictable
heap layout

• Candidate
kernel objects

• Lack of
controllability

• Controllable
content?

• No BSTR in
kernel lol

WHAT USED TO RE-FILL
• Common use slab cache

• Several choices on size

• 32, 48, 64, 128, 256, 512, 1024…

• How to create: sendmmsg()

• Size control: length of packet

• Content control: data of packet

Initial idea: kmalloc() buffer

Basically, a completely free slab has large
probability to be recycled for future allocation

INTUITIVE IDEA

• Why we always enjoy use-after-free bug?

• Memory reuse for efficiency and optimization

• No exception in kernel

• 1. Fill a slab with totally PING socket objects

• 2. Free all of them and spray kmalloc-x buffers

• Exactly possible, but … out of control

Newly adopted SLUB allocator tries to put
the objects of the same size together, which de-

separates the kernel objects to some extent

SLUB HELPS US?

• Does our target object have a size of 32, 48, 64, 128, 256 or 512?

• Use kmalloc() buffers to re-occupy

• Much more stable and accurate

• BUT ping socket objects on different
devices have different sizes

• Also the sizes may not be 32, 48, 64, …

Physmap, also called direct-mapped memory, is memory in the kernel which
would directly map the memory in the user space into the kernel space.

THE RETURN OF PHYSMAP

Again, based on the natural weakness of the system:
MEMORY REUSE

THE RETURN OF PHYSMAP

• Physmap grows by occupying the free memory in
the kernel

• How to create: iteratively mmap() in user space

• Data control: fully user-controlled (fill mmap()’ed
area with our payload)

THE RETURN OF PHYSMAP
• Size control:

• Large enough
to fill any freed
memory in the
kernel theoretically

With physmap, we are able to exploit UAF in the
kernel regardless of what vulnerable object is

Table [1] from ret2dir: Rethinking Kernel Isolation (USENIX 14’)

Achieve kernel spraying through user space spraying

INITIAL PLAN

• 1. Allocate a large number of ping
socket objects and then free all of
them by triggering the bug.

• 2. Iteratively call mmap() in the
user program and fill the area.

• Hope the memory collision will
happen?

kernel channel

Make PING socket objects and physmap closer ;)

RELIABLE MEMORY COLLISION

• PADDING PING objects

• Lift up the allocation

• TARGET PING objects

• Used to pwn

Find a info leak to know whether our targeting PING
socket object has already been covered by physmap or not

HATE TO THROW A DICE

• Allocate hundreds of PING socket objects for padding (lifting up).

• Allocate hundreds of PING socket objects which is later to be re-filled.

• Free padding PING socket objects normally by calling close()

• Free targeting PING socket objects by triggering the bug

• Such de-allocation generates large pieces of free memory for physmap

• Iteratively call mmap() in user space and fill the areas

• Payload + magic number for re-filling checking

• Iteratively call ioctl() on targeting PING socket objects

• ioctl() returns magic number? Done.

• Otherwise further physmap spraying is needed.

Notice: certain adjustment and optimization in practical root tool

CONQUER KERNEL UAF

• A generic memory collision model in Linux kernel

• Solve several difficulties when exploiting
kernel use-after-frees

• Hard to mitigate due to kernel’s inherent property

separated allocation AND multi-core/thread

AND incontrollable creation and content

Now we have full control of the content of a freed PING
object with the corresponding dangling fd in our hand

PC CONTROL
• User: just close(fd)

• Kernel: inet_release called

• ‘vftable’: sk->sk_prot

• Set sk_prot as a
mapped virtual address
in user space

• Return to user land shellcode

Geohot taught us again in Towelroot

WHAT DOES SHELLCODE DO

• Leak kernel stack address

• Get thread_info address

• Change addr_limit to 0

• Achieve kernel arbitrary read/write through pipe

Original idea from Stackjacking Your Way to grsec/PaX Bypass

Don't count your chickens before they hatch.

Our goal is to root whatever devices of whatever brands.

WHAT ABOUT 64BIT DEVICES

• Bug existed?

• LIST_POISON2?

• Still 0x200200 which can be mapped

• Memory collision with phsymap?

• Return to shellcode in user space?

PXN prevents userland execution from kernel

OOPS! PXN APPLIED.
• Return to physmap? NX ;(

• ROP comes on stage

• Two steps

• First step: leak kernel stack address

• Second step: change addr_limit to 0

• Hardcoded addresses of gadgets ;(

In fact we prefer JOP (Jump-Oriented Programming)

ROP TIPS
• Avoid stack pivoting in kernel which brings uncertainty

• Make full use of current values of the registers

• X29 stores SP value on 64bit devices

• High 32bits of kernel addresses are the same

• Only need to read/write low 32bits

• Work hard to find cool gadgets

• One GOD gadget does both leaking and overwriting in some ROMs

Victory!

CONCLUSION
• Root most popular Android devices on market

• Android version >= 4.3

• First 64bit root case in the world as known

• S6 & S6 Edge root

• DEMO ;)

Future

PART IV

64bit devices could be more secure

FUTURE
• LIST_POISON2 in 64bit Android kernel

• 0x200200 Set as 0xDEAD000000000000

• Prevent memory collision with physmap

• Enough virtual address space there

• KASLR

• Days become harder for linux kernel pwners

• Where there is a will there is a way

Thanks for contributions and inspirations

ACKNOWLEDGEMENT
• wushi

• jfang

• Leo.C

• Liang Chen

• Slipper

• Peter

Pictures in the slide come from Google

Wen Xu
@antlr7

hotdog3645@gmail.com

THANK YOU

mailto:hotdog3645@gmail.com

