
Mobile Point of Scam: Attacking the Square Reader

Alexandrea Mellen
Undergraduate

John Moore
Undergraduate

Artem Losev
Undergraduate

Department of Electrical and Computer Engineering
Boston University

Boston, MA
{almell, jmoore15, artlosev}@bu.edu

Abstract

We consider the security of Square, Inc.’s mobile card-reading device, the Square Reader, across multiple models, as well as
the associated Square Register app where relevant. In doing so, we identify a number of vulnerabilities in the device that allow
both malicious merchants and third parties to initiate fraudulent transactions and, with minor device modification, skim credit card
information of unsuspecting customers. We highlight that since mobile card-reading devices like the Square Reader are necessarily
compact, cheap, and compatible with a broad range of commodity smartphones, they pose new security challenges over traditional
payment-processing hardware. These challenges in turn expose an attack surface that is relatively new and unexplored given the
infancy of mobile point-of-sale systems compared to their non-mobile counterparts. We investigate this attack surface and find a
number of vulnerabilities that confirm that even current “secure” mobile point-of-sale systems suffer from software and hardware
design flaws, leaving them vulnerable to both third parties and malicious merchants.

I. INTRODUCTION

The rise of smartphones with Internet capability has enabled the recent formation and surge of a new mobile transaction
processing market. A number of providers including Square, Inc., PayPal, and Intuit offer mobile transaction processing services
and have created mobile point-of-sale systems that allow merchants to process transactions using phones and tablets in place
of expensive retail hardware [1][2][3]. Often these providers offer their hardware to new merchants for free and validate new
merchants with a simple and largely automated process. This new convenience and lower barrier to entry of transaction processing
especially appeals to street vendors, coffee shops, salons, and other small businesses, who have bolstered the mobile payment
industry with hundreds of millions of dollars and growing annual sales volume [4][5]. As a testament to the prevalence of
Square’s services alone, and by extension its mobile card-reading devices, it is worth noting that Square processed $20 billion
in transactions in 2013 and was expected to process $30 billion in 2014 [4]. In fact, Square has processed as much as $100
million in a single day [6].

The convenience and lower barrier to market entry brought on by the rise of mobile payment processing has not come without
fresh security risks posed by new hardware designs. Consider that mobile card-reading devices such as the Square Reader are
subject to size and cost constraints unparalleled in their similar, non-mobile counterparts. Achieving a small design is necessary
to appeal to merchants with limited space, such as street vendors or food truck owners. Minimizing hardware costs ensures a
majority of merchants, including smaller, less established ones, can afford the requisite hardware. However, a small and cheap
design is at odds with security, since properly implementing encryption at the point-of-swipe becomes much more challenging
when circuit size and cost allowances are severely limited.

Also, consider that achieving basic encryption of card data at the point-of-swipe is only half the battle. Mobile card-reading
devices must interface with many different smartphone “hosts,” i.e. phones running an app such as Square Register, that act
as proxies between customers and a provider such as Square. These smartphones may be used for many tasks unrelated to
payment processing, including personal use; may run old or insecure operating systems that are prone to mobile malware; may
interface with insecure networks either immediately during or interspersed with periods of transaction processing; and may even
be intentionally modified by malicious merchants to scam customers. In general, the smartphone hosts present a much less
controlled environment than that of dedicated payment hardware, and mobile card-reading devices should implement measures
to mitigate the problems that arise when interfacing with untrusted smartphones.

In our investigation of attacks on mobile card-reading devices, we focus on hardware offered by Square, Inc. Founded in 2009,
Square is one of the first and main competitors in the relatively new mobile payment processing industry. Since demonstrating
its first Square Reader device, the model S1, at the 2010 SXSW conference [7], Square has released three additional revisions
of the device [8][9][10]. The Square Reader was criticized as insecure for lacking time-of-swipe encryption until the later S3
and S4 models [11]. Given Square’s early entry to the industry, response to initial criticism, and closing of over 200 bugs as

part of a bug bounty program since then [12], we expect that our results are also applicable to hardware offered by other, newer
industry competitors who have had less time to iterate.

II. BACKGROUND

Credit cards encode information on magnetic strips with a varying magnetic field. When a customer swipes a credit card, a
magnetic head outputs a voltage signal that is modulated by the magnetic information on the strip (based on the current induced
in a coil of wire within the magnetic head). A microcontroller or other device can then decode the signal by analyzing the
voltages, which typically follow a Manchester Coding scheme.

The initial models of the Square Reader, models S1 and S2, are quite simple and do not contain any active, powered
components. The devices consist of a magnetic head connected to a headphone jack with a microphone output, which is sufficient
to read a magnetic strip. By sampling a phone’s microphone input fast enough, an application is able to read the small voltages
produced by the magnetic head and, by examining the zero-crossings in the signal, decode them into unencrypted credit card
information.

Later models of the Square Reader, models S3 and S4, contain active components that can read and modify the signal before
transmitting it to the phone in order to provide encryption and amplification. However, the signal is still transmitted as a varying
voltage, recorded by an app, and decoded into binary digits that represent encrypted or unencrypted data. In the case of encrypted
data, the encrypted bits can then be sent to external servers for decryption.

Fig. 1. (Left) The model S2 Square Reader. The device consists of a magnetic tape head connected directly to the microphone and ground terminals of a 3.5mm
audio jack. (Center) The model S3 Square Reader. Circuitry including a small microprocessor powered by a battery encrypts card swipes before outputting data
to the audio jack. (Right) The model S4 Square Reader. Encryption circuitry is smaller and no longer requires a battery. (Not shown) The model S1 Square
Reader.

III. VULNERABILITIES

In our analysis, we have uncovered several attack vectors in software and hardware: (1) we have identified that deprecated
Readers are still usable in the wild despite lacking encryption; (2) we have discovered a way to perform a playback attack and
initiate unauthorized transactions; (3) we have implemented a hardware encryption bypass that allows a malicious merchant to
successfully convert the latest encrypted Square Reader, the model S4, into an unencrypted Reader without tamper evidence.

A. Software

Given the unencrypted, passive nature of the initial Square Reader device and related prior work discussed in Section V, we
first set out to determine the relevancy of attacks on old Square Readers, which we were able to acquire with non-trivial effort on
eBay. Since Square officially deprecates old Reader devices and replaces them with new models for free [13], we expected the
old, unencrypted Readers would fail when used with the most recent Square Register app. Surprisingly, we found that original
Reader devices still worked with the Register app despite their official deprecation. That is, merchants with unencrypted Readers
are still able to process transactions normally.

Incomplete deprecation of old Reader devices exposes merchants and customers to many of the attack vectors outlined by
Frisby et al [14], as discussed in Section V, including malicious operating systems and fake point-of-sale apps. In some cases,

merchants may not be aware of an attack, for example if using a compromised mobile device. However, it is possible for a
malicious merchant to intentionally skim credit card information with an unencrypted reader in day-to-day operations if the
merchant is able to record swipes of cards.

Next we tested for replay vulnerabilities in the current, encrypted model of the Square Reader, the S4 model, along with
the official Square Register app. We first recorded several card swipes using the Reader connected to a computer’s microphone
input. We analyzed the swipe audio from the S4 Reader with the open-source decoding tool SWipe to confirm that the swipes
were encrypted [15]. Next we implemented a circuit to feed audio from a computer through a phone’s microphone port to the
Square app [16]. We attempted to play back the recorded swipes to the Square app running on a smartphone. We found that an
initial playback of the swipe successfully initiated a transaction as expected, but that further replays of the recorded audio were
rejected. Thus we were able to confirm that Square takes measures to prevent against simple replay attacks.

To verify that replay attack prevention is properly implemented using a transaction counter at the device level [17], we
attempted to confirm that replayed swipes were rejected based on their decoded digital contents, i.e. the transaction counter, as
opposed to their analog signature or some hash thereof. We modified the swipe waveforms so that the decoded bits were identical
but the waveform peaks different using Audacity [18]. The modified swipes were rejected when replayed, but the Square Register
app still displayed the associated credit card’s last four digits before denying the transaction. Thus we are confident that features
such as amplitude and frequency of the analog signal are not used to distinguish swipes from each other, leaving the digital
decoded bits as the distinguishing factors.

However, in our analysis of replay attacks, we noticed that we were able to play back recorded swipes out of order. That is,
if we sequentially recorded ten swipes labeled 1 through 10 on a computer, we were able to play back swipe 10 and then swipe
1, and both would respectively be accepted. The implication is that although each Reader device contains a transaction counter,
Square is not checking whether swipes decrypted on its servers are occurring in the proper order. It is thus possible to stockpile
the audio recordings of encrypted swipes and later play them back to initiate transactions, even many days after the swipes are
recorded, and even after having processed an arbitrary number of transactions with the same reader in the intervening days.

As a concrete example of an attack based on this vulnerability, consider a malicious merchant Alice and a customer Bob.
Bob attempts to make a $5 purchase from Alice, who accepts payments with Square. Alice then opens a recording application
on her phone, takes Bob’s credit card, and swipes it through the card reader dongle, pretending to attempt a transaction in the
Register app. Having recorded a swipe, Alice exits the recording app, quickly switches to the Square Register app, initiates a
transaction for $5, and charges Bob by swiping again. To Bob, it appears his card was simply misread on the first swipe, an
error he accepts without question. However, many days or weeks later, Alice plays back the stockpiled swipe to complete a $500
transaction on Bob’s card. Bob is not expecting the transaction at this time and may or may not notice it occur.

We have designed an iOS application, “Swordphish,” that facilitates exploitation of this vulnerability by recording Square
Reader swipes and transmitting the audio to an external server for later playback into the Square app to initiate transactions.
The app also utilizes a server to process the recorded audio and decode it into credit card information if the decoded bits are
unencrypted.

Fig. 2. (Left) Swordphish records swipe audio and sends it to an external server for storage. If the encoded data is unencrypted, the server extracts available
credit card information. (Center) An incomplete swipe with an unencrypted Square Reader yields partial credit card information. (Right) A complete swipe with
the same Reader yields complete credit card information.

Of course, it is also possible that this vulnerability could be exploited by a malicious attacker unknown to the merchant.
Consider a modified version of the Square Register app that occasionally fakes an incomplete card swipe and sends the decoded,
encrypted bits to an attacker’s external server. Especially when combined with application signing vulnerabilities, such an
application could be delivered to a victim merchant’s phone and used to collect swipes of customers’ cards that could then be
played back to initiate unauthorized transactions.

B. Hardware

Fig. 3. The location of the model S4
Square Reader device encryption chip.

After analyzing software issues with Square Reader devices, we set out to examine the
Reader hardware. The current Square Readers implement time-of-swipe encryption via a chip
located inside the Reader as shown in Figure 3. This chip encrypts credit card information
continually as the swipe takes place and passes it through the headphone jack into the
mobile device and Register app. If it were possible to break this encryption, a malicious
merchant could feasibly record a customer’s unencrypted credit card information for their
own purposes while still maintaining the implicit trust associated with an encrypted device.

In order to analyze the model S4 Reader, we opened it and inspected the internals.
Initially, we were unable to open the Reader without effectively destroying the outer casing.
The outer casing of the Reader is made up of a soft, white plastic which easily deforms under
pressure from external tools that may be used for prying the assembly open such as knives,
screwdrivers, etc. The Reader is designed to strongly defend against hardware tampering, or
at the very least make it extremely evident. Breakages upon opening the Reader included
tearing the headphone jack off of the ribbon cable, tearing the ribbon cable off of the spring
base, and permanently deforming the external housing. The case is secured internally with
several clips, pins, and adhesive.

Once we were able to successfully open a Square Reader without damaging the internal
hardware, which took several careful tries, we inspected the hardware assembly. A ribbon cable connects all main hardware
components together: The magnetic head is centered within the assembly and is connected to the chip responsible for encryption,
which in turn is connected to the headphone jack. Along the right-hand side of the magnetic head on the ribbon cable are
two parallel sets of connection points. Upon probing them with a voltmeter, we were able to identify that the left-hand set of
connection points correspond to the magnetic head’s tracks, while the right-hand set correspond to the encryption chip’s output.
Therefore, the latter set of connection points are positioned between the encryption chip and the headphone jack. By jumpering
from a connection point corresponding to the magnetic head’s tracks to one corresponding to the headphone jack, we are able
to bypass the hardware encryption chip.

However, this does not completely downgrade the Reader to an unencrypted version. We were able to identify that noise
interference is still present in the signal despite the bypass of the encryption chip. Originally, we attempted to merely cut the
portion of the ribbon cable with the encryption chip off, but this created an open circuit in the system by removing other
important circuitry. Instead, we applied even, medium pressure lengthwise along the chip and were able to effectively crush
the chip to remove all extraneous noise. Alternatively, we were able to produce similar results in an easier fashion by severing
the connections to the encryption chip located on the opposing side of the ribbon cable. Both of these methods resulted in a
completely unencrypted and useable Square Reader.

Fig. 4. The model S4 Square Reader
with hardware encryption bypass imple-
mented.

In order to identify hardware encryption bypass as a potential attack vector, we
constructed a simple, two-phase system. First, by jumpering from the magnetic head reader
to the input of the headphone jack directly, as shown in Figure 4, we are able to bypass the
encryption chip but not remove the noise associated with the encryption circuitry. Second,
in order to remove this noise, it is necessary to crush the encryption chip with a pair
of pliers or sever the connection to the encryption chip with a pair of wire cutters. By
placing medium pressure lengthwise along the encryption chip, it is possible to break it but
still maintain the connections necessary to successfully read a swipe. Alternatively, placing
medium pressure lengthwise along the ribbon cable on the opposite side to the encryption
chip successfully breaks the connections to the chip while still maintaining the connections
necessary to successfully read a swipe. These two alterations remove the hardware encryption
and convert the model S4 Square Reader into an unencrypted device.

Due to Square’s current tamper-evident plastic, it is extremely difficult, if nearly
impossible, to open a Reader without destroying at least one half of the plastic container.
Therefore, the easiest solution we found was to harvest one back piece and one front piece
from two Square Readers. We mangled the front piece of one Reader in order to obtain a
pristine back piece, then sacrificed the back piece on a separate Reader to obtain a pristine
front piece. Once we secured these pieces and implemented the hardware encryption bypass,
we were able to reconstruct the assembly using superglue with minimal tamper evidence.

A merchant is capable of utilizing the hardware encryption bypass to downgrade the S4 model. By using Swordphish to
record the unencrypted swipes in conjunction with the downgraded S4 model, a malicious merchant is capable of surreptitiously
logging a customers credit card information for use later in any way the merchant deems fit. Meanwhile, the customer remains
unaware due to their trust in the Square Reader encryption.

IV. COUNTERMEASURES

A. Software

One of the simplest and most efficient ways to increase the security and integrity of the entire Square transaction system is to
enforce deprecation of the old models of Square Readers, i.e. the unencrypted models that can still be used to initiate transactions
and that provide easy access to credit card information. Until May 2015, Square claimed that “All previous readers continue to
be secure,” [19] however, in Section III-A we confirmed the lack of encryption of earlier Reader models and demonstrated their
resulting insecurity. As long as deprecation of unencrypted Square Readers remains unenforced, malicious users have an easy
way of acquiring credit card information in the form of audio data [11][20][21]. It is unclear why exactly Square hasn’t enforced
the deprecation of the old readers; their choice could be a purely business decision to protect against losing customers unwilling
to migrate to a newer model of the Reader, or could be motivated by a software constraint preventing a complete upgrade.

Fig. 5. In order to properly implement
time-of-swipe encryption, Square should
move the encryption chip to the mag-
netic head as shown.

As for protecting against stockpiling encrypted swipe data from newer Reader devices,
implementing and enforcing a transaction counter should prove effective. Enforcing such a
transaction counter would involve preventing Square’s servers from accepting out-of-order
transactions. The S4 model of the Square Reader seems to contain a transaction counter that
is unique to a single Reader device and is sent to Square’s servers along with each encrypted
swipe. However, Square does not currently verify that the transaction count of an arriving
transaction’s swipe is greater than that of the last swipe processed by their infrastructure.
This lack of verification allows for the stockpiling attack described in Section III-A.

B. Hardware

In order to prevent the hardware encryption bypass in the future, Square should mount
the encryption chip directly on the magnetic head. By currently placing the chip directly
on the ribbon cable, the Reader is vulnerable to attacks that directly affect the encryption
but do not directly affect the ability to record swipes. By designing the magnetic head with
the chip directly built in, the encryption would occur precisely at the point-of-swipe. This
way, whenever someone attempted to remove or somehow damage the encryption chip, the
magnetic head would be permanently damaged. This would prevent the Square Reader from
malicious exploitation via the damaging or destruction of the chip.

V. RELATED WORK

Much prior work has been conducted on traditional point-of-sale (POS) devices and systems, which we distinguish from
mobile ones. Traditional POS devices tend to be large, are usually mounted to a table or other surface, and are typically found
in larger businesses. Mobile POS devices, in contrast, are typically small dongles or Unix-based systems that are connected to
a host smartphone directly. In our summary of related work we focus specifically on mobile POS devices.

In 2011, Adam Laurie and Zac Franken of Aperture Labs demonstrated the misuse of the Square Register app by passing
credit card information through the headphone jack and into the app without a Square Reader [22]. Their goal was to show how
a malicious user could purchase credit card information online and launder it with the Square app to convert stolen card data
into cash. Since Square requires merchant verification, we expect this attack to be limited and traceable in practice.

In 2012, Frisby et al. [14] performed a security analysis of multiple smartphone point-of-sale (POS) devices, which they
dubbed audio-jack magnetic stripe readers (AMSRs), and their associated apps. They identified several potential AMSR attack
vectors, including network adversaries, fake point-of-sale apps, malicious operating systems, third-party apps, firmware, and
hardware. In analyzing the Square Reader, they confirmed that earlier devices are unencrypted and thus exposed to attack from
malicious operating systems. They further found that Square added encryption to later devices with reasonable protections against
firmware tampering.

During Blackhat 2014, Nils & Jon Butler presented on mobile POS vulnerabilities, concentrating on “Linux devices, which
you pair with a mobile device” [23]. They mentioned Square and other dongles very briefly, calling them “mobile skimming
devices” and saying that “swiping your card information into some dude’s phone is not a great idea.” However, they revealed a
number of attack vectors on Unix mobile POS devices that do not fall within the scope of our analysis.

VI. CONCLUSION

We have examined the security of the Square Reader, one of many mobile card-reading devices designed to allow merchants
to more easily enter the market of processing transactions. In our analysis, we have demonstrated a number of vulnerabilities
in the Square Reader, including unenforced deprecation of old hardware, allowance of out-of-order transactions, and insufficient
tamper-proof hardware features. We suggest that similar attacks could be performed on other mobile point-of-sale competing
systems such as Intuit GoPayments and PayPal Here, which utilize similar end-to-end encryption [2][24]. We emphasize that
mobile card-reading devices face additional challenges beyond traditional point-of-sale hardware, given that they are smaller,
cheaper, and compatible with commodity hardware. These challenges are manifest in the vulnerabilities that we have identified
and in the responses we received to our disclosure reports outlined in Section VII.

VII. DISCLOSURE

In January 2015, we contacted Square about the software vulnerability described in Section III-A, filing a bug report and
suggesting that they enforce transaction counters on their servers. In the following dialogue it became apparent there are several
difficulties in doing so with Square’s current infrastructure. First, implementing a synchronized counter across the data centers in
several timezones is a challenging problem which Square claimed was delaying a timely fix. Next, Square offers a feature where
users can store transactions offline and then upload and process them the next time the user goes online. Square claimed this
feature further complicated the possibility of enforcing a transaction counter, and opted to simply use out-of-order transactions
as a metric in fraud search and investigation as opposed to implementing hard restrictions on out-of-order transactions. As of
May 2015, Square has marked the report as resolved and awarded a bounty for it.

Also in January 2015, we filed a bug report about the ability to bypass encryption circuitry of the S4 Reader without tamper
evidence. Square claimed to be aware that S4 Readers may be modified as described in Section III-B, but did not triage the bug
or indicate they would take any steps to fix the vulnerability.

ACKNOWLEDGMENT

We would like to thank Prof. Ari Trachtenberg for his suggestions of potential attack vectors, assistance in editing of the final
paper, and guidance in disclosing our findings to Square and the security community.

We would like to acknowledge the assistance of William Vangos on an earlier version of our analysis.

REFERENCES

[1] “Square: Credit card processing & business solutions.” [Online]. Available: https://squareup.com/
[2] A. West, “What the paypal here mobile payment system promises,” 2012. [Online]. Available: http://www.pcworld.com/article/252962/what the paypal

here mobile payment system promises.html
[3] “Intuit: Easy mobile credit card processing.” [Online]. Available: https://payments.intuit.com/mobile-credit-card-processing/
[4] S. Buhr, “Square closes $150 million round at $6 billion valuation,” 2014. [Online]. Available: http://techcrunch.com/2014/10/05/

square-closes-150-round-at-6-billion-valuation/
[5] O. Kharif, “Square finds itself encircled,” 2014. [Online]. Available: http://www.bloomberg.com/bw/articles/2014-10-30/

square-mobile-payments-market-catches-up-to-and-passes-pioneer
[6] “Square sellers just made $100m in sales in one day.” [Online]. Available: https://squareup.com/townsquare/100m-day/
[7] “Demo of square at sxsw,” 2010. [Online]. Available: https://vimeo.com/10216371/
[8] J. Carr, “New square credit card readers begin to arrive,” 2010. [Online]. Available: http://eciov.com/tech/new-square-credit-card-readers-begin-to-arrive/
[9] R. Agrawal, “Square adds encryption to its square reader,” 2012. [Online]. Available: http://venturebeat.com/2012/03/26/

square-adds-encryption-to-its-square-reader/
[10] N. Lee, “Square reveals thinner and more accurate mobile credit card reader,” 2013. [Online]. Available: http://www.engadget.com/2013/12/09/

new-square-reader/
[11] A. D. Hart, “An open letter to the payment industry.” [Online]. Available: http://www.magtek.com/V2/an-open-letter-to-the-payment-industry/
[12] “Square - hackerone.” [Online]. Available: https://hackerone.com/square
[13] S. Guarino, “Square notifying existing customers to update new card reader for free.” [Online]. Available: http://9to5mac.com/2014/03/29/

square-notifying-existing-customers-to-update-to-new-card-reader-for-free/
[14] W. Frisby, B. Moench, B. Recht, and T. Ristenpart, “Security analysis of smartphone point-of-sale systems,” in 6th USENIX Workshop on Offensive

Technologies. USENIX, 2012.
[15] J. Malone, “Swipe.” [Online]. Available: https://github.com/ieatlint/SWipe/
[16] T. Engdahl, “Connecting speaker signals to line level inputs,” 1997. [Online]. Available: http://www.epanorama.net/circuits/speaker to line.html/
[17] J. Stapleton, Security without Obscurity: A Guide to Confidentiality, Authentication, and Integrity. Auerbach Publications, 2014.
[18] “Audacity.” [Online]. Available: http://audacity.sourceforge.net/
[19] “Square reader options,” May 2015. [Online]. Available: https://squareup.com/help/us/en/article/5202-square-reader-options/
[20] M. J. Schwartz, “ipad credit card reader hacked as skimmer,” 2011. [Online]. Available: http://www.darkreading.com/vulnerabilities-and-threats/

ipad-credit-card-reader-hacked-as-skimmer/d/d-id/1099397
[21] A. Bromberg, “Weekend project: Hacking the square reader,” 2013. [Online]. Available: http://andybromberg.com/credit-cards/
[22] P. Roberts, “Researchers: Square card reader provides straight line to illicit cash?” 2011. [Online]. Available: http://threatpost.com/

researchers-square-card-reader-provides-straight-line-illicit-cash-080411/75513
[23] Nils and J. Butler, “Mission mpossible,” 2014. [Online]. Available: https://www.youtube.com/watch?v=iwOP1hoVJEE
[24] “Gopayment goes global,” 2012. [Online]. Available: http://www.intuit.com/company/press-room/press-releases/

