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Overview 
Use-after-frees (UAF) are the vulnerability class du jour for exploit authors targeting 
Microsoft Internet Explorer over the last several years. And why not? Failed reference 
counting within the browser and the evolution of document object model-based 
(DOM) fuzzers facilitated the increased discovery of this issue. Since the beginning of 
2014, Microsoft has corrected hundreds of vulnerabilities within their flagship browser 
with a majority of these issues being use-after-free conditions. To make matters 
worse, exploit authors can use certain UAF vulnerabilities not only to achieve arbitrary 
code execution, but also to bypass exploit mitigations like Data Execution Prevention 
(DEP) and Address Space Layout Randomization (ASLR).   

However, Microsoft is not taking this assault on their software lying down.  In the 
summer of 2014, Microsoft silently introduced two new exploit mitigations into their 
browser to increase the complexity of successfully exploiting a use-after-free 
vulnerability.  June’s patch (MS14-035) introduced a separate heap, called Isolated 
Heap, which handles most of the DOM and supporting objects.  July’s patch (MS14-
037) introduced a new strategy for freeing memory on the heap called 
MemoryProtection.  In August and September, Microsoft made some minor updates to 
both of the defenses to increase coverage and improve performance.  These 
mitigations had an immediate impact on the use-after-free landscape.  Researchers 
were left wondering what techniques would be killed in the next patch release. 

This paper covers the evolution of the Isolated Heap and MemoryProtection 
mitigations, examines how they operate, and studies their weaknesses. It outlines 
techniques and steps an attacker must take to attack these mitigations to gain code 
execution on use-after-free vulnerabilities.  It describes how an attacker can use 
MemoryProtection as an oracle to determine the address at which a module will be 
loaded to bypass ASLR. Finally, additional recommended defenses are laid out to 
further harden Internet Explorer from these new attack vectors. 

MemoryProtection 
MemoryProtection is a UAF mitigation, first introduced in MS14-037 (July 2014). This 
mitigation operates by preventing memory blocks from being deallocated as long as 
they are being referenced directly on the stack. The August 2014 patch took this one 
step further and additionally checks for pointers residing in processor registers in 
addition to the stack. MemoryProtection operates by substituting a new 
function - ProtectedFree - that is called in place of HeapFree. Instead of calling 
HeapFree on the block to be freed, ProtectedFree adds the block to a per-thread list 
of blocks waiting to be freed (the “wait list”). Each entry on the wait list is a descriptor 
for a memory block recording the block’s base address, its size, and whether the block 
is on the Isolated Heap or the regular process heap. At the time ProtectedFree adds 
the block to the wait list, ProtectedFree also overwrites the contents of the memory 
block with zeroes. As long as the block remains on the wait list, it will remain filled 
with zeroes. 

In order to allow blocks to eventually become deallocated, ProtectedFree performs 
periodic reclamation of the blocks on the wait list. It is very important to note that the 
reclamation always occurs before the new block is added to the wait list. Generally, 
reclamation is performed only after new blocks having a total aggregate size of 
100,000 bytes have been added to the wait list. The flowchart shows the behavior of 
ProtectedFree after the September 2014 patch. As shown in the flowchart, 
ProtectedFree will perform a reclamation sweep before the 100,000-byte threshold Figure 1 MemoryProtection Flow Chart 
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is reached if it finds that the buffer allocated to store the wait list data is already full. 
Since the buffer is initially created large enough to hold 4096 entries (and is grown as 
necessary but is never shrunk), this condition will only come into play if the wait list 
contains a very large number of blocks. In practice, the techniques described below 
can be used easily to keep the wait list short, so we will focus only on the effects of 
the 100,000-byte threshold.  

Reclamation consists of traversing the blocks on the wait list and deallocating all 
blocks not currently being referenced on the current thread’s stack, nor in the current 
thread’s processor registers. A “reference” consists of any pointer value which points 
either to the beginning of the block or to any memory location falling within the 
block’s address range. In addition, an unconditional reclamation step is performed 
periodically. This occurs each time Internet Explorer’s WndProc is entered to service a 
message for the thread’s main window.1 At that time, the entire wait list is emptied 
and all waiting blocks are returned to the heap manager. The function performing this 
action is MemoryProtection::CMemoryProtector::ReclaimMemoryWithoutProtection. 

For efficiency, the wait list is rearranged in certain ways while performing reclamation 
sweeps. Therefore blocks are not necessarily freed in order of increasing address, nor 
are they always freed in the same order in which they are placed on the wait list. 

This mitigation is highly effective against any UAF in which a pointer to the freed block 
remains on the stack (and/or in registers) for the entire period of time from the free 
until the erroneous reuse. MemoryProtection then guarantees that the block will 
remain on the wait list for the entire time period until reuse, and will remain filled with 
zeroes. This leaves an attacker with no means to control the contents of the freed 
block before it is reused. 

MemoryProtection will also disrupt the exploitation of other UAFs not falling into the 
above category. In this case the mitigation is not absolute; we can break down the 
challenges that MemoryProtection presents to the attacker as follows: 

1. Deallocation Delay  

Whereas, before MemoryProtection, a memory block would have been 
deallocated immediately via a call to HeapFree, MemoryProtection delays 
the deallocation until the reclamation sweep is performed. 

2. Non-determinism due to “stack junk” 

A block will sometimes unexpectedly survive a sweep because the stack 
happened to contain a value that equates to a pointer into the block. This 
value may be a non-pointer that happens by chance to match the block’s 
address, or it might be a stale pointer that is left over in a “junk” stack region 
(a stack buffer that has been allocated but not cleared of its former 
contents). Although it is a low-probability event for this to affect the 
particular block involved in our UAF, this somewhat non-deterministic 
behavior of MemoryProtection exacerbates the next challenges in this list.  

3. Greater complexity in determining the deallocation time 

MemoryProtection performs a reclamation sweep when the wait list has 
grown to a size of 100,000 bytes waiting to be freed. This may not happen 
until there are a very large number of blocks on the wait list, so predicting 
when the sweep will occur is not straightforward.  

4. More complex heap manager behavior at deallocation time 

                                                                            
1 A later patch rendered this non-functional, and it has remained this way through the current writing in June 2015.  
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Before MemoryProtection, an attacker could trigger the deallocation of the 
desired object (generally via some form of script action), and this would 
result in a call to HeapFree for that object and sometimes a few others (all 
depending upon what script action is performed in that particular case). 
With MemoryProtection, when the block is deallocated, that deallocation 
takes place together with the deallocation of all the other blocks on the wait 
list that are ready for deallocation – potentially many. Furthermore, due to 
reordering of the wait list, it is generally impossible to predict the order in 
which HeapFree is called on those blocks. In this regard, the non-
determinism described above in item 2 is also relevant. The net result is that, 
at the time of deallocation, heap blocks may coalesce in a way that is 
challenging for the attacker to predict. 

None of the above challenges is insurmountable. Following are techniques an attacker 
may use to minimize the effect of MemoryProtection on UAF exploit reliability - in 
those cases in which MemoryProtection does not provide complete mitigation.  

Elementary techniques 
The most elementary technique for forcing MemoryProtection to deallocate our 
desired block is to apply some memory pressure. This can be done using a generic 
type of memory pressuring loop often used in exploits for purposes such as forcing 
garbage collection. By allocating and then freeing 100,000 bytes worth of objects 
(plus one additional object after this limit is reached), the attacker can ensure that 
MemoryProtection performs a reclamation sweep. 

// Code to free some object goes here 
... 
// End of code to free the object 
 
 
 
// Pressuring loop to force reclamation 
var n = 100000 / 0x34 + 1; 
for (var i = 0; i < n; i++) 
{ 
 document.createElement("div"); 
} 
CollectGarbage(); 
 
 
 
// Code to reuse the object follows 
... 

Figure 2 Pressuring code example 

This technique is a rather blunt instrument. It solves the problem of the delayed 
deallocation (item 1 above), but doesn’t help much with the others. Together with our 
desired object many other objects are deallocated both before and after in an 
unpredictable pattern. This complex and non-deterministic behavior leads to less 
reliability when attempting to exercise control over the contents of the freed memory. 

There is a second elementary technique that, when available, is generally superior to 
the memory pressure technique. Recall that MemoryProtection performs an 
unconditional reclamation sweep when WndProc is entered to service a message for 
the thread’s main window. If we interrupt our exploit code with a delay that is long 
enough to ensure a new call to WndProc, then MemoryProtection will deallocate all the 
blocks on the wait list, even though the wait list has not grown to a large size. It is 
sometimes also possible to place a delay before we free our object, to ensure that the 
wait list is relatively clear of extraneous objects. This technique is not compatible with 
all vulnerabilities because stopping and resuming execution at a later time may have 
other effects that interfere with the ability to trigger the vulnerability.  
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function step1() { 
 // Setup code goes here 
 ... 
 // End of setup code 
 
 // Delay the next step so WndProc will re-enter, 
 // clearing the wait list 
 
 window.setTimeout(step2, 3000); 
} 
 
 
function step2() { 
 // Code to free some object goes here 
 ... 
 // End of code to free the object 
 
 // Delay the next step so WndProc will re-enter, 
 // clearing the wait list and deallocating our 
 // object 
 
 window.setTimeout(step3, 3000); 
} 
 
 
function step3() { 

// Code to reuse the object follows 
... 

 
} 

Figure 3 Code for delaying until WinProc-based Reclamation 

When available, this is a fairly clean solution that largely minimizes the number of 
extraneous objects deallocated together with our desired object. Yet there is still a 
drawback to this technique. Delaying execution by using setTimeout creates an 
opportunity for additional unpredictable code paths to execute on the current thread. 
This can result in unwanted and unpredictable modifications to the heap layout. For 
maximum exploit reliability, the code path should remain as tightly constrained as 
possible. Referring back to our list of challenges posed by MemoryProtection, in this 
case we have successfully addressed problems 1 through 3, but problem 4 (lack of 
stable heap state) still presents a difficulty. 

Advanced techniques 
Before one can proceed, it is important to review a key fact mentioned earlier. When 
ProtectedFree executes, it first checks the size of the wait list and performs a 
reclamation sweep if appropriate. Only afterwards does it add the current block to the 
wait list. Hence, when ProtectedFree is called to free a block at address A, the block 
at address A will definitely not be reclaimed during that call to ProtectedFree. On the 
contrary, upon return from ProtectedFree, the block at address A will always be on 
the wait list. Another key fact about MemoryProtection is that there is exactly one wait 
list maintained per thread. Even though some objects are allocated on the Isolated 
Heap and others are allocated on the regular process heap, both types of objects 
coexist within a single wait list. 

With these pieces of knowledge in hand, we can build a strategy for stabilizing the 
state of the current thread’s wait list. Our goal will be to construct a sequence of script 
actions that will reliably bring the wait list into some known state. Once we perform 
those steps, we can plan each of the remaining steps of exploitation with confidence 
that we know the state of the wait list at each step. 

To begin, suppose that we cause the allocation of a heap-based buffer of 100,000 
bytes or more, and then cause that buffer to be freed. Upon completion of the call to 
ProtectedFree for that buffer, we are assured that the buffer is present on the wait 
list. In this way, we are assured that the total size of the wait list is at least 100,000.  
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Figure 4 Sequence diagram to fill wait list 

For our next step we will allocate and free a heap-based buffer with some custom 
size s of our choosing. When MSHTML calls ProtectedFree to free this buffer, 
ProtectedFree will begin by detecting that the total size of the blocks on the wait list 
is at least 100,000, and will perform a reclamation sweep. After this sweep it will 
place our newly freed buffer on the wait list.  
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Figure 5 Sequence diagram for reclamation sweep and block add to wait list 

It is possible that some of the Xi blocks will survive the reclamation sweep. Those are 
the blocks that are referenced by stack frames higher up on the stack. In Fig. 5 we 
refer to these blocks as W1, W2, W3, ... We can safely assume that their total size is 
much less than 100,000 bytes. For any given attack scenario, their total size will fall 
within a predictable range, which can easily be determined experimentally. 
Furthermore, whatever their exact number and size, the fact that they are referenced 
higher up on the stack virtually guarantees that they will remain on the wait list for 
the remainder of the steps below, and HeapFree will not be called on those blocks. 
Since we can tell via experimentation the approximate total size of the blocks Wi, we 
can choose the size s appropriately so that the wait list at this stage has any desired 
total approximate size. 

At this point we have succeeded in bringing the wait list into an approximately known 
state. We are now ready to begin performing our desired heap operations for the 
purpose of exploitation. Suppose we wish to deallocate a block at address C. This may 
be in anticipation of triggering a UAF at that address, or it might be for the purpose of 
massaging the heap in preparation for a later attack. In either event, to reliably 
deallocate the block at address C, we first trigger a call to ProtectedFree for that 
block, and then allocate and free large buffers in order to force reclamation. The wait 
list at the time of reclamation may also contain the blocks Wi as above, but, as we 
have explained, the blocks Wi are extremely unlikely to participate in reclamation. The 
net effect is that we can perform our deallocation of the block at C without the 
interference of additional calls to HeapFree. While it is true that HeapFree will also be 
called for the large buffers, those buffers are unlikely to have a disruptive effect on 
the type of heap manipulation we are aiming for given their large size. In fact, if we so 
choose, we could make the large buffers 0.5 MB or larger in size; in that case, the 
large buffers would no longer reside in heap segments at all.
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Figure 6 Diagram of strategy for clean deallocation of a block at address C 

To put the above strategy into practice we need to identify a method of triggering, via 
script, the clean allocation and freeing (via ProtectedFree) of a buffer of arbitrary size. 
String buffers that are created and disposed of via SysAllocString / SysFreeString 
are not appropriate for use in this regard, because ProtectedFree is not called for 
those buffers. The class CStr defined in MSHTML comes to our aid. CStr performs 
allocation and freeing of string buffers, and those buffers are freed using 
ProtectedFree. Upon searching MSHTML for code that utilizes CStr, we find the 
method CElement::Var_getElementsByClassName. This method can be reached by 
invoking the DOM method getElementsByClassName on any HTML element. During 
execution, this method creates a CStr containing the string data that was passed as a 
parameter to getElementsByClassName, and later deletes that CStr. In this way, with a 
single call to getElementsByClassName, we accomplish our goal of allocating and 
freeing a buffer of arbitrary size. Furthermore, this method call does not result in any 
extraneous heap operations, as long as we first perform a priming procedure. The 
priming procedure simply makes an advance call to getElementsByClassName, using 
the exact parameter value we intend to pass later on, and hold on to a reference to 
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the method’s result. This advance call will result in several heap allocations. Then, 
when we call the method for a second time, the only heap operations that take place 
are the allocation and freeing (via ProtectedFree) of the buffer containing our 
specified string. 

One minor restriction to this technique is that getElementsByClassName will not use a 
CStr unless the parameter to getElementsByClassName has a string length of at least 
0x28 characters. CStr allocates heap memory of sufficient size to hold the characters 
in the string (two bytes per character, not including null termination) plus 6 additional 
bytes. Therefore the smallest heap buffer we can allocate using this technique is 
0x28*2+6 bytes or 0x56 bytes. There is no upper limit to the size of the heap buffer we 
can allocate. 

var oDiv1 = document.createElement('div'); 
 
// Advance call for string1 
window.ref1 = oDiv1.getElementsByClassName(string1); 
 
 
// Advance call for string2 
window.ref2 = oDiv1.getElementsByClassName(string2); 
 
// ... 
 
// Allocate/ProtectedFree a buffer with size of string1 
oDiv1.getElementsByClassName(string1); 
 
// ... 
 
// Allocate/ProtectedFree a buffer with size of string1 
oDiv1.getElementsByClassName(string1); 
 
// ... 
 
// Allocate/ProtectedFree a buffer with size of string2 
oDiv1.getElementsByClassName(string2); 

Figure 7 Buffer allocation/ProtectedFree code 

Using the techniques described, an attacker may arrange any desired pattern of heap 
allocations and deallocations. The complexity of deallocation behavior due to 
MemoryProtection has been removed. The attacker can control exactly when each 
deallocation takes place, and in what order, thus demonstrating we have overcome all 
four challenges that MemoryProtection offers. 

Final notes on MemoryProtection 
The problem of unpredictable ordering of deallocations (item 4) still remains, in 
certain cases, but to a minor degree. Consider the case of a UAF vulnerability in which 
the trigger for freeing the object is a script method that also has the effect of freeing 
many other objects. Those extraneous deallocations may make the attacker’s job a bit 
harder. Before MemoryProtection, though, they would at least occur in a deterministic 
order. MemoryProtection adds some non-determinism to the order in which those 
objects are deallocated. Because all those object frees occur within a single script 
method call, the attacker cannot force a deterministic deallocation order by 
interposing large buffer allocations/frees as described in the strategy above. This is a 
remaining challenge posed by MemoryProtection. It may be helpful to place a block of 
a carefully chosen size on the wait list before invoking the script method that 
performs the deallocations. The size of this block should be chosen so that the wait 
list will reach the reclamation threshold soon after the UAF block is freed. In that way, 
the deallocation of the UAF block will be mixed together with as few other 
deallocations as possible. The remaining blocks freed will then be placed on the wait 
list and remain there, perhaps until after the attack is complete. It is notable that this 
final technique gives the attacker a certain degree of control over memory 
deallocations that would not have been possible in the absence of MemoryProtection. 



Abusing Silent Mitigations  

Proof of Concept 
A proof-of-concept accompanies this paper, targeting Internet Explorer 11 on 
Windows 8.1 x64 at the September 2014 patch level. It is recommended to run this 
proof-of-concept on a machine with 2 GB or more of installed RAM. All heap flags 
should be in their default (off) state.   

This proof of concept demonstrates object control of ZDI-CAN-2433 (MSRC 20043, 
corrected in MS14-065), which is a use-after-free vulnerability where the object is 
located on the default process heap and partially protected via MemoryProtection.  

Isolated Heap 
Isolated heap was introduced in the June patches (MS14-035). Isolated Heap is a heap 
region created from the following: 

 

Figure 8 Code creating Isolated Heap 

Isolated heap is used to separate certain types of objects and certain allocations. The 
significance of isolated heaps from a defensive perspective is that it makes it harder 
for an attacker to fill a freed object that resides inside the isolate heap region with 
controlled values. Based on discussions with Microsoft, Isolated Heap is not 
considered a full exploit mitigation but it does increase the complexity of the exploit 
development. In a classic scenario where we have a typical UAF of an object that 
resides in the default process heap, one would usually fill the object with a string in 
various ways, for example: 

function _repeat(n,s) { return new Array(n+1).join(s);} 
 
var stuff = _repeat(10, unescape(“%CCCC%uCCCC”)); 
 
var divs = new Array(); 
 
for (var i=0; i < 0x1000; i++) 
 divs[i] = document.createElement(‘div’); 
 
for (var i=-; i < 0x1000; i++) 
 divs[i].className = stuff; 

Figure 9 Code demonstrating a typical UAF filling the object with a string 

Fig. 9 results in allocations being part of the process heap rather than the isolated 
heap (Fig, 10):  
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Figure 10 Code demonstrating the string as part of the process heap 

Type Confusion Bypass Technique 
It’s still possible to abuse isolated heaps, though it does not rely on filling the freed 
objects with strings or controlled values. The implementation currently isolates 
objects all together in a single isolated region. As the object’s type is not checked 
before access, attackers have the option of filling the freed object with another type 
of object of their choosing. Overwriting the freed object with an object of a different 
type will result in a type confusion condition.   

This type-confused object can be smaller or larger in size.  This fact is significant from 
an attacker’s perspective. It may aid the attacker by allowing them to control certain 
offsets within the reused object. For example, if the UAF vulnerability dereferences 
offset 0x30, then all that’s required is replacing the freed object with another object 
that contains a value at offset 0x30 that can be controlled or influenced by the 
attacker. 

The simplest way would be: 

1. Trigger freeing condition 

2. Replace object with different object using heap spray 

3. Trigger re-use using type-confused object 

In Figure 11, the CTableRow object on the left is overwritten with a CTrackElement. It 
demonstrates that it is possible to allocate smaller objects instead of the original 
object.  Once the object is reused, a type confusion condition will occur and the 
methods from the CTrackElement object will be used instead of the CTableRow 
elements.  
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Figure 11 Allocation of smaller objects rather than the original object  

Aligned Allocations Bypass Technique 
Allocating objects of different sizes instead of the original object can be problematic. 
The issue will be whether or not there’s enough space to allocate (in the case of a 
larger object). To solve this problem an attacker has to massage the heap in a way 
that will cause multiple frees, followed by coalescing the freed chunks together to 
have a single freed chunk that the attacker can allocate inside. 

 The simplest way would be: 
 

1. Trigger freeing condition 

2. Massage heap forcing multiple frees 

3. Coalesce heap to create larger freed chunk 

4. Replace object with different object using heap spray 

5. Trigger re-use using type-confused object 

In Figure 12, the CTableRow object on the left is overwritten with a CDOMTextNode 
followed by a CTrackElement. This can be helpful for an attacker, especially if 
necessary offsets are known. 
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Figure 12 Demonstration of object overwrite 

As a continuation of the example given above, consider a real UAF vulnerability 
scenario that dereferences offset 0x30. An attacker would try to fill out the freed 
object with a CDOMTextNode object. The reasoning is, at offset 0x30, the CDOMTextNode 
object contains the value 0x40000000. That value may be sprayed and the attacker 
may control the contents thus controlling the flow of execution. 

 

Figure 13 Offset dereferencing offset 0x30 

In this case we had a CDOMTextNode filled instead of the original object. Later on the 
re-use trigger dereferences offset 0x30 in the CDOMTextNode, which is 0x40000000.  

Misaligned allocations bypass technique 
The examples in the previous section rely on spraying an object to fill out the freed 
object. These methods may not work all the time, especially if the attacker cannot find 
an object with an offset they can control. For example consider a UAF bug that 
dereferences offset 0x1C. From an attacker’s perspective this can be problematic as it 
is likely hard to find an object to spray, with a controllable value at offset 0x1C. 

To solve this problem, an attacker can exploit the fact that objects in the Isolated 
Heap will not always have the same alignment. For example, if the attacker can 
influence the heap to coalesce some free chunks in one big chunk, and then spray 
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random objects inside the big free chunk, then they may be able to dereference a 
pointer from an element that resides within a misaligned object. 

For example: 

 

Figure 14 Object in freed chunk 

Checking where exactly EDI resides: 

 

 

Figure 15 EDI points inside freed chunk 

EDI is pointing somewhere inside the freed chunk. If the attacker were able to 
stabilize the heap in a way that would always provide a freed chunk of the same size, 
they would be able to point EDI (in this example) to an offset within a misaligned 
object. The pointer should then be pointing to an offset the attacker can control. 

In the example presented, the following code stabilizes the heap to have a freed 
chunk of size 0x110 available for an attacker to fill: 
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var objs = new Array(); 
 
for (var i; i < 0x1000; i++) 
 objs[i] = document.createElement(‘p’); 
 
for (var i; i < 0x1000; i++) 
 objs[i] = null; 
 
objs[i] = null; 
CollectGarbage(); 
 
var objs = new Array(); 
 
for (var i; i < 0x1000; i++) 
 objs[i] = document.createElement(‘video’); 

Figure 16 Creating freed chunk 

Immediately following the freed chunk availability, an attacker may spray objects. The 
following code sprays CButton and CTrackElement objects: 

var objs = new Array(); 
 
for (var i; i < 0x1000; i+=2) 
{ 
 objs[i] = document.createElement(‘button’); 
       objs[i+1] = document.createElement(‘track’); 
} 

Figure 17 Spray code 

When the spray is done and the re-use is triggered, we will have EDI pointing to an 
offset in the CButton object: 

 

Figure 18 Offset in the CButton object  
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In this case, EDI+0x1C lands at 0x12c00400 in the CButton object. This value can be 
sprayed easily with attacker controlled data and result in arbitrary code execution.  

Proof of Concept 
Two proofs-of-concept accompany this paper to demonstrate that these techniques 
work generically across the UAF vulnerability class. One targets ZDI-CAN-2545 
(corrected in MS14-080) on Internet Explorer 11 running Windows 8.1 x86 at the 
September 2014 patch level and the other targets ZDI-CAN-2495 (corrected in MS14-
052) on Internet Explorer 11 running Windows 8.1 x64 at the August 2014 patch level. 
It is recommended to run the first proof-of-concept on a machine with 2 cores and 1 
GB of installed RAM. It is recommended to run the second proof-of-concept on a 
machine with 2 cores and 2GB of installed RAM.  All heap flags should be in their 
default (off) state. Both leverage use-after-free vulnerabilities where the object is 
located on the Isolated Heap and partially protected via MemoryProtection. 

 

Figure 19 Controlled EIP using misaligned allocations 

Abusing MemoryProtection to bypass ASLR 

On 32-bit Internet Explorer, an attacker can use MemoryProtection as an oracle to 
determine the address at which a module will be loaded. 

The starting point for considering such an attack is the realization that when 
MemoryProtection searches the stack for outstanding pointers, it does not account 
for the semantics of the stack data it is examining. Instead it reads each DWORD found 
on the stack and evaluates it as a potential pointer. This fact makes it simple for an 
attacker to plant chosen integer data on the stack and thereby affect the behavior of 
MemoryProtection. The resulting behavior of MemoryProtection reveals whether the 
integer the attacker planted on the stack corresponds to an address of a block on the 
wait list. This suggests the possibility that we can use MemoryProtection to leak 
information about heap addresses. 

However, at this point we encounter an obstacle. While it is possible for script to affect 
the behavior of MemoryProtection, there is no apparent way for the behavior of 
MemoryProtection to affect script. In fact, MemoryProtection returns no information 
at all to its caller. The interaction between the attacker and MemoryProtection is a 
one-way street. To proceed, we must find some way for script to acquire information 
about the behavior of MemoryProtection, closing the feedback loop. 

A second problem is that there is no apparent advantage to the attacker from 
knowing the address of a memory block on which ProtectedFree has been called. 

We solve both these problems using a memory pressuring technique. Suppose that 
we consume memory such that large free regions of virtual addresses are in short 
supply. Then some operations requiring large allocations will fail. Those failures will 
result in JavaScript exceptions that can be detected by script. This constitutes a side 
channel through which script can learn about the state of the heap. By observing 
exactly which operations fail, script can gain knowledge about what heap 
deallocations have occurred, which in turn reveals information about how 
MemoryProtection has behaved. This closes the feedback loop, enabling the 
attacker's script to read back the results of its attempts to influence 
MemoryProtection. 
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By operating under a condition of low availability of large free address regions, we 
also solve the second problem, which is to find some use for knowing the address of a 
heap block on which ProtectedFree has been called. Once we determine this address, 
we can apply additional pressure to consume all other available large regions, 
deallocate the block whose address we know, and trigger the loading of a large new 
module into the process. The module will be forced to load at the address of the block 
with the known address because there are no other free regions large enough to 
accommodate the module. At this point we have bypassed ASLR. 

The attack involves numerous steps, but in practice it is quite reliable. A summary of 
the attack is as follows: 

1. Allocate memory in a pattern so that there are no large regions of free 
virtual address space except for two “holes”. One hole, which we will call A, 
is exactly the size of the module we plan to load. Hole B is larger than hole A, 
but less than twice the size of A. All other regions of free virtual address 
space are smaller than A. We aim to infer the address of A. Hole A (and 
certainly hole B) are larger than the MemoryProtection reclamation 
threshold size of 100,000 bytes. Holes A and B are not contiguous with each 
other. 

2. To consult the oracle to determine if address X is within hole A, place the 
integer value X on the stack, and perform the following steps while X 
appears on the stack: 

a. Allocate a buffer larger than A. Hole B will be filled. 

b. Deallocate the buffer (hole B). Hole B will be placed on the 
MemoryProtection wait list. 

c. Allocate a buffer the size of A. Hole A will be filled. (Since hole B is 
currently on the wait list, it is unavailable for this allocation.) 

d. Deallocate the buffer (hole A). MemoryProtection will perform 
reclamation and deallocate hole B. Hole A will be placed on the 
MemoryProtection wait list. 

e. Allocate a buffer larger than A. Hole B will be filled. 

f. Deallocate the buffer (hole B). MemoryProtection will perform 
reclamation, and will deallocate hole A, but only if X does not point 
anywhere within hole A. Hole B will be placed on the 
MemoryProtection wait list. 

g. Allocate a buffer the size of A. This allocation will fail if hole A has 
not been deallocated in step 2f. (Hole B is currently unavailable 
because it is on the wait list.) 

3. Perform cleanup steps to ensure that both hole A and hole B are 
deallocated in preparation for the next trial. 

4. Repeat steps 2-3 as necessary until the start address of A is determined. 

5. Allocate a buffer larger than A. Hole B will be filled. 

6. Load the desired module into memory. It will be forced to load into hole A. 
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Proof of Concept 
A proof-of-concept accompanies this paper, targeting Internet Explorer 11 on 
Windows 7 x86 at the September 2014 patch level. It reliably leaks the address of the 
module MF.dll. It is recommended to run this proof-of-concept on a machine with 2 
GB or more of installed RAM. All heap flags should be in their default (off) state. 

 

Figure 20 Leaked module load address 

Exploit 
An exploit accompanies this paper, which demonstrates the use of three of the 
techniques described. The exploit targets ZDI-CAN-2545 on Internet Explorer 11 
running Windows 7 x86 at the September 2014 patch level. It first abuses 
MemoryProtection to leak the base address of MF.dll.  After bypassing ASLR, it 
leverages a use-after-free vulnerability where the object is located on the Isolated 
Heap and protected via MemoryProtection.  After the object control is gained, the 
exploit uses the base address of the MF.dll to update a ROP chain.  Execution is 
transferred to the ROP chain, which bypasses DEP.  Finally, the exploit executes a 
benign calc shellcode to demonstrate arbitrary code execution. It is recommended to 
run it on a machine with 2 cores and 4GB of installed RAM. All heap flags should be in 
their default (off) state.  

Figure 21 Successful exploit attempt 
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Recommended defenses 

We recommend the following defenses to further strengthen the Isolated Heap and 
MemoryProtection mitigations. 

Additional heap partitioning 
Isolated Heap makes an attacker’s job much more difficult by making it impossible to 
allocate a buffer filled with attacker-crafted data in the location of a freed object (for 
those objects that are allocated on the Isolated Heap). Nonetheless, we have shown 
that Isolated Heap may be defeated through type confusion, particularly by allocating 
an object of a different type and with an attacker-controlled alignment. Also, UAFs for 
objects not on the Isolated Heap remain a problem, and attempting to remedy this by 
adding more types to the Isolated Heap only exacerbates the first weakness. 

In the extreme, it would be possible to completely eliminate UAF type confusion 
attacks by creating a separate heap for every type of object. This would also make it 
challenging for an attacker to control alignment, since all objects on a heap would 
have the same type and hence would all have the same size, leading to a 
homogenous heap in which there are no variations in alignment. This would be a 
highly effective defense against UAFs but it remains to be seen if the overhead 
involved is acceptable. 

We believe it is possible to make UAF-based attacks impractical by creating a modest 
number of heaps and applying a “stretching” strategy, as follows: 

Upon startup of each Internet Explorer process, the process creates 𝑛 separate heaps, 
where 𝑛 might be approximately 32. This yields 𝑛 different heap handles. Next it 
allocates an array with one entry per heap object type. Each array element has 
storage for a heap handle. Internet Explorer then iterates over the array, filling each 
element with a heap handle chosen randomly from among the 𝑛 heap handles 
created. This completes the startup tasks for the isolated heaps. When performing a 
heap allocation / free, Internet Explorer retrieves the heap handle from the 
appropriate index within the array according to the type of object being allocated or 
deallocated, and uses that handle in the call to HeapAlloc/ProtectedFree. 
(MemoryProtection would need to be modified to store the heap handle in the wait list 
together with the block’s address.) 

When conducting a UAF-based type confusion attack, an attacker needs to choose a 
new type of object to allocate in place of the original object; this must be chosen 
carefully so as to result in an exploitable condition such as a dereference of a 
predictable integer value. The new object type must be one that resides on the same 
heap as the original object type. It must also be a type the attacker is able to 
instantiate from script. Since there are now 𝑛 separate heaps, it will be less likely that 
such a type exists. Furthermore, even when it does exist, an exploit writer cannot rely 
upon its existence because the random assignment of types to heaps is different with 
every browser process created. 

Suppose the attacker can identify several different types that are appropriate for 
performing the type confusion attack (leaving aside the consideration of whether they 
will be located on the correct heap.) Suppose that all those types can be used 
interchangeably in an attack, so that the attacker can try spraying all of them. Let 𝑡 
represent the number of different appropriate types found. The number 𝑡 is likely to 
be very small (we will discuss this point further on). The probability of a UAF attack 
succeeding using a single replacement type is (at most) the probability that the 
replacement type resides on the same type as the original object; this probability is 
1/𝑛. The probability of failure is 1 − 1/𝑛. The probability that none of the 𝑡 types 
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results in a successful attack is 1 − !
!

!
. Because Internet Explorer will – by default – 

automatically retry loading a page up to three times following a crash, the attacker 
has three chances to conduct a successful attack. The probability that none of these 
are successful is: 

1 − !
!

! !
= 1 − !

!

!!
. 

The probability for an attack being successful is then (at most): 

1 − 1 − !
!

!!
. 

Plotting this probability (for 𝑛 = 32): 

 

Figure 22 Probability of successful attack 

This does not take into account any of the other factors that are likely to further 
degrade exploit reliability, such as the reliability of spraying and alignment techniques. 

As long as 𝑡 is small, exploit reliability is poor. Fielding an unreliable exploit brings risk 
of discovery of the zero-day vulnerability that the attacker obtained at high cost. 
When obtaining the vulnerability and fielding the exploit does not make economic or 
operational sense from the attacker’s perspective, the browser may be considered 
safe from UAF exploitation. 

In our experience it is challenging to find appropriate replacement types. For this 
reason we expect the value of 𝑡 to be very small. Additionally, the use of larger values 
of 𝑡, even when available, are problematic for the attacker. The more types of objects 
the attacker sprays, the greater the chance that those objects will interfere in 
unexpected ways with the precise address alignment necessary for the attack. This is 
another reason why the plot above overestimates the attacker’s chances. 

Finally, we recommend that all buffers remain on the regular process heap, and not 
be placed on any of the randomized isolated heaps described above1. 

Improvements to MemoryProtection 
In terms of preventing UAFs of objects having outstanding stack or register references, 
MemoryProtection is completely effective. We must address its potential for abuse as 
                                                                            
1 Aside from weakening security, placing buffers on an isolated heap would be ineffective in isolating them from other heaps. 
When buffers are deallocated their virtual address ranges are sometimes returned to a MEM_FREE state. Afterwards, those same 
addresses can become allocated as part of a different heap, breaking the intended isolation. The same is not true of scalar 
allocations, whose virtual addresses always remain in a MEM_COMMIT or MEM_RESERVE state and continue to belong to the 
same heap for the remaining lifespan of the process. 
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a memory address oracle, and also investigate if it can be easily modified to make 
exploitation more difficult where it does not provide complete mitigation. 

As shown in this paper, the ability to place large blocks on the MemoryProtection wait 
list is quite useful to an attacker in several ways. Opposite this, the benefits to the 
defender appear doubtful. The vast majority of UAFs that have affected Internet 
Explorer involve individual (scalar) objects, not arrays or buffers. Therefore, we 
recommend removing MemoryProtection from variable-size allocations. When freeing 
an array or buffer, code should call HeapFree and not ProtectedFree. Critically, this 
removes an attacker’s ability to use MemoryProtection as an oracle to determine a 
virtual address at which a module may later load. 

We have also demonstrated that an attacker can gain information about process 
memory state by watching for JavaScript exceptions resulting from memory 
allocation failures. The ability to handle such exceptions is also of general use to any 
attacker who wishes to exploit erroneous browser behavior that occurs under 
memory pressure. For example, the ASLR Bypass proof-of-concept relies on out-of-
memory exceptions not only as a side channel, but also as a way of determining when 
it has applied the correct amount of memory pressure for the attack to begin. It may 
be worth considering making such exceptions fatal to the browser process instead of 
passing them up to the web page script. 

Improvements to ASLR 
The discovery that script running within a browser can create a side channel and 
reveal secret ASLR information is a matter for concern. To safeguard against this type 
of attack it may be worth strengthening ASLR for the browser process. We propose a 
new enhancement to ASLR that can be made available to processes on an opt-in basis 
via the Image File Execution Options registry key. 

With this new option enabled, upon every attempt to load an ASLR-enabled module 
into the process, the kernel will first check whether sufficient address space exists for 
there to be at least minimal entropy in the module’s load address. If minimal entropy 
cannot be provided, then the load fails. 

Alternatively, if it is desired to implement this mitigation without making changes to 
the kernel, it could be implemented via a shim. Calls to LoadLibrary could be diverted 
to shim code that first attempts a VirtualAlloc call to allocate a region of addresses 
large enough to accommodate several different possible load locations for the 
module. If the allocation fails, the shim code should return an error. Otherwise, it 
should free the region and proceed with normal LoadLibrary operation. 

When implementing this entropy check, care should be taken to avoid a Time-of-
Check-Time-of-Use (TOC-TOU) weakness. If not implemented properly it may remain 
possible for the entropy check to succeed, only to have the attacker reduce available 
address space before the actual module load occurs. This is of particular concern if 
the entropy check is implemented in user mode. 

Conclusion 

Isolated Heap and MemoryProtection mitigations were introduced to increase the 
complexity of writing exploits against a large percentage of use-after-free 
vulnerabilities within Internet Explorer. Microsoft successfully disrupted the threat 
landscape and vulnerability marketplace by silently introducing these mitigations at a 
time when a great deal of attention was being paid to their flagship browser. These 
mitigations eliminate a subset of use-after-free vulnerabilities, but are ineffective or 
only partially effective in certain situations. The weaknesses documented within this 
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white paper can be leveraged by adversaries to gain code execution against use-
after-frees that are protected using these new mitigations. 

In addition to these weaknesses, MemoryProtection significantly weakens one of the 
browser’s strongest mitigations, which is ASLR. Using MemoryProtection as an oracle, 
it is possible for an attacker to determine the address at which a module will be 
loaded.  This is a key artifact that would normally require an attacker to leverage an 
information leak vulnerability, but which can now be obtained quite reliably using an 
attack against MemoryProtection. Further hardening Internet Explorer using the 
defenses provided can mitigate the attacks laid out in this paper.  Use-after-free 
mitigations are a welcome change for Internet Explorer and we hope our continued 
partnership with Microsoft will further secure the browser. 

Learn more at 
zerodayinitiative.com 
hp.com/go/hpsrblog 
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Appendix A - MemoryProtection Mitigation Decision 
Tree 

The following decision tree can be used to determine whether MemoryProtection fully 
mitigates a use-after-free vulnerability. 

The block that is freed and erroneously reused will be referred to as Block X. The 
thread that frees it will be referred to as Thread T. By “free”, we mean a call to 
ProtectedFree. By “deallocation”, we mean a call to HeapFree. 

1. Could the attacker cause thread T to call GlobalWndProc to service the 
thread’s main window in between the free of Block X and the reuse? If yes, 
Block X can be deallocated at this time. Consider the earliest time that this is 
possible and continue with step 3. If no, continue with step 2. 

2. Does a pointer to Block X (a pointer either to the start of block X or to any 
address within the range of Block X) exist on the stack of Thread T or in 
registers of Thread T at all times from the time that Block X is freed until the 
time it is reused? If yes, STOP. MemoryProtection fully mitigates. Otherwise 
continue with step 3. 

3. Could the attacker cause Thread T to perform a call to ProtectedFree 
(regardless of parameters) in between the free of Block X and the reuse, at 
a moment when there are no outstanding pointers to Block X on the stack 
or in registers of Thread T? If yes, Block X can be deallocated at this time. 
Consider the earliest possible time that Block X can be deallocated, taking 
into consideration the conclusion of both step 1 and step 3. In all cases 
continue with step 4. 

4. Has a time been identified, either in step 1 or in step 3, when Block X could 
be deallocated? If not, STOP. MemoryProtection fully mitigates. 

5. After the earliest time that Thread T could deallocate Block X (as in step 1 or 
step 3), but prior to the reuse of Block X, can an attacker gain script 
execution on Thread T? If yes, STOP. MemoryProtection DOES NOT fully 
mitigate. 

6. After the earliest time that Thread T could deallocate Block X (as in step 1 or 
step 3), but prior to the reuse of Block X, can an attacker cause a time delay 
long enough to execute script on a separate thread? If yes, STOP. 
MemoryProtection DOES NOT fully mitigate. 

7. While not absolute, mitigation is nonetheless very good, because little 
opportunity remains for an attacker to manipulate the contents of Block X 
before it is reused. 

Whenever the conclusion is that MemoryProtection DOES NOT fully mitigate, 
MemoryProtection is susceptible to memory pressuring techniques and should NOT 
be considered adequate mitigation, except where noted. 
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Appendix B – Research Timeline 

Date Event 

June 10 th,  2014 MS14-035 Isolated Heap Released 

June 20 th,  2014 Isolated Heap Proof of Concept Created 

July 8 th,  2014 MS14-037 MemoryProtection Released 

July 21 st,  2014 MemoryProtection Proof of Concept Created 

September 7 th,  2014 ASLR Bypass Proof of Concept Created 

October 6 th,  2014 Bounty Submission sent to Microsoft 

October 28 th,  2014 Follow-up Meeting with Microsoft 

November 21th,  2014 Winner Notification 

January,  2015 Charities Paid 

February 5 th,  2015 Public Announcement 

Apri l  22 nd,  2015 Microsoft states “Does not meet bar for servicing” 

June 19 th,  2015 Public Release at REcon 

 


