
 1

 July 20, 2015

 Abstract— In x86, beyond ring 0 lie the more privileged realms

of execution, where code is invisible to AV, we have unfettered

access to hardware, and can trivially preempt and modify the OS.

The architecture has heaped layers upon layers of protections on

these ‘negative’ rings, but 40 years of x86 evolution have left a

labyrinth of forgotten backdoors into the ultra-privileged modes.

Lost in this byzantine maze of decades-old architecture

improvements and patches, there lies a design flaw that’s gone

unnoticed for 20 years. Exploiting the vast, unexplored

wasteland of forgotten x86 features, we demonstrate how to jump

malicious code from ring 0 into the deepest, darkest realms of the

processor. The attack is performed with an architectural 0-day

built into the silicon itself, and directed against a uniquely

vulnerable string of code widely deployed on modern systems.

I. INTRODUCTION

HE x86 architecture is traditionally divided into “rings” of

privilege, with ring 3 designated the least privileged realm

of execution, and ring 0 the most. As the architecture evolved,

and deeper levels of privilege became necessary, additional

privilege separation mechanisms were developed to confine

and restrict ring 0 code from even more powerful modes of

execution, colloquially dubbed the negative rings. Ring -1,

more commonly known as the hypervisor, is capable of

preempting and isolating ring 0 code. Ring -2, System

Management Mode (SMM), can further preempt ring -1, has

unrestricted access to platform hardware, and in many cases

can bypass Trusted Execution Technology (TXT), positioning

it as the most privileged level of execution on modern x86

processors. Due to an extreme potential for abuse, SMM is

protected through innumerable security mechanisms.

However, the complexity of the architecture precludes the

simple separations found in higher rings, and SMM security

circumventions can be constructed through elaborate

configurations of unexpected architectural features.

II. SMM SECURITY OVERVIEW

The System Management Mode security model is based

upon the premise of a secure and protected region of memory,

the System Management RAM (SMRAM). In concept, SMM

code resides exclusively within SMRAM, and SMRAM is

accessible only while the processor is in SMM. In this setup,

SMM code can access everything else on the system, but

nothing else on the system can access SMM code. The

Memory Controller Hub (MCH), sitting between the processor

core and memory, enforces the SMRAM separation. If the

processor is not in SMM, the MCH blocks access to SMRAM.

If the processor is in SMM, the MCH allows it.

III. SECURITY VIOLATION

The x86 Local Advanced Programmable Interrupt

Controller (LAPIC, hereafter referred to simply as the APIC)

is tasked with managing interrupt events sent to the processor.

Originally a separate circuit, the APIC was integrated with the

processor silicon in the P5 microarchitecture. To allow rapid

access and flexibility in managing the APIC, the chip’s

registers were mapped into the processor’s memory at the

4KB region between 0xFEE00000 and 0xFEE01000. This

inadvertently caused conflicts with software already using this

memory range for other purposes. To resolve this issue, the

P6 family of processors extended the APIC, to allow

remapping the registers to another region of memory. This

capability corrected a rare issue in legacy systems, and is

neither used nor needed by modern processors; however,

modern processors continue to support the remappable APIC

feature.

The ancient ability to relocate the APIC registers introduces

a complex vulnerability in an entirely unrelated component of

the processor architecture – System Management Mode. If the

APIC register window is moved to overlap the SMRAM

range, memory accesses that should be sent to the MCH for

adjudication are instead prematurely accepted by the APIC,

and never received by the MCH. This provides ring 0 code a

small, indirect influence over SMM, and violates the

fundamental architectural separation of the two execution

modes.

IV. THE MEMORY SINKHOLE

The APIC register window is fixed to a 4KB range, and

required to be aligned on a 4KB boundary. The processor has

some limited control over the APIC registers, but the vast

majority of the 4KB register window is hardwired to 0. In

practice, this offers ring 0 code the ability to “sinkhole” a

single page of SMRAM by relocating the APIC – memory

reads from the region return 0, and memory writes are

discarded. The course granularity of the APIC position,

combined with the inability to effectively control the APIC

data, make the vulnerability extremely difficult, but not

impossible, to apply in practice.

V. THE SMM HANDLER

In order to escalate execution from ring 0 to the far more

powerful ring -2, it is useful to first examine SMM code for

attack vectors. SMM code is installed during the boot process

by system firmware, the diversity of which typically precludes

The Memory Sinkhole

Christopher Domas

xoreaxeaxeax@gmail.com

T

 2

a widespread attack. However, select components of system

firmware are derived from a set of Unified Extensible

Firmware Interface (UEFI) template code provided by Intel.

Such is the case for the initial SMM entry point, which is

almost universally deployed on modern systems. An attack

directed against this specific code sequence achieves the

widest possible coverage. The template SMM entry point is

provided in Figure 1.

Fig. 1. The template implementation of the SMM entry point, widely

deployed on modern systems. Commented for clarity.

There are 2 to 3 common variations to the SMM template

code shown above – it appears the SMM entry point has been

updated once or twice in the past decade, and the attack needs

to be adapted to other versions. The SMM handler entry

above appeared to be the most common in our research.

VI. PRIVILEGE ESCALATION

The template SMM handler is verifiably correct and secure

from any normal attack vector, but is, by pure coincidence,

uniquely vulnerable to the memory sinkhole attack. Critically,

the handler loads key data from a structure located at SMM

address 0xFB00. It does this at instructions 8003, 8022,

802A, 804B, and 805A above. As this structure resides inside

SMRAM, ring 0 cannot access or modify it through any

normal means. However, prior to the SMI, if the local APIC

is remapped to overlap this structure, these instructions will

fetch registers from the APIC, rather than data from memory.

These registers in the APIC are hardwired to 0, and cannot be

changed, meaning the reads at 8003, 8022, 802A, 804B, and

805A can be configured, from outside of SMM, to read only

0’s. This gives a very limited control over SMM execution,

but designed correctly, allows forcing a malformed GDT and

far jump generation in the SMM code, and causes execution to

jump outside of SMRAM, permitting malicious ring 0 code to

hijack SMM.

With the APIC configured to overlap the SMM structure at

0xFB00, execution proceeds as follows: the read at 8003 loads

0 as the base address of the GDT; the subsequent instructions

set up GDT descriptors in a non-existent GDT near physical

address 0; the instruction at 8022 loads the size of the GDT

from memory, and the APIC overlap causes the size to be

incorrectly read as 0; the dec ax instruction at 8026

recomputes the size of the GDT as 0xFFFF, and 8027 saves

the size to a GDT descriptor; 802A loads 0 as the base address

of the GDT, and saves it to the same descriptor; the lgdt

instruction at 8034 loads the malformed descriptor, placing the

new GDT outside of SMRAM, and under the attacker’s

control. With this, malicious ring 0 code can control the

memory layout when new segment selectors are loaded in

SMM, which will occur on the far jump at 8089. After the

self-modifying code at 8075 and the fetch from the sinkhole at

805A, the final instruction is incorrectly generated as “jmp far

ptr 0x10:0x8097”. By placing a carefully crafted GDT at

address 0, and configuring descriptor 0x10 to point outside of

SMRAM, a payload at 0x8097 can intercept SMM execution

to run with SMM privileges.

VII. ATTACK PAYLOAD

A prototype of the attack is provided in Figure 2, and has

been validated on select processor models.

Fig. 2. A prototype sinkhole attack.

The attack is delivered through a kernel driver running in

ring 0, and assumes an identity memory mapping. The

example targets the BSP CPU core, on a system with

SMBASE located at 0x1F5EF800. The GDT address is

adjusted based on which APIC register is read in the GDT

descriptor creation. The attack directs SMM execution to a

secondary payload outside of SMRAM, at

PAYLOAD_OFFSET. The secondary payload is installed by

ring 0, and runs with SMM privileges, after the SMM handler

is hijacked through the sinkhole. The specific effects of the

secondary payload are left to the reader’s imagination, but

commonly include deeply persistent rootkits, hardware

modifications, and system destruction.

8000 mov bx, off:unk_8091 ; load offset to GDT descriptor
8003 mov eax, cs:0FB30h ; load physical address of GDT
8008 mov edx, eax
800B mov ebp, eax
800E add edx, 50h ; 'P'
8012 mov [eax+42h], dx ; initialize segments in GDT
8016 shr edx, 10h
801A mov [eax+44h], dl
801E mov [eax+47h], dh
8022 mov ax, cs:0FB38h ; load expected size of the GDT
8026 dec ax ; decrement total size
8027 mov cs:[bx], ax ; save size to the GDT descriptor
802A mov eax, cs:0FB30h ; reload GDT base address
802F mov cs:[bx+2], eax ; save base address to descriptor
8034 db 66h
8034 lgdt fword ptr cs:[bx] ; load new GDT
8039 mov eax, 0
803F mov cr3, eax
8042 mov eax, 668h
8048 mov cr4, eax
804B mov ax, cs:0FB0Eh ; load expected lmode cs selector
804F mov cs:[bx+48h], ax ; patch selector into lmode jmpf
8053 mov ax, 10h ; load hardcoded pmode cs selector
8056 mov cs:[bx-2], ax; ; patch selector into pmode jmpf
805A mov edi, cs:0FEF8h ; load smbase
8060 lea eax, [edi+80DBh] ; compute offset of insn at 80db
8068 mov cs:[bx+44h], eax ; patch offset into lmode jmpf
806D lea eax, [edi+8097h] ; compute offset of insn at 8097
8075 mov cs:[bx-6], eax ; patch offset into pmode jmpf
807A mov ecx, 0C0000080h
8080 mov ebx, 100011b
8086 mov cr0, ebx ; switch to 16 bit pmode
8089 jmp large far ptr 0:0 ; switch to 32 bit pmode

TARGET_SMBASE equ 0x1f5ef800
GDT_ADDRESS equ 0x10000
FJMP_OFFSET equ 0x8097
DSC_OFFSET equ 0xfb00
DESCRIPTOR_ADDRESS equ 0x10
APIC_BASE_MSR equ 0x1b
SINKHOLE equ ((TARGET_SMBASE+DSC_OFFSET)&0xfffff000)
PAYLOAD_OFFSET equ 0x1000
CS_BASE equ (PAYLOAD_OFFSET-FJMP_OFFSET)
APIC_BSP equ 0x100
APIC_ACTIVE equ 0x800

wbinvd
mov dword [dword GDT_ADDRESS+DESCRIPTOR_ADDRESS+4],
 (CS_BASE&0xff000000)|(0x00cf9a00)|(CS_BASE&0x00ff0000)>>16
mov dword [dword GDT_ADDRESS+DESCRIPTOR_ADDRESS+0],
 (CS_BASE&0x0000ffff)<<16|0xffff
mov eax, SINKHOLE | APIC_ACTIVE | APIC_BSP
mov edx, 0
mov ecx, APIC_BASE_MSR
wrmsr
jmp $

