
What's on the Wire?

Physical Layer Tapping with Daisho

Dominic Spill
Mike Kershaw / Dragorn

Michael Ossmann

Black Hat USA 2013

Who we are

Michael Ossmann

Primary on Daisho CFT

Creator of multiple OSHW
projects, Ubertooth,
HackRF, YARDstick One

Founder of Great Scott
Gadgets

Who we are

Dominic Spill

Dev on Ubertooth,
BTBB and gr-bluetooth

Host code on Daisho

Other projects include
BeagleDancer, PS/2 tap
and fcc.io

Who we are

Mike Kershaw

Creator of Kismet

Front-end board
designer for Daisho

Random other
OSS/OSHW projects
like Kisbee

Outline

Background

What?

Why?

How?

Progress

Disclaimer

The views expressed are the views of the
authors and do not reflect the official policy or
position of the Department of Defense or the
United States Government.

Work In Progress

Built first devices in May

Hope to have them working by Autumn

Demos will use development platform; Final
revisions will use Daisho mainboard

Team

Jared Boone
Marshall Hecht
Mike Kershaw
Michael Ossmann
Dominic Spill
Benjamin Vernoux

Others in #daisho on freenode

Outline

Background

What?

Why?

How?

Progress

USB Multi-tool

I wanted to build something like this.

MCU

Optional
USB 2.0

HS
Control/Tap

USB 2.0 HS
Host/Device

USB 2.0 HS
Host/Device

USB Man-in-the-Middle

Monitoring, injection, modification . . .

PC
Phone
Tablet

Storage
HID
Ethernet
802.11
Bluetooth

USB Device-to-Device

It would be cool to support unusual topologies.

Storage
HID
Ethernet
802.11
Bluetooth

Storage
HID
Ethernet
802.11
Bluetooth

USB Host-to-Host

Stack fuzzing, file transfer, weird networks. . .

PC
Phone
Tablet

PC
Phone
Tablet

Microcontroller?

This didn't seem like it was going to happen.

ARM

USB OTG
2.0 HS

USB OTG
2.0 HS

USB OTG
2.0 HS

Gigabit Ethernet Tap?

Only supports 10/100, not Gigabit Ethernet.

Using an Ethernet Switch IC

Several switch ICs are supported by Linux,
popularly used in OpenWRT platforms.

None are open source hardware friendly.

Could build a specialized Ethernet switch
platform that has a mirror port.

Products like this already exist.

Any Other Way?

Connect PHY ICs together through an FPGA.

Flexibility

An FPGA is more expensive than a Gigabit
Ethernet switch IC, but it's worth it for the
extreme flexibility.

It's the best choice for security research and
development.

Hey!

We can do that with USB too!

Make it Modular

Let's support multiple front-end modules, each
with PHYs and connectors for a particular
target medium.

Daisho is born.

Daisho n. A matched pair of swords used by
the Samurai class in feudal Japan

Image adapted from http://www.metmuseum.org/

Outline

Background

What?

Why?

How?

Progress

Daisho - A Physical Monitor

Physical layer monitor

Extensible - modular design for new hardware

Open source - hardware and software

Affordable - compared to existing offerings

Portable - bus powered for some applications

Daisho - Extensible

Current targets:
1000BASE-T
HDMI
USB 3.0
RS-232

Easy to add future targets

Daisho - Extensible

Mainboard

Host

Target TargetFront-end Module

Outline

Background

What?

Why?

How?

Progress

Wright's Law

"Security will not get better until tools for
practical exploration of the attack surface are
made available."

- Joshua Wright

An example
WEP -> WPA -> WPA2

A counter example
Bluetooth PIN -> Secure Simple Pairing

Wright's Law

If no tools exist...

... Then you can't really look for problems, can
you?

When tools do exist, do they let you get low-
level enough?

If tools are unaffordable, they might as well not
exist

Daisho - Open Source

Software
Firmware
Hardware
Tools (where possible)

https://github.com/mossmann/daisho

Existing Solutions

Usually really expensive (USB analyzers, etc)

Not OSS/OSHW, limited in expandability

Don't play nice together - need a new tool for
each target

Usually not designed to be portable

May have technical limitations

Enabling New Research

Fully Arbitrary 802.3 Packet Injection:
Maximizing the Ethernet Attack Surface,
Andrea Barisani and Daniele Bianco,
Black Hat USA 2013

This is an excellent example of the kind of
research we hope to enable.

Watch it.

Outline

Background

What?

Why?

How?

Progress

Two-part design

FPGA mainboard connected via USB3; HW-
assisted signal handling with extremely fast
pipe to host OS

Multiple modular front-end boards for
interfacing with various physical layers

Development Hardware

Terasic DE2-115

Altera FPGA

Low-speed 2x20 parallel header, high speed
mezzanine connector

Well supported by dev tools, bootstraps front-
end dev

Development Downsides

DE2 is great, but...

... Mezzanine connector can't handle high
ENOUGH speed comms for USB3 or full-rate
HDMI front-ends

Not particularly portable

Expensive / Closed design

Outline

Background

What?

Why?

How?

Progress

Hardware: RS-232

Simplest front-end board

2 pairs of RS-232 ports (DTE and DCE)

Low speed (compared to the others anyhow)

2-layer PCB

Hardware: RS-232

Converts 232 to TTL, routes through FPGA,
then back to 232

Monitors all signals; TXD, RXD, DTE, DTR,
RTS, etc

Able to jumper single signals w/out decode

Current design uses DE2 2x40 parallel
connector, final design will use mezzanine

RS-232 Goals

Complete logging of all signals, including
carrier sense, etc

Proof of concept for FPGA based MITM of
signals

Logging serial console data alongside Ethernet

Hardware - Gig-E Tap

Two independent Gig-E PHYs, 10/100/1000

Dumps packet to FPGA, FPGA writes packet
back to other PHY

Integrated jack magnetics, plug-and-go

4-layer PCB; more complicated but still
reasonable

Gig-E Goals

Support for 1 Gbps data rate which can't be
passively tapped

High precision timestamping of packets

Precision relative timestamping of each side of
link

"Invisible" monitoring

PHY vs MAC

PHY transceiver encodes bitstream and
transmits electrical signals

MAC layer implements the Ethernet standard
and is an Ethernet device on the network

Switches and network interfaces are MAC layer
devices

Daisho has no MAC layer; it's PHY-only

Why we care about Gig-E

There are lots of existing Gig-E taps

They all implement a PHY+MAC - port
mirroring switches are Ethernet devices on the
network

Bridging can be detected & creates traffic

Dual PHY with byte-duping is as close to
"passive" as we can get with Gig-E

Hardware - HDMI Tap

2 HDMI ports (In / Out)

Single high-speed SerDes
(serializer/deserializer) to parallelize data to
FPGA

6 layer PCB design, very high-speed parallel
data

Hardware - HDMI Tap

Using SerDes lets us get at least 1080p

We'll hopefully even support 4K

Huge number of IO lines, strains capability of
development hardware

Alternate HDMI methods

Could plumb HDMI directly to FPGA and
decode differential signals

NeTV does this; limited to 720p/1080i

Requires FPGA be absurdly fast to handle
multi-GHz signals for 1080p and up

SerDes converts serial to parallel and allows for
slower individual data lines

Why HDMI is Interesting

Can be a complicated protocol

What else is going on besides encryption?

Has a 100 Mbps Ethernet channel

I2C communications bus

Hardware - Mainboard

Altera Cyclone IV FPGA

NXP ARM MCU for bootstrapping FPGA

DDR2 RAM

USB 3.0 to host

Designed by Jared Boone / ShareBrained

PCB Design

Lots of EE-CAD tools to pick from, both OSS
and commercial

We try to only use open toolchains

Eagle is "free" but limited, has funky licensing
requirements for complex designs

KiCad! (Fully OSS / Unencumbered license)

KiCad

Capable of N-layer boards (no license limit)

No size restrictions

Friendly (well, friendlier) file formats, all text

Truly OSS - which is good and bad at times

Sometimes does... ... odd things

Seriously, KiCAD? WTF.

I don't even...

KiCad Challenges

Development version doesn't play nice with
stable version (New PCB format, different units
of measurement)

Not very good at moving components once
they're placed

No helpful auto-tools for length matching, BGA
routing, etc - for very complex designs, can feel
"write-only"

PCB Design Challenges

High speed digital signals can behave very
oddly

Fab requirements become integral to the
design

Home assembly is still possible, but you
probably wouldn't want to

Prototype size runs are VERY expensive

PCB Requirements

Many of the designs (those using BGA) are
more than 4 layer, which puts us outside many
prototype fab capabilities

Via-in-Pad (holes inside pads) is expensive, but
unavoidable at this complexity

Have to work with fab on layer stack-up,
impedance control, etc - high speed signals
very sensitive to it

Mainboard PCB Specifications

8 copper layers

5 mil trace width

5 mil trace isolation

8 mil vias, many via-in-pad

4.85 mil annular ring

Mainboard Firmware

World's first open source USB 3.0 core

Minimal implementation of protocols to ship
data to host

Front-ends don't currently require independent
FPGA bitstream, but will contain identifiers to
allow dynamic bitstream loading if necessary

Software

libdaisho
Userspace driver based on libusb

Wireshark integration
Using extcap

Extcap

Under development / initial version submitted to
Wireshark in time for Black Hat

Allows a simple config grammar to define GTK
UI for Wireshark

Allows non-netdev capture with minimal
developer effort

Software

USB3 enumeration is completely under our
control

Possible for front-end boards to present as
PHY-specific interfaces to host (Gig-E
presenting as 2 CDC-ACM Gig-E interfaces, for
instance)

Also possible to simply do bulk IO via LibUSB

Demonstration

Full mainboard bring-up

Re-target front-ends for our mainboard instead
of DE2 development environment

Auto-identifying connected frontends via ID
chips

What's Next?

Possible Future Targets

DisplayPort
DVI
SATA
SAS
Telephone/DSL
Wideband SDR
Fiber Gig-E

more...?

Thanks

DARPA CFT Program

BIT Systems

Questions?

http://greatscottgadgets.com/daisho

https://github.com/mossmann/daisho

#daisho on irc.freenode.net

Black Hat feedback is appreciated

