

DIGGING DEEP INTO THE FLASH SANDBOXES

Paul Sabanal
IBM X-Force Advanced Research

tsabanpm[at]ph.ibm.com, pv.sabanal[at]gmail.com
@polsab

Mark Vincent Yason

IBM X-Force Advanced Research
yasonmg[at]ph.ibm.com

@MarkYason

ABSTRACT
Lately we have seen how sandboxing technology is positively altering the software security landscape. From the

Chrome browser, to Adobe Reader, to Mac and iOS applications, sandboxing has become one of the main exploit

mitigation technologies that software has come to rely on. As with all critical security technologies, they need to

be understood and scrutinized, mainly to see how effective they are, or at the very least, to satisfy one's curiosity.

The sandbox implementations for Adobe's Flash Player certainly piqued ours.

Our talk will explore the internals of three sandbox implementations for Flash: Protected Mode Flash for Chrome,

Protected Mode Flash for Firefox, and Pepper Flash. And of course, we will show that an exhaustive exploration of

the Flash sandboxes will eventually yield gold as we discuss and demonstrate some Flash sandbox escape

vulnerabilities we found along the way.

We start with a look at the high level architecture of each sandbox implementation. Here we will define the role of

each process and the connections between them. In the second part, we will dive deep into the internal sandbox

mechanisms at work such as the sandbox restrictions, the different IPC protocols in use, the services exposed by

higher-privileged processes, and more. In the third part of our talk we will take a look at each sandbox's security

and talk about the current limitations and weaknesses of each implementation. We will then discuss possible

avenues to achieve a sandbox bypass or escape. Throughout all this we will be pointing out the various differences

between these implementations.

IBM Security Systems | © 2012 IBM Corporation

DIGGING DEEP INTO THE FLASH SANDBOXES > CONTENTS

IBM Security Systems | ©2012 IBM Corporation

|2

1. CONTENTS
Abstract ... 1

1. Contents .. 2

2. Introduction ... 4

3. The Targets .. 5

4. Sandbox Architecture .. 6

4.1. Flash Player Protected Mode For Firefox .. 6

4.2. Flash Player Protected Mode For Chrome ... 7

4.3. Flash Player Protected Mode For Chrome Pepper .. 9

5. Sandbox Mechanisms .. 10

5.1. Sandbox Startup Sequence .. 10

5.1.1. Firefox Flash .. 10

5.1.2. Chrome Flash ... 11

5.1.3. Pepper flash ... 12

5.2. Sandbox Restrictions.. 12

5.2.1. Restricted Tokens .. 13

5.2.2. Integrity Levels .. 13

5.2.3. Job Objects .. 13

5.2.4. Alternate Window Station and Alternate Desktop .. 13

5.2.5. Sandbox Restrictions Comparison Table ... 13

5.3. Interception Manager .. 15

5.3.1. Interception Types ... 17

5.4. Inter-Process Communication ... 18

5.4.1. Sandbox IPC ... 18

5.4.2. Chromium IPC .. 25

5.4.3. Simple IPC .. 30

5.5. Services .. 32

5.5.1. Chrome Sandbox Services ... 32

5.5.2. Chrome Plugin Services ... 35

5.5.3. Chrome Flash Broker Services ... 38

5.5.4. Firefox Flash Plugin Container Services ... 40

5.5.5. Firefox Flash Broker Services ... 41

5.6. Policy Engine .. 44

5.6.1. Adding policies .. 44

DIGGING DEEP INTO THE FLASH SANDBOXES >

IBM Security Systems | ©2012 IBM Corporation

|3

5.6.2. Admin-configurable policies .. 46

5.7. Summary: Sandbox Mechanisms ... 47

5.7.1. Flash Player Protected Mode For Chrome (Chrome Flash) ... 47

5.7.2. Flash Player Protected Mode For Chrome Pepper (Pepper Flash) .. 48

5.7.3. Flash Player Protected Mode For Firefox (Firefox Flash)... 49

6. Sandbox Limitations .. 51

6.1. File System Read Access .. 51

6.2. Registry Read Access.. 51

6.3. Network Access.. 52

6.4. Policy Allowed Write Access to Files/Folders .. 52

6.5. Clipboard Read/Write Access .. 52

6.6. Write Access To FAT/FAT32 Partitions .. 53

6.7. Sandbox Limitation Comparison Table .. 53

6.8. Summary: Sandbox Limitations ... 54

7. Sandbox Escape ... 56

7.1. Local Elevation of Privilege (EoP) Vulnerabilities ... 56

7.2. Named Object Squatting Attacks ... 56

7.3. IPC Message Parser Vulnerabilities .. 56

7.4. Policy Vulnerabilities .. 57

7.5. Policy Engine Vulnerabilities .. 57

7.6. Service Vulnerabilities.. 58

7.7. Summary: Sandbox Escape .. 59

8. Conclusion ... 60

9. Acknowledgements ... 61

10. Bibliography ... 62

11. Appendix A: Evicted DLLs and Plugins ... 64

11.1. Evicted DLLs In Firefox Flash .. 64

11.2. Evicted DLLs In Chrome Flash and Pepper Flash .. 65

11.3. Evicted Plugin DLLs In Chrome Flash.. 66

DIGGING DEEP INTO THE FLASH SANDBOXES > INTRODUCTION

IBM Security Systems | ©2012 IBM Corporation

|4

2. INTRODUCTION
During Black Hat USA last year, we gave a talk about Adobe Reader X’s sandbox. In that talk we covered the

sandbox implementation of one of the primary exploitation vectors used by malware. We also noted that ever

since the Reader X sandbox’s introduction there has been a remarkable decrease in PDF exploits released in the

wild, and thankfully, this remains true up to this time. This year, we focus our sights on another popular

exploitation vector - Adobe’s Flash Player, and this time, we have three implementations of the sandbox to play

with.

In doing this research, we asked ourselves the same things we did last year. What are the security implications

with this new technology and what other things can an attacker do in spite of the restrictions imposed by the

sandbox? What can still be done within these limits that, from an attacker’s perspective, would still bring profit, or

from a user’s perspective, should be watched out for? Since we are investigating three different Flash sandbox

implementations, we also asked ourselves how these implementations differ from each other.

To answer these questions, we dived deeply into the internals of the three Flash sandbox implementations. This

paper documents our findings and discusses the internal mechanisms, limitations, and potential escape avenues

for each sandbox implementation. We will also provide our thoughts and recommendations on the matter of

sandbox security.

DIGGING DEEP INTO THE FLASH SANDBOXES > THE TARGETS

IBM Security Systems | ©2012 IBM Corporation

|5

3. THE TARGETS
In this paper, we will discuss three different implementations of the Flash Player Sandbox. The targets are:

1. Flash Player Protected Mode For Firefox

2. Flash Player Protected Mode For Chrome

3. Flash Player Protected Mode For Chrome Pepper

Throughout this paper we will refer to them as Firefox Flash, Chrome Flash, and Pepper Flash, respectively.

Firefox Flash, an NPAPI [1] plugin, was first released as a beta on February 2012, and was officially released in June

2012. It is developed by Adobe in collaboration with Mozilla. It is based on the sandboxing code in Adobe Reader X,

which we covered in our talk and paper [2] at Black Hat USA last year. Hence, there will be a lot of similarities

between them. We will be using version 11.3.300.257 in this paper.

Chrome Flash, also an NPAPI plugin, has been around since December 2010 and is a result of collaboration

between Adobe and Google. It is the default Flash player in Chrome. We will be using the version bundled with

Chrome 20.0.1132.47 in this paper.

Pepper Flash is an implementation of Flash player using Google’s Pepper Plugin API (PPAPI) [3]. It can be enabled

through Chrome > Settings > Privacy > Content Settings > Plugins. The version covered in this paper is bundled with

Chrome 20.0.1132.47 and is an experimental version. At the time of writing, Chrome Beta 21 has been released

which includes Pepper Flash as the default Flash Player.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ARCHITECTURE

IBM Security Systems | ©2012 IBM Corporation

|6

4. SANDBOX ARCHITECTURE
This section discusses the general architecture of each of the sandbox implementations. More details will be

provided in the subsequent sections.

4.1. FLASH PLAYER PROTECTED MODE FOR FIREFOX

Chromium IPC (via Mozilla’s IPDL)

(Browser-Plugin Container Channel)

Chromium IPC

(Permission Channel)

Sandbox IPC

(Sandbox and Flash Services

Channel)

Chromium IPC

(NPAPI Channel)

Firefox Browser Process

(firefox.exe)

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)

Flash Plugin Process

(FlashPlayerPlugin.exe, NPSWF32.DLL)

Flash Player Protected Mode For Firefox

(Firefox Flash)

The Flash Player Protected Mode for Firefox (Firefox Flash) sandbox configuration consists of the following

components:

 Firefox Browser Process (firefox.exe) – The main Firefox browser process (firefox.exe). It launches

plugin_container.exe when a web page with Flash content is opened.

 Plugin Container (plugin_container.exe) – facilitates communication between the Flash plugin process and

the Firefox browser process. It is also responsible for launching the broker process.

 Flash Broker Process (FlashPlayerPlugin.exe) – spawned by plugin_container.exe. It is responsible for

setting up the sandbox restriction and policies, and also for spawning the sandbox process. It also hosts an

IPC service to communicate with the sandbox process.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ARCHITECTURE

IBM Security Systems | ©2012 IBM Corporation

|7

 Flash Plugin Process (FlashPlayerPlugin.exe) – The sandboxed Flash plugin process. It is responsible for

parsing and rendering Flash content.

The Firefox Flash sandbox is enabled by default but it can be disabled using the privacy and security configuration

file for Firefox Flash [4]. This file, mms.cfg, should be placed in the following folder:

 %WINDIR\System32\Macromed\Flash for 32-bit Windows or

 %WINDIR\SysWow64\Macromed\Flash for 64-bit Windows

To disable the protected mode, set the ProtectedMode option in mms.cfg to 0:

ProtectedMode = 0

mms.cfg is also used to set up a policy file, which contains whitelist policies to bypass some of the default

restrictions in the sandbox. To enable the whitelist policy file, the ProtectedModeBrokerWhitelistConfigFile option

should be set to 1:

ProtectedModeBrokerWhitelistConfigFile = 1

A policy file with the file name ProtectedModeWhitelistConfig.txt should be placed in

%WINDIR%\System32\Macromed\Flash for 32-bit Windows and %WINDIR%\SysWow64\Macromed\Flash for 64-

bit Windows.

4.2. FLASH PLAYER PROTECTED MODE FOR CHROME

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ARCHITECTURE

IBM Security Systems | ©2012 IBM Corporation

|8

Sandbox IPC

(Sandbox Services Channel)

Chromium IPC

(Plugin Management

Channel)

Chromium IPC

(NPAPI Channel)

Chromium IPC

(Browser-Renderer Channel)

Chrome Renderer Process

(chrome.exe)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

Chrome Browser Process

(chrome.exe)

Flash Player Protected Mode For Chrome

(Chrome Flash)

Simple IPC

(Flash Services Channel)

The Flash Player Protected Mode for Chrome (Chrome Flash) sandbox configuration consists of the following

components:

 Chrome Browser Process (chrome.exe) – The main Chrome browser process. It launches the Flash broker

process and the Flash plugin process when a web page with Flash content is opened. It also exposes some

browser-related services that the Flash plugin process connects to.

 Chrome Renderer Process (chrome.exe) – The renderer process for the page the Flash content is in. It also

exposes browser-related services that the Flash plugin process connects to.

 Flash Broker Process (rundll32.exe, gcswf32.dll!BrokerMain) – rundll32.exe is used to run gcswf32.dll’s

BrokerMain entry point, which act as the broker process. It also hosts Flash specific services for the Flash

plugin process.

 Flash Plugin Process (chrome.exe, gcswf32.dll) – The sandboxed Flash plugin process. It is responsible for

parsing and rendering Flash content.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ARCHITECTURE

IBM Security Systems | ©2012 IBM Corporation

|9

4.3. FLASH PLAYER PROTECTED MODE FOR CHROME PEPPER

Chromium IPC

(PPAPI Channel)

Sandbox IPC

(Sandbox Services Channel)

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

Chrome Renderer Process

(chrome.exe)

Chrome Browser Process

(chrome.exe)

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Chromium IPC

(Browser-Renderer Channel)

Chromium IPC

(Plugin Management

Channel)

Flash Player Protected Mode for Chrome Pepper (Pepper Flash) sandbox configuration consists of the following

components:

 Chrome Browser Process (chrome.exe) – The main Chrome browser process. It launches the Flash plugin

process when a web page with Flash content is opened. It also exposes some browser-related services

that the Flash plugin process connects to.

 Chrome Renderer Process (chrome.exe) – The renderer process for the page the Flash content is in. It also

exposes browser-related and Pepper services that the Flash plugin process connects to.

 Flash Plugin Process (chrome.exe, pepflashplayer.dll) – The sandboxed Flash plugin process. It is

responsible for parsing and rendering Flash content

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|10

5. SANDBOX MECHANISMS
After discussing the architecture of each Flash sandbox implementation, we will now dive deep into the internal

mechanisms used by each Flash sandbox implementation. In this section, we will start with the discussion of the

mechanisms used for sandboxing the Flash plugin process and then progressively move the discussion to the

mechanisms used by the higher-privileged processes.

5.1. SANDBOX STARTUP SEQUENCE
In this section, we will discuss the steps each sandbox implementation takes when starting up.

5.1.1. FIREFOX FLASH
1. When a web page with Flash content is opened, plugin_container.exe is spawned.

2. plugin_container.exe then spawns the broker process FlashPlayerPlugin_11_3_300_257.exe.

3. The broker process sets up the sandbox restrictions for the sandbox process:

a. Sets the job level to JOB_RESTRICTED, but with the following restrictions unset:

• JOB_OBJECT_UILIMIT_READCLIPBOARD

• JOB_OBJECT_UILIMIT_WRITECLIPBOARD

• JOB_OBJECT_UILIMIT_GLOBALATOMS

b. Sets the token level. It sets up two tokens, the initial token and the lockdown token. Both tokens

will be active when the sandbox process is started. The sandbox process requires a more

privileged token during startup, as it needs to access resources that are otherwise inaccessible

due to the sandbox. The initial token allows the sandbox process to temporarily have an

elevated privilege. It is only valid for the initial thread the process started with and will be

discarded later. Other threads will only be using the less privileged lockdown token. The token

levels assigned to each tokens are:

• Initial token – USER_RESTRICTED_SAME_ACCESS for Vista or later, otherwise

USER_UNPROTECTED

• Lockdown token – USER_LIMITED

Refer to section 5.2.1 for more details about the token restrictions.

c. Sets the integrity level. It will be set to INTEGRITY_LEVEL_LOW.

d. Adds a DLL eviction policy, which lists DLLs that are suspected or known to cause a sandboxed

process to crash. These DLLs will be unloaded by the sandbox. Refer to section 11.1 for the list

of evicted DLLs in Flash Player Protected Mode for Firefox.

4. The broker process sets up the sandbox policies, which are rules that describe exceptions from the

restrictions imposed by the sandbox policy.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|11

a. Sets up admin-configurable policies. The policy rules are read from a file named
ProtectedModeWhiteList.txt located in %WINDIR%\System32\Macromed\Flash for 32-bit
Windows, or %WINDIR%\SysWow64\Macromed\Flash for 64-bit Windows.

b. Sets up hard-coded policies for file, named pipes, process, registry, sync objects, mutant, and
section access.

5. The broker process spawns the sandbox process in a suspended state. It will run the

FlashPlayerPlugin_11_3_300_257.exe executable, the same as the broker, but with the “-

type=renderer” parameter.

6. Set up and initialize interceptions on the sandbox process. Refer to section 5.3 for more details
about the interceptions.

7. Resume execution of the sandbox process.

5.1.2. CHROME FLASH
1. When a web page with Flash content is opened, the Chrome browser process spawns rundll32.exe to

launch the broker process via the gcswf32.dll!BrokerMain entrypoint.

2. The Chrome browser process sets up the sandbox policies for the Flash sandbox process:

a. Sets the job level to JOB_UNPROTECTED

b. Sets the token level to the following:

 Initial token - USER_RESTRICTED_SAME_ACCESS

 Lockdown token - USER_INTERACTIVE

3. Sets the integrity level to INTEGRITY_LEVEL_LOW

4. Adds a DLL eviction policy, which lists DLLs that are suspected or known to cause a renderer process

to crash. These DLLs will be unloaded by the sandbox. Refer to section 11.2 for the list of evicted

DLLs in Chrome.

5. Adds a plugin DLL eviction policy, which lists DLLs that are suspected or known to cause a plugin

process to crash. These DLLs will be unloaded by the sandbox. Refer to section 11.3 for the list of

evicted plugin DLLs in Chrome.

6. The Chrome browser process spawns the sandboxed Flash plugin process, which is chrome.exe with a

“type=plugin” parameter and with gcswf32.dll loaded. This process is initially launched in a suspended

state.

7. Set up and initialize interceptions on the sandbox process. Refer to section 5.3 for more details

about the interceptions.

8. Resume execution of the sandboxed Flash plugin process.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|12

5.1.3. PEPPER FLASH

Pepper plugins run under Chrome’s renderer so the same restrictions apply with a minor difference.

1. When a web page with Flash content is opened, the Chrome browser process sets up the sandbox policies

for the Pepper Flash plugin process:

a. Sets the job level to JOB_LOCKDOWN

b. Sets the token level to the following:

 Initial token - USER_RESTRICTED_SAME_ACCESS for Vista or later, otherwise

USER_UNPROTECTED

 Lockdown token - USER_LOCKDOWN

c. Sets the integrity level to INTEGRITY_LEVEL_UNTRUSTED

d. Sets alternate window station and desktop

e. Adds a DLL eviction policy, which lists DLLs that are suspected or known to cause a

renderer process to crash. These DLLs will be unloaded by the sandbox. Refer to section

11.2 for the list of evicted DLLs in Chrome.

f. Add policy for Pepper plugin. This simply adds full access to named pipes that match the

following pattern "\\.\pipe\chrome.*”.

2. The Chrome browser process spawns the sandboxed Pepper Flash plugin process, which is chrome.exe

with a “type=ppapi” parameter and with pepflashplayer.dll loaded. This process is initially launched in a

suspended state.

3. Set up and initialize interceptions on the sandbox process. Refer to section 5.3 for more details
about the interceptions.

4. Resume execution of the sandbox process.

5.2. SANDBOX RESTRICTIONS
Sandbox restrictions are the mechanisms in place to run the sandboxed Flash plugin process in a confined

environment. In case the sandboxed Flash plugin is compromised, sandbox restrictions will prevent malicious code

from making persistent changes to the system, and depending on the sandbox restrictions and sandbox policies in

place, will also prevent malicious code from accessing confidential information from the system.

The sandbox restrictions in all Flash sandbox implementations are based on the Practical Windows Sandboxing

recipe [5, 6, 7] which describes the use of the following Windows mechanisms for restricting the privileges and

capabilities of a sandboxed process:

 Restricted Tokens

 Integrity Levels

 Job Objects

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|13

 Alternate Desktop and Alternate Window Station

5.2.1. RESTRICTED TOKENS
One of the fundamental ways to lower the privileges of a sandboxed process is by assigning it a restricted token

[8]. In the case of Flash, the restricted token assigned to the sandboxed Flash plugin process is derived from the

user’s token and has the following restrictions set:

 Deny-Only Security Identifiers (SIDs) - Only pre-selected SIDs are left enabled, all other SIDs are set to

deny-only. This limits the number of securable resources the sandboxed Flash plugin can access and the

type of access it can be granted.

 Restricting SIDs - Adding pre-selected SIDs as restricting SIDs. This ensures that the sandboxed Flash

plugin can only access securable resources which are also accessible to the pre-selected restricting SIDs.

 Limited Privileges – Enabling only a very limited number of privileges so that the sandboxed Flash plugin

process is limited to the types of system operations it can perform (e.g. shutting down the system and

debugging programs).

5.2.2. INTEGRITY LEVELS
A Low or Untrusted integrity level [9] is also set in the token assigned to the sandboxed Flash plugin process so that

write access to most securable resources will be denied since the majority of securable resources in a Windows

system are assigned a Medium or a higher integrity level. This also mitigates shatter attacks [10] as lower-integrity

processes are prevented from sending write-type messages to windows owned by higher-integrity processes.

5.2.3. JOB OBJECTS
Additional restrictions are also enforced to the sandboxed Flash plugin process by associating it with a job object

[11]. Examples of capabilities that can be restricted via job objects are access to the clipboard, modification to

system settings and preventing the spawning of additional processes.

5.2.4. ALTERNATE WINDOW STATION AND ALTERNATE DESKTOP
By assigning the sandboxed Flash plugin process a separate window station and a separate desktop, it is isolated

from windows in other desktops, and the clipboard and global atom table in other window stations - all of which

are vectors for sandbox escape and/or information disclosure. Note that this is only effective if the token assigned

to the sandboxed process is set up so that the sandboxed process does not have access to other window stations

and desktops.

5.2.5. SANDBOX RESTRICTIONS COMPARISON TABLE
The comparison table below shows the sandbox restrictions in place in Chrome Flash, Firefox Flash and Pepper

Flash.

Restriction Chrome Flash Firefox Flash Pepper Flash

Integrity Level Low Low Untrusted

Restricted Token:
Enabled SIDs
(Deny-Only SIDs
Exceptions)

 User’s SID

 Logon SID

 Everyone

 Users

 User’s SID

 Logon SID

 Everyone

 Users

 Logon SID

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|14

 INTERACTIVE

 Authenticated Users

 INTERACTIVE

Restricted Token:
Restricting SIDs

 Logon SID

 Everyone

 RESTRICTED

 Users

 User’s SID

 Logon SID

 Everyone

 RESTRICTED

 Users

 NULL SID

Restricted Token:
Enabled Privileges

 Bypass traverse
checking

 Bypass traverse
checking

(None)

Job Restrictions

 Kill on job close Kill on job close

 Spawning additional
processes

 Desktop creation and
switching via
CreateDesktop() and
SwitchDesktop()

 Modifying display

settings via

ChangeDisplaySettings()

 Logging off, shutting
down or restarting the
system via
ExitWindows() or
ExitWindowsEx()

 Using USER handles
owned by processes not
associated with the job

 Changing system
settings via
SystemParametersInfo()

 Kill on job close

 Spawning additional
processes

 Desktop creation and
switching via
CreateDesktop() and
SwitchDesktop()

 Modifying display
settings via
ChangeDisplaySettings()

 Logging off, shutting
down or restarting the
system via
ExitWindows() or
ExitWindowsEx()

 Using USER handles
owned by processes not
associated with the job

 Changing system
settings via
SystemParametersInfo()

 Kill on unhandled
exception

 Read from the clipboard

 Write to the clipboard

 Accessing global atoms

Alternate Window
Station and Alternate
Desktop

No No Yes

Based on the table above, Pepper Flash has the most sandbox restrictions in place while Chrome Flash has the

least restrictions in place. Pepper Flash is also the only sandboxed Flash running as an Untrusted integrity process.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|15

The restricted token assigned to Chrome Flash can still obtain read access to resources accessible to the Users

group, the Everyone group, and any resource accessible via the user’s SID, such as private user files located under

the user’s Documents folder. On the other hand, the restricted token assigned to Firefox Flash can also be used to

obtain read access to resources accessible to the Users group and the Everyone group but it cannot be used to

access resources that accessible via the user’s SID. The restricted token assigned to Pepper Flash is the most

restrictive and very limited to what resources it can access; it cannot even access resources accessible to the Users

and the Everyone group.

Lastly, Pepper Flash is the only sandboxed Flash that uses a separate window station and a separate desktop.

Similar to Adobe Reader X, Firefox Flash mitigates attacks relating to shared desktop use (such as shatter attacks

and DLL injection via SetWindowsHookEx()) via the other sandbox restrictions [12], primarily, via the USER handles

(UILIMIT_HANDLES) job restriction and by running as a Low integrity process.

5.3. INTERCEPTION MANAGER
The purpose of the Interception Manager is to transparently forward API calls made by the sandboxed Flash plugin

process to a higher-privileged process such as a browser or a broker process.

Generally, an API call is forwarded to the broker/browser process because the API call failed due to the sandbox

restrictions in place. The broker/browser process on the other hand, evaluates the request against the sandbox

policies and decides if the call will fail or succeed. In the latter case, the broker/browser process will generally

perform the API call on behalf of the sandboxed process. An API call may also be automatically forwarded to the

broker process because it just needs to be executed in the context of the higher-privileged process.

For Chrome Flash and Pepper Flash, the API calls are forwarded from the sandboxed Flash plugin process to the

Chrome browser process via a Sandbox IPC connection (discussed in section 5.4.1) and are serviced by the Chrome

Sandbox services hosted in the Chrome browser process (discussed in section 5.5.1):

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|16

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|17

For Firefox Flash, the API calls are forwarded from the sandboxed Flash plugin process to the Flash broker process

via a Sandbox IPC connection and are serviced by the Firefox Flash broker services hosted in the Flash broker

process (discussed in 5.5.5):

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

Sandbox IPC

(Sandbox and Flash Services

Channel)

Firefox Flash Broker

Services

Policy Engine

Policy Checks

Forwarding API calls is done transparently via API interceptions (or API hooking) in the sandboxed process.

Depending on the type of interception, the API interceptions are set early in the sandboxed process initialization or

when the DLL where the API is located is mapped into the sandboxed process.

5.3.1. INTERCEPTION TYPES
The table below describes the different types of interceptions:

Interception Type Constant
Value

Description

INTERCEPTION_SERVICE_CALL 1 Interceptions of type INTERCEPTION_SERVICE_CALL are
performed for NTDLL APIs. Interceptions are performed by
the broker/browser process to the sandboxed process via
WriteProcessMemory() when the sandboxed process is
newly spawned but still in a suspended state.

API Interceptions are done by patching the entry point of
the API with a stub that starts with the following code
sequence:

MOV EAX,<ServiceID>

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|18

MOV EDX,<ThunkCodeAddress>

JMP EDX

ThunkCodeAddress points to an allocated memory
containing a thunk code that sets up the stack and for
performing the actual control transfer to the interception
handler.

INTERCEPTION_EAT 2 Interceptions of type INTERCEPTION_EAT are done by the
sandboxed process to itself and are performed when the
target DLL is mapped into the sandboxed process. DLL
mapping is monitored via the interception of
NTDLL.DLL!NtMapViewOfSection().

As its name suggests, interceptions of type
INTERCEPTION_EAT are performed by patching the entry
of the API in the export address table of the DLL.

INTERCEPTION_SIDESTEP 3 Interceptions of type INTERCEPTION_SIDESTEP are
performed by the sandboxed process to itself when the
target DLL is mapped into the sandboxed process.

Interceptions of type INTERCEPTION_SIDESTEP are
performed by patching the API entry point with a JMP
instruction that transfers control to the thunk code:

JMP <ThunkCodeAddress>

<original API code>

<original API code>

<. . .>

INTERCEPTION_SMART_SIDESTEP 4 Appears to be currently unused, but Chrome’s source code
suggests that this interception type is similar to
INTERCEPTION_SIDESTEP but with a different thunk code.

INTERCEPTION_UNLOAD_MODULE 5 This is a special interception type for DLLs which should be
restricted from being loaded on the sandboxed process.
Based on Chrome’s source code, the DLLs that are set to be
unloaded are those that are suspected or known to crash
the sandboxed process.

Table 1. Interception Types. (Reference: http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sandbox_types.h?view=markup)

5.4. INTER-PROCESS COMMUNICATION
Inter-process communication (IPC) is the mechanism that allows processes to communicate with each other. In the

case of the Flash sandboxes, IPC is used between processes with different privilege levels and between processes

with the same privilege level. This section describes the different IPC implementations used in the Flash

sandboxes.

5.4.1. SANDBOX IPC
Originally from the Chromium project, all Flash sandbox implementations use the Sandbox IPC for communication

between lower-privileged and higher-privileged processes.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|19

In Chrome Flash and Pepper Flash, the Sandbox IPC is mainly used for forwarding API calls from the sandboxed

Flash plugin process to the Chrome browser process:

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|20

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

In Firefox Flash, aside from being used for forwarding API calls from the Flash plugin process to the Flash broker

process, it is also used for invoking additional services, such as launching the Flash Player settings manager, which

are exposed by the Flash broker process:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|21

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

Sandbox IPC

(Sandbox and Flash Services

Channel)

Firefox Flash Broker

Services

5.4.1.1. IMPLEMENTATION

Sandbox IPC is accomplished by shared memory and synchronization between the processes is done via Windows

event objects.

To setup the Sandbox IPC connection, the Chrome browser process (in the case of Chrome Flash and Pepper Flash)

or the Flash broker process (in the case of Firefox Flash) which hosts the IPC server creates a chunk of shared

memory and uses the upper part of this shared memory for the Sandbox IPC. The browser/broker process then

creates a duplicate of the handle to the shared memory and transfers the handle duplicate to the sandboxed Flash

plugin process via a WriteProcessMemory() call. The IPC client hosted in the sandboxed Flash plugin process uses

the transferred handle duplicate to map the shared memory to its address space.

5.4.1.2. MESSAGE STRUCTURE

IPC SHARED MEMORY STRUCTURE

The overall structure of the Sandbox IPC shared memory is consists of a top level IPCControl structure which is

divided into channel control (ChannelControl) structures and channel buffer (ActualCallParams) structures.

The format of the IPCControl structure is as follows:

Offset Size/Type Name Description

0x0000 0x04/size_t channels_count Number of IPC channels. Currently, 7 for Chrome
Flash and Pepper Flash and 15 for Firefox Flash.

0x0004 0x04/HANDLE server_alive Mutex handle that will be used by the IPC client to

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|22

determine if the IPC server is still alive.

0x0008 channels_count*0x14/
ChannelControl

channels Channel control structures for channels_count IPC
channels. Contains the control data for each
channel.

? channels_count*
kIPCChannelSize /
ActualCallParams

(channel buffers) Channel buffer structures for channel_count IPC
channels. Contains the actual serialized parameters
for the IPC call. Each structure is kIPCChannelSize
bytes each.

Currently, kIPCChannelSize is 0x400 bytes for
Chrome Flash and Pepper Flash and 0x2000 bytes
for Firefox Flash.

Table 2. IPCControl Structure. (Reference:
http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sharedmem_ipc_client.h?view=markup)

IPC CHANNEL CONTROL STRUCTURE

To allow multiple IPC connections, the IPC shared memory is divided into multiple IPC channels. Each IPC channel

has its own corresponding channel control structure which contains the control data for each channel.

The format of the IPC channel control (ChannelControl) structure is as follows:

Offset Size/Type Name Description

0x0000 0x04/size_t channel_base Offset (relative to the start of the IPC shared memory) of

the corresponding IPC channel buffer for this channel.

0x0004 0x04/LONG state State of the IPC Channel: kFreeChannel (1), kBusyChannel

(2), kAckChannel (3), kReadyChannel (4),

kAbandonnedChannel (5).

0x0008 0x04/HANDLE ping_event Event handle used by the IPC client to notify the IPC

server that an IPC message is ready in this channel.

0x000C 0x04/HANDLE pong_event Event handle used by the IPC client to receive

notification from the IPC server that a response is

already available in the IPC channel.

0x0010 0x04/uint32 ipc_tag IPC Tag – a unique identifier that identifies what service

the caller is requesting.

Table 3. ChannelControl Structure. (Reference:
http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/sharedmem_ipc_client.h?view=markup)

IPC CHANNEL BUFFER STRUCTURE

Each IPC channel has a corresponding IPC channel buffer which will contain the serialized IPC call parameters and

IPC call results.

The format of the IPC channel buffer (ActualCallParams) structure is as follows:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|23

Offset Size /Type Name Description

0x0000 0x04/uint32 tag_ IPC Tag – a unique identifier that identifies what service

the caller is requesting. Same value as

ChannelControl.ipc_tag.

The IPC server uses this value along with the type_ field

from the ParamInfo structures to select the handler

routine that will service the request.

An example IPC tag would be the value 0x03 for a

request on the broker/browser process to invoke

NtCreateFile() on behalf of the sandboxed process.

0x0004 0x04 /uint32 is_in_out_ Contains an in/out parameter.

0x0008 0x34/CrossCallReturn call_return IPC call result values filled out by the IPC server after

servicing a request.

0x003C 0x04 /size_t params_count_ Number of parameters.

0x0040 0x0C*(params_count+1

)/ParamInfo

param_info_ Parameter information structures for param_count_+1

parameters.

? parameters_ Actual parameter data. These are the serialized IPC call
parameters. Example parameters are the object name
and access mask used for the IPC call for NtCreateFile().

Table 4. ActualCallParams Structure. (Reference:
http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/crosscall_params.h?view=markup)

The param_info_ field is an array of ParamInfo structures which contains information about the type, size and

offset (relative to the start of the IPC channel buffer) of each parameter. Note that param_info_ has an extra

element; the extra element is used to quickly get the total size (used part) of the IPC channel buffer because its

offset_ field points to the end of the used part of the IPC channel buffer.

The format of the ParamInfo structure is as follows:

Offset Size (Type) Name Description

0x0000 0x04/ArgType type_ Parameter type: WCHAR_TYPE (1), ULONG_TYPE (2),

UNISTR_TYPE (3), VOIDPTR_TYPE (4), INPTR_TYPE (5),

INOUTPTR_TYPE (6), CHAR_TYPE (7, specific to Firefox

Flash), REMOTEBUF_TYPE (8, specific to Firefox Flash)

0x0004 0x04/ptrdiff_t offset_ Offset of parameter data (relative to the start of the IPC

channel buffer).

0x0008 0x04/size_t size_ Size of the parameter.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|24

Table 5. ParamInfo Structure. (Reference: http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/crosscall_params.h?view=markup)

An interesting parameter type in Firefox Flash which is also found in Adobe Reader X [2] is REMOTEBUF_TYPE.

REMOTEBUF_TYPE is a type that represents a buffer in a remote process, it has the following fields:

 Offset 0: pid (4 bytes) – process ID of the process where the buffer is located.

 Offset 4: address (4 bytes) – address of the buffer in the remote process.

 Offset 8: size (4 bytes) – size of the buffer in the remote process.

Return values from an IPC call are stored in the ActualCallParams.call_return field which in turn is a

CrossCallReturn structure.

The format of the CrossCallReturn structure is as follows:

Offset Size/Type Name Description

0x0000 0x04/uint32 tag IPC Tag. Should be the same value as

ChannelControl.ipc_tag but is not really set.

0x0004 0x04/ResultCode call_outcome Result code of the IPC call: SBOX_ALL_OK (0) or

non-zero if an error occurred (see ResultCode

enum in

http://src.chromium.org/viewvc/chrome/trunk/s

rc/sandbox/src/sandbox_types.h?view=markup).

0x0008 0x04/NTSTATUS,

DWORD

nt_status/win32_result Return value of an API call when executed on the

broker/browser process. Used for API

interceptions.

0x000C 0x04/HANDLE handle If the IPC call returns a handle, generally, the
handle or the handle duplicate is stored here.

0x0010 0x04/uint32 extended_count Number of extended return values.

0x0014 0x04*8/MultiType extended Array of 8 MultiType extended return values.
MultiType is a union and its members are:
unsigned_int, pointer, handle or ulong_ptr.

Table 6. CrossCallReturn Structure. (Reference:
http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/crosscall_params.h?view=markup)

IPC SHARED MEMORY ILLUSTRATION

Below is an illustration of the Sandbox IPC shared memory structure and the substructures it contains:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|25

0x00: channels_count

0x04: server_alive

IPC Shared Memory (IPCControl)

IPC Channel 1

IPC Channel 2

IPC Channel n

IPC Channel Buffer 1

IPC Channel Buffer 2

IPC Channel Buffer n

0x00: channel_base

0x04: state

0x08: ping_event

0x0C: pong_event

0x10: ipc_tag

IPC Channel Control (ChannelControl)

0x0008

0x00: tag_

0x04: is_in_out_

0x08: call_return (CrossCallReturn)

0x3C: params_count_

IPC Channel Buffer (ActualCallParams)

param_info_ 1 (ParamInfo)

param_info_ n

param_info_ params_count_+1

parameters_ 1 (raw data)

parameters_ n

parameters_ params_count_

0x0040

0x00: type_

0x04: offset_ (raw data offset)

0x08: size_

Parameter Info (ParamInfo)

0x00: tag

0x04: call_outcome

0x08: nt_status/win32_result

0x0C: handle

0x10: extended_count

0x14: extended[8]

Call Return (CrossCalReturn)

Sandbox IPC Shared Memory

5.4.2. CHROMIUM IPC
Originally from the Chromium project, the Chromium IPC is another IPC implementation used by all Flash sandbox

implementations. The Chromium IPC is not only used for communication between processes with different

privileges but it is also used for communication between processes with the same privileges.

In Chrome Flash and Pepper Flash, Chromium IPC is used by the sandboxed Flash plugin, the sandboxed Chrome

renderer, and the Chrome browser process to communicate with each other:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|26

Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PluginThread

PluginProcessHost

Chromium IPC

(NPAPI Channel)

PluginChannel

PluginChannelHost

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Chromium IPC

(PPAPI Channel)

HostDispatcher

PluginDispatcher

Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PpapiPluginProcessHost

PpapiThread

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|27

In Firefox Flash, Chromium IPC is used by the plugin container process to communicate with the sandboxed Flash

plugin, Flash broker, and the Firefox browser process:

Chromium IPC (via Mozilla’s IPDL)

(Browser-Plugin Container Channel)

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

PermissionsBrokerChannel

Chromium IPC

(Permission Channel)

PermissionsHostChannel

Chromium IPC

(NPAPI Channel)

NPAPIPluginChannel

NPAPIHostChannel

5.4.2.1. IMPLEMENTATION

On Windows, Chromium IPC is done via a named pipe. Chromium IPC pipes are named using the format

“\\.\pipe\chrome.%channel_id%”. %channel_id% varies in format depending on the type of connection the

Chromium IPC is used for.

For setting up the Chromium IPC connection, the process hosting the IPC server generates a unique pipe name and

creates the pipe. With the pipe name usually passed via command line switch, the other process hosting the IPC

client then connects to the IPC server.

Two detailed articles also covering the Chromium IPC is the Chromium IPC design document [13] and Azimuth

Security’s blog post “The Chrome Sandbox Part 2 of 3: The IPC Framework” [14] .

LISTENERS

The square boxes in the diagrams are the names of the Listener class

(http://src.chromium.org/viewvc/chrome/trunk/src/ipc/ipc_listener.h?view=markup) that handles the IPC

connection in each process.

Listener classes have an OnMessageReceived() method which dispatches the IPC messages to the appropriate

service handlers. There are also cases where the Listener class which handles the IPC connection do not process

the IPC messages themselves but instead “routes” the IPC messages to instances of other Listener classes.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|28

Chromium IPC messages which are processed by the Listener class that handles the IPC connection are called

“control” messages while Chromium IPC messages which are routed to instances of other Listener class are called

“routed” messages. Furthermore, for control messages, Listener classes that handles the IPC connection may also

implement an OnControlMessageReceived() method which is specifically used for dispatching control messages.

MESSAGE FILTERS

Before the IPC messages are sent to a Listener class, the IPC messages may be first sent to a list of message filters

(MessageFilter, http://src.chromium.org/viewvc/chrome/trunk/src/ipc/ipc_channel_proxy.h?view=markup).

Similar to the Listener class, the MessageFilter class also have an OnMessageReceived() method which dispatches

the IPC message to the appropriate service handlers.

MESSAGE CLASSES

Creating and dispatching IPC messages is made simpler in Chrome because there are available macros that

automatically build IPC message classes. The following is an example use of the IPC message class generation

macro to generate the PpapiMsg_LoadPlugin message class:

IPC_MESSAGE_CONTROL1(PpapiMsg_LoadPlugin, FilePath /* path */)

The above line expands to an IPC::Message class definition in which the generated class contains the code to build

and dispatch the IPC message. For sending an IPC message, the generated IPC message class can just be

instantiated and the resulting class instance can be passed to Send(Message* message) methods:

Send(new PpapiMsg_LoadPlugin(plugin_path_));

The macros related to IPC message class generation are:

 IPC_MESSAGE_CONTROL*

 IPC_MESSAGE_ROUTED*

 IPC_SYNC_MESSAGE_CONTROL*

 IPC_SYNC_MESSAGE_ROUTED*

MESSAGE DISPATCHING

To simplify dispatching of the IPC messages to the appropriate service handler routines, Listener classes use the

previously discussed generated IPC message classes plus another set of Chrome macros on their

OnMessageReceived() or OnControlMessageReceived() method:

bool PpapiThread::OnMessageReceived(const IPC::Message& msg) {

 IPC_BEGIN_MESSAGE_MAP(PpapiThread, msg)

 IPC_MESSAGE_HANDLER(PpapiMsg_LoadPlugin, OnMsgLoadPlugin)

 IPC_MESSAGE_HANDLER(PpapiMsg_CreateChannel, OnMsgCreateChannel)

 ...

 IPC_END_MESSAGE_MAP()

The above code expands to a switch statement which uses the type field of the IPC message to dispatch the IPC

message to the appropriate service handler:

bool PpapiThread::OnMessageReceived(const IPC::Message& msg) {

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|29

 {

 typedef PpapiThread _IpcMessageHandlerClass;

 const IPC::Message& ipc_message__ = msg;

 bool msg_is_ok__ = true;

 switch (ipc_message__.type())

 case PpapiMsg_LoadPlugin::ID: {

 ...

 msg_is_ok__ = PpapiMsg_LoadPlugin::Dispatch(&ipc_message__, this, this,

 &_IpcMessageHandlerClass::OnMsgLoadPlugin);

 }

 break;

 case PpapiMsg_CreateChannel::ID: {

 ...

 msg_is_ok__ = PpapiMsg_CreateChannel::Dispatch(&ipc_message__, this, this,

 &_IpcMessageHandlerClass::OnMsgCreateChannel);

 }

 break;

The Chromium macros related to Chromium IPC message dispatching are:

 IPC_BEGIN_MESSAGE_MAP_EX

 IPC_BEGIN_MESSAGE_MAP

 IPC_MESSAGE_HANDLER

 IPC_MESSAGE_HANDLER_DELAY_REPLY

 IPC_MESSAGE_HANDLER_GENERIC

 IPC_REPLY_HANDLER

 IPC_MESSAGE_UNHANDLED

 IPC_MESSAGE_UNHANDLED_ERROR

 IPC_END_MESSAGE_MAP

 IPC_END_MESSAGE_MAP_EX

5.4.2.2. MESSAGE STRUCTURE

CHROMIUM IPC MESSAGE STRUCTURE

The structure of a Chromium IPC message is shown below. Note that the Chromium IPC message structure may

vary depending on the operating system and build parameters. The structure shown below is based on release

builds of Google Chrome for Windows.

Offset Size/Type Name Description

0x0000 0x04/uint32 payload_size Total size of the payload (i.e. IPC call parameters).

0x0004 0x04/int32 routing Routing ID. For control messages, the value of routing ID
is MSG_ROUTING_CONTROL (0x7FFFFFFF). For routed
messages, routing ID is a value identifying the instance of
the Listener class which the IPC message will be routed to.

0x0008 0x04/uint32 type Message Type. A unique ID specifying the service to be
invoked. The upper 16 bit of the type field is the service
group (discussed below) while the lower 16 bits is a
unique value within a particular service group.

The service group part of the type field can be used to

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|30

identify the kind of service being invoked. For Chrome
processes (which includes the Chrome Flash plugin and
Pepper Flash plugin process), service group values can be
derived from the IPCMessageStart enum in
http://src.chromium.org/viewvc/chrome/trunk/src/ipc/ip
c_message_utils.h?view=markup.

0x000C 0x04/uint32 flags Message Flags. The first 3 bits are for message priority:
PRIORITY_LOW (1), PRIORITY_NORMAL (2),
PRIORITY_HIGH (3). The rest of the bits are for flags:
SYNC_BIT (0x0004), REPLY_BIT (0x0008),
REPLY_ERROR_BIT (0x0010), UNBLOCK_BIT (0x0020),
PUMPING_MSGS_BIT (0x0040), HAS_SENT_TIME_BIT
(0x0080).

0x0010 payload Serialized IPC call parameters. The class responsible for
serializing/deserializing basic types is the Pickle class
(http://src.chromium.org/viewvc/chrome/trunk/src/base
/pickle.h?view=markup).

Complex types are serialized/deserialized by
specializations of the struct template called ParamTraits.
ParamTraits methods, on the other hand, invoke Pickle
class methods to serialize/deserialize the basic types
which the complex type is composed of.

Table 7. Chromium IPC Message. (Reference: http://src.chromium.org/viewvc/chrome/trunk/src/ipc/ipc_message.h?view=markup)

CHROMIUM IPC MESSAGE ILLUSTRATION

Below is an illustration of the Chromium IPC message structure:

0x00: payload_size

0x04: routing

0x08: type

0x0C: flags

Chromium IPC Message

parameter 1

parameter 2

parameter 3

parameter n

0x10: payload/parameters (pickled)

5.4.3. SIMPLE IPC
Chrome Flash additionally uses an IPC implementation called “Simple IPC” for communication between the Flash

plugin process and the Flash broker process, it is mainly used by the Flash plugin process to invoke the Chrome

Flash broker services (discussed in 5.5.3) exposed by the Flash broker process:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|31

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Simple IPC

(Flash Services Channel)

Chrome Flash Broker

Services

5.4.3.1. IMPLEMENTATION

On Windows, Simple IPC is done via a named pipe. In Chrome Flash, Simple IPC pipes are named using the format

“\\.\pipe\MacromediaKappa.%flash_broker_hex_pid%”.

For setting up the Simple IPC connection, the Flash broker process which hosts the IPC server creates the Simple

IPC pipe. Then, using the Flash broker PID passed via the command line switch “--flash-broker=”, the Flash plugin

process which hosts the IPC client generates the Simple IPC pipe name and then uses it to connect to the IPC

server.

Simple IPC is developed by Google and its source can be found in the simple-ipc-lib project hosted in

http://code.google.com/p/simple-ipc-lib/.

5.4.3.2. MESSAGE STRUCTURE

SIMPLE IPC MESSAGE STRUCTURE

The structure of a Simple IPC message is as follows:

Offset Size (Type) Name Description

0x0000 0x04/int32 Start of Header Mark The value ‘KROM’.

0x0004 0x04/int32 Message ID A unique ID identifying the service to be invoked.

0x0008 0x04/int32 Element Count Number of elements (i.e. IPC call parameters).

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|32

0x000C 0x04/size_t Data Count Total size of the IPC message (in 4 bytes). Messages
should be aligned by 4 bytes.

0x0010 0x04/int32 Element[0].tag Element Tag (i.e. parameter type): TYPE_INT32 (0x01),
TYPE_UINT32 (0x02), TYPE_LONG32 (0x03),
TYPE_ULONG32 (0x04), TYPE_CHAR8 (0x05),
TYPE_CHAR16 (0x06), TYPE_VOIDPTR (0x07),
TYPE_NULLSTRING8 (0x08), TYPE_NULLSTRING16
(0x09), TYPE_NULLBARRAY (0x0A), TYPE_STRING8
(0x40000016), TYPE_STRING16 (0x80000017),
TYPE_BARRAY (0x40000018)

? 0x04/int32 Element[n].tag …

? 0x04/int32 Start of Data Mark The value ‘MORK’.

? Element[0].value Serialized element (parameter) value.

? Element[n].value …

? 0x04/uint32 End of Data Mark The value ‘BANG’.

Table 8. Simple IPC Message Structure. (Reference: http://code.google.com/p/simple-ipc-lib/source/browse/trunk/src/ipc_codec.h)

SIMPLE IPC MESSAGE ILLUSTRATION

Below is an illustration of a Simple IPC message:

0x00: Start of Header Mark (‘KROM’)

0x04: Message ID

0x08: Element Count

0x0C: Data Count

Element[0].type

Element[n].type

Element[0].value

Element[n].value

0x0010

Start of Data Mark (‘MORK’)

End of Data Mark (‘BANG’)

. . .

. . .

Simple IPC Message

5.5. SERVICES
After discussing the connection between processes, we will now take a look at the services exposed by the

different processes that are part of the Flash sandbox implementations.

5.5.1. CHROME SANDBOX SERVICES
The Chrome browser process provides sandboxed processes services that allow them to call security sensitive APIs

(such as opening a file, registry key, etc.) provided that the API call is allowed by the policy. Generally, these

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|33

sandbox services are not directly invoked by the sandboxed process but are invoked indirectly via API interceptions

in the sandboxed process.

5.5.1.1. CONNECTION

In the context of Chrome Flash and Pepper Flash, the Chrome Sandbox services are callable from the sandboxed

Flash plugin process via a Sandbox IPC connection:

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|34

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

5.5.1.2. SERVICES

Chrome sandbox service handlers are methods of Dispatcher classes

(http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/crosscall_server.h?view=markup) and each

Dispatcher class handles a specific set of APIs. The table below lists the different Dispatcher classes in Chrome:

Dispatcher Class Purpose

FilesystemDispatcher Handles file system services. Handles forwarded filesystem-related
NTDLL.DLL API calls.

HandleDispatcher

Handles handle duplication services.

NamedPipeDispatcher Handles named pipe services. Handles forwarded CreateNamedPipeW() API
calls.

PolicyBase Special Dispatcher class. Among other things, the Sandbox IPC server uses
PolicyBase to resolve actual Dispatcher class and the actual service handler
routine to service the request.

RegistryDispatcher Handles registry services. Handles forwarded NtOpenKey() and
NtCreateKey() API calls.

SyncDispatcher Handles synchronization (events) services. Currently handles forwarded
CreateEventW() and OpenEventW() API calls.

ThreadProcessDispatcher Handles process and thread services. Currently handles forwarded
CreateProcessW(), CreateProcessA(), and other thread/process-related API
calls.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|35

The source for the listed Dispatcher classes can be found in the “*_dispatcher.cc” files in Chromium’s sandbox tree

(http://src.chromium.org/viewvc/chrome/trunk/src/sandbox/src/).

Each service handler is registered as an IPCCall structure which is initialized in the constructor of each Dispatcher

class. An IPCCall call structure contains the following information:

 The IPC tag for the service handler - equivalent to a service ID, see Sandbox IPC section (5.4.1) for more

information

 The sequence and type of parameters expected by the service handler

 The actual handler routine

Below is an example IPCCall structure initialization:

FilesystemDispatcher::FilesystemDispatcher(PolicyBase* policy_base)

 : policy_base_(policy_base) {

 static const IPCCall create_params = {

 {IPC_NTCREATEFILE_TAG, WCHAR_TYPE, ULONG_TYPE, ULONG_TYPE, ULONG_TYPE,

 ULONG_TYPE, ULONG_TYPE, ULONG_TYPE},

 reinterpret_cast<CallbackGeneric>(&FilesystemDispatcher::NtCreateFile)

 };

 ...

Consequently, enumerating the Chrome Sandbox service handlers involves finding initializations of IPCCall

structures.

5.5.2. CHROME PLUGIN SERVICES
To support out-of-process NPAPI and PPAPI plugins such as Chrome Flash and Pepper Flash, the Chrome renderer

and the Chrome browser process expose services which callable from out-of-process plugins.

Generally, the services exposed by the browser process to the NPAPI/PPAPI plugin process are mostly for sending

status or notification messages. On the other hand, the renderer process does most of the heavy lifting as it

exposes services to the plugin process to support NPAPI and PPAPI calls.

5.5.2.1. CONNECTION

In the case of Chrome Flash and Pepper Flash, the services exposed by the Chrome browser and the Chrome

renderer process to the Flash plugin processes are callable via two separate Chromium IPC connections. A third

Chromium IPC connection is employed by the renderer process to communicate with the browser process. In the

context of plugins, the browser-renderer channel is used for executing privileged plugin service requests in the

context of the browser process.

The diagrams below show how the Flash plugin process, the Chrome browser and the Chrome renderer process

are interconnected via Chromium IPC.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|36

Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PluginThread

PluginProcessHost

Chromium IPC

(NPAPI Channel)

PluginChannel

PluginChannelHost

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Chromium IPC

(PPAPI Channel)

HostDispatcher

PluginDispatcher

Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PpapiPluginProcessHost

PpapiThread

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|37

As mentioned earlier in the Chromium IPC section (5.4.2), the square boxes represent the Listener class which

handles the IPC connection in each process. The Listener classes dispatch the IPC messages to the appropriate

service handlers or routes the IPC message to other Listener classes which will handle the IPC message.

5.5.2.2. SERVICES (OUT-OF-PROCESS NPAPI PLUGIN)

The table below lists the different services exposed by the Chrome renderer and Chrome browser process to out-

of-process NPAPI plugins. The listener column represents the name of the Listener class which handles the

dispatching of the IPC message to the appropriate service handler. The message column represents names of the

message classes which are used by the aforementioned Listener classes for selecting and invoking the appropriate

service handler.

Message Sent To Listener Purpose

PluginProcessHostMsg_*

Browser PluginProcessHost Sending plugin status or notifications
to the browser process.

PluginHostMsg_* Renderer PluginChannelHost
WebPluginDelegateProxy

Support services for NPAPI NPN_*
calls.

The renderer uses the services
exposed by the browser process (via
the browser-renderer channel) to
handle privileged NPAPI service
requests.

NPObjectMsg_* Renderer/
Plugin

NPObjectStub

Marshalling NPObjects [15] between
the plugin process and the renderer
process.

5.5.2.3. SERVICES (OUT-OF-PROCESSES PPAPI PLUGIN)

The table below lists the different services exposed by the Chrome renderer and Chrome browser process to out-

of-process PPAPI plugin processes.

Message Sent To Listener Purpose

PpapiHostMsg_* Browser

PpapiPluginProcessHost

Sending plugin status or notification to the
browser process.

PpapiHostMsg_* Renderer Subclasses of InterfaceProxy PPAPI services. PPAPI services are exposed
by a process via interface proxies
(InterfaceProxy,
http://src.chromium.org/viewvc/chrome/tr
unk/src/ppapi/proxy/interface_proxy.h?vie
w=markup).

InterfaceProxy is actually a subclass of the
Listener class and thus have an
OnMessageReceived() method which
dispatches the PPAPI IPC messages to the
appropriate service handler.

The renderer uses the services exposed by

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|38

the browser process (via the browser-
renderer channel) to handle privileged
PPAPI service requests.

Below are some examples of PPAPI interface proxies along with the corresponding messages classes used by the

interface proxies for dispatching the PPAPI IPC messages to the actual service handlers:

Message Interface Proxy Purpose

PpapiHostMsg_PPBAudio_* PPB_Audio_Proxy

Audio services

PpapiHostMsg_PPBFileChooser_* PPB_FileChooser_Proxy

Open/save dialog services

PpapiHostMsg_PPBFileIO_*

PPB_FileIO_Proxy File I/O services

PpapiHostMsg_PPBFlashClipboard_*

PPB_Flash_Clipboard_Proxy Clipboard services

PpapiHostMsg_PPBVideoCapture_*

PPB_VideoCapture_Proxy Video capture services

The sources of PPAPI interface proxies are found in the Chromium source tree under “src/ppapi/proxy”

(http://src.chromium.org/viewvc/chrome/trunk/src/ppapi/proxy/) and their names are formatted as “*_proxy.cc”.

5.5.3. CHROME FLASH BROKER SERVICES
Chrome Flash includes a separate broker process which exposes additional services to the sandboxed Flash plugin

process. Example of the services exposed by the Chrome Flash broker includes displaying an open/save file dialog

and launching the Flash Player settings manager.

5.5.3.1. CONNECTION

The services exposed by the Flash broker process are callable from Flash plugin process via a Simple IPC

connection:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|39

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Simple IPC

(Flash Services Channel)

Chrome Flash Broker

Services

5.5.3.2. SERVICES

The table below lists the type of services exposed by the Chrome Flash broker to the Flash plugin process. The

code for these services is located in the gcswf32.dll binary.

Service Purpose

Dialog Services Opening an open/save file dialog.

Filesystem Services Brokering calls to FindFirstFileW(), FindNextFileW(), CreateFileW(),
MoveFileExW() and CreateDirectoryW().

‘LM” Services

Services for downloading and launching signed content.

Memory mapping and Mutant Services

Brokering calls to CreateFileMappingW() and CreateMutexW().

Network Services Brokering calls to WININET APIs.

Miscellaneous Services Such as launching the Flash settings manager.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|40

5.5.4. FIREFOX FLASH PLUGIN CONTAINER SERVICES
The privileged plugin container process in Firefox exposes services that are callable from the sandboxed Flash

plugin process. These exposed services are mainly used for proxying NPAPI calls between the Firefox browser

process and the sandboxed Flash plugin process.

5.5.4.1. CONNECTION

The services exposed by the plugin container process are callable from the Flash plugin process via a Chromium IPC

connection:

Chromium IPC (via Mozilla’s IPDL)

(Browser-Plugin Container Channel)

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

Chromium IPC

(NPAPI Channel)

NPAPIPluginChannel

NPAPIHostChannel

The pipe name used for the Chromium IPC connection is formatted as

“\\.\pipe\chrome.Flash%plugin_container_pid%.%p.%d”. The IPC connection is handled by the NPAPIHostChannel

Listener class in the plugin container process, while the IPC connection is handled by the NPAPIPluginChannel

Listener class in the Flash plugin process.

Additionally, as shown in the diagram, a separate Chromium IPC connection exists between the Firefox browser

process and the plugin container. This Chromium IPC connection is used for forwarding NPAPI calls between the

browser process and the plugin container process. On a high-level, communication via this IPC connection are

governed by Mozilla’s Inter-process communication Protocol Definition Language (IPDL) [16], on a low-level, the

actual messages are also sent via Chromium IPC. More information about Firefox’s multi-process architecture can

be found on Mozilla’s Electrolysis project page [17].

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|41

5.5.4.2. SERVICES

The table below lists the services exposed by the privileged plugin container to the sandboxed Flash plugin

process. The code for these services is located in the NPSWF32.dll binary.

Message Type Sent To Listener Purpose

NPAPIHostChannel
Messages

Plugin Container NPAPIHostChannel

Mostly for proxying NPAPI NPN_* APIs from
the Flash plugin process to the browser
process.

NPN_* APIs proxied by NPAPIHostChannel
are those that do not require a plugin
instance (e.g. NPN_GetIntIdentifier() and
NPN_ReloadPlugins()).

NPAPIPluginProxy
Messages

Plugin Container

NPAPIPluginProxy

Mostly for proxying NPAPI NPN_* APIs from
the Flash plugin process to the browser
process.

NPN_* APIs proxied by NPAPIPluginProxy
are those that require a plugin instance (e.g.
NPN_GetURL() and NPN_PostURL()).

Various window-related services are also
exposed by the plugin container to the Flash
plugin process via the NPAPIPluginProxy
messages.

NPObject Messages Plugin Container
Flash Plugin

NPObjectStub

Proxying NPObject calls between the Flash
plugin process and the browser process.

5.5.5. FIREFOX FLASH BROKER SERVICES
The services exposed by the Firefox Flash broker can be divided into three groups:

1. Sandbox Services

2. Flash Services

3. Permission Services

The Sandbox services are equivalent to the Chrome Sandbox services (discussed in 5.5.1). Specifically, they handle

forwarded API calls from the Flash plugin process. Flash services are additional services exposed to the Flash plugin

such as displaying an open/save dialog and launching the Flash Player settings manager. Permission services are

services for managing access permissions of the sandboxed Flash plugin process.

5.5.5.1. CONNECTION

The Sandbox and Flash services exposed by the Flash broker process are callable from the sandboxed Flash plugin

process via a Sandbox IPC connection. The permission services exposed by the Flash broker are callable from the

plugin container via a Chromium IPC connection:

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|42

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

Sandbox IPC

(Sandbox and Flash Services

Channel)

Firefox Flash Broker

Services

PermissionsBrokerChannel

Chromium IPC

(Permission Channel)

PermissionsHostChannel

The name of the IPC pipe used in the Chromium IPC connection between the plugin container and the Flash broker

is formatted as “\\.\pipe\chrome.Flash%plugin_container_pid%.%p.%d”. The Chromium IPC connection is handled

by the PermissionsHostChannel Listener class in the plugin container process, while the Chromium IPC connection

is handled by the PermissionsBrokerChannel Listener class in the Flash broker process.

5.5.5.2. SERVICES (SANDBOX AND FLASH SERVICES)

The table below lists the Sandbox and Flash services exposed by the Flash broker to the Flash plugin process. The

code for these services is located in the FlashPlayerPlugin.exe binary. By using the RTTI information embedded in

FlashPlayerPlugin.exe binary in addition to referencing the Chromium code, we were able to recover the names of

the Dispatcher classes.

Dispatcher Class Purpose

FilesystemDispatcher Handles file system services. Handles forwarded filesystem-related
NTDLL.DLL API calls.

MutantDispatcher Handles synchronization (mutant) services. Handles forwarded
NtCreateMutant() and NtOpenMutant() API calls.

NamedPipeDispatcher Handles named pipe services. Handles forwarded CreateNamedPipeW()
API calls.

PolicyBase Special dispatcher class. Among other things, the Sandbox IPC server uses
PolicyBase to resolve actual dispatcher class and the actual handler

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|43

routine to service the request.

RegistryDispatcher Handles registry services. Handles forwarded NtOpenKey() and
NtCreateKey() API calls.

SandboxBrokerServerDispatcher Miscellaneous broker services. Handles services which are not covered by
the other dispatcher classes such as launching the Flash Player settings
manager. Has interesting service handler routines and is a large attack
surface due to the number of its service handler routines.

SandboxVideoCaptureDispatcher
(possible name)

Handles video capture services.

SandboxClipboardDispatcher

Handles clipboard services. Mostly handles forwarded clipboard-related
USER32.DLL API calls.

SandboxCryptDispatcher Handles cryptographic services. Mostly handles forwarded crypto-related
SECUR32.DLL/SSPICLI.DLL and CRYPT32.DLL API calls.

SandboxPrintDispatcher Handles printing services.

SandboxWininetDispatcher Handles WININET services. Mostly handles forwarded WININET.DLL API
calls.

SectionDispatcher Handles section object services. Currently handles forwarded
NtCreateSection() and NtOpenSection() API calls.

SyncDispatcher Handles synchronization (events) services. Currently handles forwarded
CreateEventW() and OpenEventW() API calls.

ThreadProcessDispatcher Handles process and thread services. Currently handles forwarded
CreateProcessW(), CreateProcessA(), and other thread/process-related
API calls.

5.5.5.3. SERVICES (PERMISSION SERVICES)

The table below lists the permission services exposed by the Flash broker process to the plugin container process.

The code for these services is located in the FlashPlayerPlugin.exe binary.

Message Sent to Listener Purpose

PermissionsBrokerChannel
Messages

Flash Broker PermissionsBrokerChannel As of Firefox Flash 11.3,
PermissionBrokerChannel messages
are used for granting or denying the
job object that the sandboxed Flash
plugin process is associated to
access to a window handle.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|44

5.6. POLICY ENGINE
The policy engine allows the broker to specify exceptions to the default restrictions imposed in the sandbox. These

exceptions, or whitelist rules, allows the broker to grant the sandbox process access to certain named objects,

bypassing the sandbox restrictions.

5.6.1. ADDING POLICIES
The policy engine for all three implementations is derived from Chrome sandbox’s policy engine so they share a lot

in common. One of these is the way a policy is added. Policies are added programmatically using the

sandbox::PolicyBase::AddRule() function. This function takes the following format:

AddRule(subsystem, semantics, pattern)

The subsystem parameter indicates the Windows system the rules apply. The semantics parameter indicates the

permission that will be applied to the file name/path, registry name, etc. that matches the pattern expression.

The subsystems and semantics used are different for Firefox Flash and the sandboxes from Chrome, and are

derived from that of Adobe Reader X’s sandbox. Here are the subsystems and semantics for Firefox Flash:

Subsystem Description

SUBSYS_FILES

Creation and opening of files and pipes.

SUBSYS_NAMED_PIPES

Creation of named pipes.

SUBSYS_PROCESS

Creation of child processes.

SUBSYS_REGISTRY

Creation and opening of registry keys.

SUBSYS_SYNC

Creation of named sync objects.

SUBSYS_MUTANT

Creation and opening of mutant objects.

SUBSYS_SECTION

Creation and opening of section objects.

Semantics Description

FILES_ALLOW_ANY Allows open or create for any kind of access that the file system supports.

FILES_ALLOW_READONLY

Allows open or create with read access only.

FILES_ALLOW_QUERY

Allows access to query the attributes of a file.

FILES_ALLOW_DIR_ANY

Allows open or create with directory semantics only.

NAMEDPIPES_ALLOW_ANY

Allows creation of a named pipe.

PROCESS_MIN_EXEC Allows creation of a process with minimal rights over the resulting process
and thread handles. No other parameters besides the command line are
passed to the child process.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|45

PROCESS_ALL_EXEC Allows the creation of a process and return fill access on the returned
handles. This flag can be used only when the main token of the sandboxed
application is at least INTERACTIVE.

EVENTS_ALLOW_ANY Allows the creation of an event with full access.

EVENTS_ALLOW_READONLY Allows opening an event with synchronize access.

REG_ALLOW_READONLY Allows read-only access to a registry key.

MUTANT_ALLOW_ANY Allows creation of a mutant object with full access.

SECTION_ALLOW_ANY Allows read and write access to a section.

REG_ALLOW_ANY Allows read and write access to a registry key.

Subsystems and semantics for Chrome Flash and Pepper Flash are derived directly from Chrome sandbox’s. Here

are the subsystems and semantics for both Chrome Flash and Pepper Flash:

Subsystem Description

SUBSYS_FILES Creation and opening of files and pipes.

SUBSYS_NAMED_PIPES Creation of named pipes.

SUBSYS_PROCESS Creation of child processes.

SUBSYS_REGISTRY Creation and opening of registry keys.

SUBSYS_SYNC Creation of named sync objects.

SUBSYS_HANDLES Duplication of handles to other processes.

Semantics Description

FILES_ALLOW_ANY Allows open or create for any kind of access that the file system supports.

FILES_ALLOW_READONLY Allows open or create with read access only.

FILES_ALLOW_QUERY Allows access to query the attributes of a file.

FILES_ALLOW_DIR_ANY Allows open or create with directory semantics only.

NAMEDPIPES_ALLOW_ANY Allows creation of a named pipe.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|46

PROCESS_MIN_EXEC Allows creation of a process with minimal rights over the resulting process
and thread handles. No other parameters besides the command line are
passed to the child process.

PROCESS_ALL_EXEC Allows the creation of a process and return fill access on the returned
handles. This flag can be used only when the main token of the sandboxed
application is at least INTERACTIVE.

EVENTS_ALLOW_ANY Allows the creation of an event with full access.

EVENTS_ALLOW_READONLY Allows opening an event with synchronize access.

REG_ALLOW_READONLY Allows read-only access to a registry key.

REG_ALLOW_ANY Allows read and write access to a registry key.

HANDLES_DUP_ANY Allows duplicating of handles opened with any access permissions.

HANDLES_DUP_BROKER Allows duplicating handles to the broker process.

5.6.2. ADMIN-CONFIGURABLE POLICIES
In Firefox Flash, it is possible to add custom policies through a configuration file. This allows the administrator to

set whitelists that bypasses the restrictions imposed by the sandbox. The policy file is enabled by setting the

ProtectedModeBrokerWhitelistConfigFile option to 1 in mms.cfg. The policy file is named

ProtectedModeWhitelistConfig.txt and should be placed in %WINDIR%\System32\Macromed\Flash for 32-bit

Windows, and %WINDIR%\SysWow64\Macromed\Flash for 64-bit Windows.

Each policy rule takes the format of:

POLICY_RULE_TYPE = pattern string

The POLICY_RULE_TYPE is derived from the semantics and can be any of the following:

Policy Rule Description

FILES_ALLOW_ANY Allows open or create for any kind of access that the file system supports.

FILES_ALLOW_DIR_ANY Allows open or create with directory semantics only.

NAMEDPIPES_ALLOW_ANY Allows creation of a named pipe.

PROCESS_ALL_EXEC Allows the creation of a process and return full access on the returned
handles. This flag can be used only when the main token of the sandboxed
application is at least INTERACTIVE.

EVENTS_ALLOW_ANY Allows the creation of an event with full access.

REG_ALLOW_ANY Allows read and write access to a registry key.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|47

MUTANT_ALLOW_ANY Allows creation of a mutant object with full access.

SECTION_ALLOW_ANY Allows read and write access to a section.

The pattern string is similar to the pattern parameter in the hard-coded policies and denotes file names, paths,

registry locations, etc.

5.7. SUMMARY: SANDBOX MECHANISMS
After discussing each Flash sandbox mechanism, as a summary, this section will discuss how all the sandbox

mechanisms are interconnected.

5.7.1. FLASH PLAYER PROTECTED MODE FOR CHROME (CHROME FLASH)

In Chrome Flash, the sandboxed Flash plugin process connects to the following processes:

 Chrome browser process via Sandbox IPC and Chromium IPC

 Chrome renderer process via Chromium IPC

 Flash broker process via Simple IPC

API calls are intercepted in the Flash plugin process and are forwarded to the Chrome browser process via the

Sandbox IPC connection; these forwarded API calls are first evaluated by the policy engine against the sandbox

policies. For NPAPI calls, the Flash plugin process invokes the NPAPI support services exposed by the renderer

process. Furthermore, the Flash plugin process also uses the additional services exposed by the Flash broker

process.

The diagram below shows how all the sandbox mechanisms are interconnected in Chrome Flash.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|48

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services
Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PluginThread

PluginProcessHost

Chromium IPC

(NPAPI Channel)

PluginChannel

PluginChannelHost

Simple IPC

(Flash Services Channel)

Chrome Flash Broker

Services

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome

(Chrome Flash)

Flash Plugin Process
(chrome.exe, gcswf32.dll)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Broker Process
(rundll32.exe, gcswf32.dll!BrokerMain)

 API Call

Chrome Browser Process

(chrome.exe)
 API Call

Operating

System

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

5.7.2. FLASH PLAYER PROTECTED MODE FOR CHROME PEPPER (PEPPER FLASH)
In Pepper Flash, the sandboxed Flash plugin process connects to the following processes:

 Chrome browser process via Sandbox IPC and Chromium IPC

 Chrome renderer process via Chromium IPC

APIs calls are intercepted in the Flash plugin process and are forwarded to the Chrome browser process via the

Sandbox IPC connection; these forwarded API calls are first evaluated by the policy engine against the sandbox

policies. For PPAPI calls, the Flash plugin process invokes the PPAPI services exposed by the renderer process. Since

the PPAPI services provide adequate capabilities to the Flash plugin process, there is no need for an additional

Flash broker.

The diagram below shows how all the sandbox mechanisms are interconnected in Pepper Flash.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|49

Policy Engine

Policy Checks

Flash Player Protected Mode For Chrome Pepper

(Pepper Flash)

Operating

System

Pepper Flash Plugin Process
(chrome.exe, pepflashplayer.dll)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Renderer Process
(chrome.exe)

[Sandboxed, Untrusted Integrity]

API Call

 [Sandboxed]

Chrome Browser Process

(chrome.exe)
 API Call

Sandbox IPC

(Sandbox Services Channel)

Chrome Sandbox

Services

Chromium IPC

(PPAPI Channel)

HostDispatcher

PluginDispatcher

Chromium IPC

(Browser-Renderer Channel)

RenderThreadImpl

RenderProcessHostImpl

Chromium IPC

(Plugin Management

Channel)

PpapiPluginProcessHost

PpapiThread

5.7.3. FLASH PLAYER PROTECTED MODE FOR FIREFOX (FIREFOX FLASH)
In Firefox Flash, the sandboxed Flash plugin process connects to the following processes:

 Plugin container process via Chromium IPC

 Flash broker process via Sandbox IPC

APIs calls are intercepted in the Flash plugin process and are forwarded to the Flash broker process via the

Sandbox IPC connection; these forwarded API calls are first evaluated by the policy engine against the sandbox

policies. In addition to servicing forwarded API calls, the Flash broker process also exposes additional services to

the Flash plugin process. Furthermore, the Flash broker process additionally exposes permission services which

grant/deny the sandboxed Flash plugin process access to resources. These permission services are exposed by the

Flash broker process to the plugin container process. And for NPAPI calls, the Flash plugin process invokes the

NPAPI services exposed by the plugin container process which in turn proxies the NPAPI calls to the browser

process.

The diagram below shows how all the sandbox mechanisms are interconnected in Firefox Flash.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX MECHANISMS

IBM Security Systems | ©2012 IBM Corporation

|50

Chromium IPC (via Mozilla’s IPDL)

(Browser-Plugin Container Channel)

Firefox Browser Process

(firefox.exe)

Operating

System

Plugin Container

(plugin-container.exe, NPSWF32.DLL)

Flash Broker Process

(FlashPlayerPlugin.exe)
 API Call

Flash Plugin Process
(FlashPlayerPlugin.exe, NPSWF32.DLL)

[Sandboxed, Low Integrity]

API Call

 [Sandboxed]

Flash Player Protected Mode For Firefox

(Firefox Flash)

 API Call

 API Call

Sandbox IPC

(Sandbox and Flash Services

Channel)

Firefox Flash Broker

Services

Policy Engine

Policy Checks

PermissionsBrokerChannel

Chromium IPC

(Permission Channel)

PermissionsHostChannel

Chromium IPC

(NPAPI Channel)

NPAPIPluginChannel

NPAPIHostChannel

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX LIMITATIONS

IBM Security Systems | ©2012 IBM Corporation

|51

6. SANDBOX LIMITATIONS
In this section, we will discuss the limitations and weaknesses of the three sandbox implementations. We will focus

on the things that malicious code can still do when running inside the sandbox, in spite of the sandbox restrictions.

6.1. FILE SYSTEM READ ACCESS
Firefox Flash allows read access to all files that are accessible from the user’s account. This is partly a result of the

sandbox process token still having access to some files (such as those accessible to the Everyone and Users group),

but more importantly, there is a hard-coded policy rule that allows read access to all files:

SubSystem=SUBSYS_FILES

Semantics=FILES_ALLOW_READONLY

Pattern="*"

We can assume that above policy rule was added for compatibility reasons. However, the security implication of

this weakness is that it would allow malicious code running in the sandbox to read the user’s documents, source

codes, application configuration/data files (which may contain encrypted password or password hashes), and

other sensitive files.

This weakness also allows an attacker to read the policy file “ProtectedModeWhitelistConfig.txt”, which contains

user configured custom policies. This can give attackers an idea of what exceptions from the sandbox restrictions

are in effect, and may allow them to craft more effective attacks subsequently.

Chrome Flash also allows read access as much as Firefox Flash does, not by any explicit policy rules but due to the

sandbox process token still having read access to files.

In contrast to the other two implementations, Pepper Flash does not allow any direct file access at all.

6.2. REGISTRY READ ACCESS
Firefox Flash also allows read access to registry keys that are accessible from the user’s account. This is partly a

result of the sandbox process token still having access to some registry keys (such as those accessible to the

Everyone and Users group), but more importantly, there are several hard-coded policy rules that allow read access

to major registry hives:

SubSystem=SUBSYS_REGISTRY

Semantics=REG_ALLOW_READONLY

Pattern="HKEY_CLASSES_ROOT*"

SubSystem=SUBSYS_REGISTRY

Semantics=REG_ALLOW_READONLY

Pattern="HKEY_CURRENT_USER*"

SubSystem=SUBSYS_REGISTRY

Semantics=REG_ALLOW_READONLY

Pattern="HKEY_LOCAL_MACHINE*"

SubSystem=SUBSYS_REGISTRY

Semantics=REG_ALLOW_READONLY

Pattern="HKEY_USERS*"

SubSystem=SUBSYS_REGISTRY

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX LIMITATIONS

IBM Security Systems | ©2012 IBM Corporation

|52

Semantics=REG_ALLOW_READONLY

Pattern="HKEY_CURRENT_CONFIG*"

Again, we can speculate that the above policies were added for compatibility reasons. This weakness would allow

malicious code running in the sandbox to read system configuration information, get a list of installed applications,

and retrieve application configuration/data (which may contain encrypted passwords or password hashes) and

other sensitive information. In addition to the policies above, Firefox Flash also allows full access to certain Flash

related registry keys. For example, full access is granted for any registry access to a key that matches the pattern

HKEY_CURRENT_USER\Software\Macromedia\FlashPlayer*.

Chrome Flash also allows read access to the major registry hives mentioned above. However, it does not explicitly

allow any other registry access.

Pepper Flash on the other hand does not allow any registry access at all.

6.3. NETWORK ACCESS
A notable limitation in both Chrome Flash and Firefox Flash is their inability to restrict network access. This

limitation would allow malicious code running in the sandbox process to send stolen information to a remote

server. Another way to leverage this limitation is by connecting to and possibly exploiting internal systems which

are accessible to the affected machine but are otherwise inaccessible if accessed from outside the internal

network. This type of attack was already known in the pre-sandbox days, but it is interesting that it is still possible.

Pepper Flash doesn’t have this limitation as it disallows socket creation.

6.4. POLICY ALLOWED WRITE ACCESS TO FILES/FOLDERS
A weakness we found researching Firefox Flash are the permissive policy rules that grant the sandbox process

write access to certain folders and files, some of which are used by third party applications. If the writable

folder/file is used by a certain application to store configuration information, it may be possible for malicious code

running in the sandbox process to control the behavior of the application, which in turn could lead to further

compromise of the system.

The ability to create a local file with a controllable file name can also be leveraged by an attacker in the following

use-cases:

 Can be leveraged in exploiting a vulnerability in which successful exploitation requires the creation an

attacker-controlled file with a predictable file name.

 For multi-stage exploit payloads, an attacker can use the writable locations as a location to temporarily

store a second stage payload library file which can then be loaded to the sandbox process.

6.5. CLIPBOARD READ/WRITE ACCESS
In Firefox Flash, programmatic read/write access is permitted on the clipboard which could be abused. This is

because in addition to the clipboard read/write access restriction not being placed in the job object the sandbox

process is assigned to, the SandboxClipboardDispatcher dispatcher class in the broker process also provides

clipboard-related services which allow clipboard access in the context of the broker process.

Chrome Flash also allows read/write access to the clipboard because no clipboard read/write access restriction is

placed on the sandbox’s job object.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX LIMITATIONS

IBM Security Systems | ©2012 IBM Corporation

|53

Thus, for these two implementations it is possible for code running in the sandbox process to read the clipboard

contents, which may contain sensitive information (such as passwords – if the user uses an insecure password

manager that does not regularly clears the clipboard). Clipboard write access may also lead to other security issues

such as arbitrary command injection, and if an application trusts the clipboard contents, it could also become an

avenue for a sandbox escape - these are described by Tom Keetch in the paper “Practical Sandboxing on the

Windows Platform” [18].

As usual, Pepper Flash does not have this weakness.

6.6. WRITE ACCESS TO FAT/FAT32 PARTITIONS
Common to all three implementations is that they all allow write access to FAT/FAT32 partitions. Since FAT/FAT32

partitions (still mostly used in USB flash drives) do not support security descriptors, it is possible for code running

in the sandbox process to create or modify files located in partitions of these types. As a consequence, malicious

code running in the sandbox process will be able to drop malicious files on FAT/FAT32 partitions which could in

turn lead to propagation behaviors. An example of such propagation behavior is dropping a malicious EXE file and

an autorun.inf file.

6.7. SANDBOX LIMITATION COMPARISON TABLE
Here’s a comparison table for each sandbox’s restrictions against some important objects:

 Chrome Flash Firefox Flash Pepper Flash

File System READ Access
(%USERPROFILE%)

GRANTED GRANTED DENIED

File System READ Access
 (%USERPROFILE%\Documents)

GRANTED GRANTED DENIED

File System READ Access
 (%APPDATA%)

GRANTED GRANTED DENIED

File System READ Access
 (%LOCALAPPDATA%)

GRANTED GRANTED DENIED

File System READ Access
 (%LOCALAPPDATA%\Temp)

GRANTED GRANTED DENIED

File System READ Access
(%USERPROFILE%\AppData\LocalLow)

GRANTED GRANTED DENIED

File System READ Access
 (%SystemDrive%)

GRANTED GRANTED DENIED

File System READ Access
(%SystemDrive%\Program Files)

GRANTED GRANTED DENIED

File System READ Access
 (%SystemDrive%\Program Files (x86))

GRANTED GRANTED DENIED

File System READ Access
 (%SystemRoot%)

GRANTED GRANTED DENIED

File System WRITE Access
 (%USERPROFILE%)

DENIED DENIED DENIED

File System WRITE Access
 (%USERPROFILE%\Documents)

DENIED DENIED DENIED

File System WRITE Access
 (%APPDATA%)

DENIED DENIED DENIED

File System WRITE Access DENIED DENIED DENIED

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX LIMITATIONS

IBM Security Systems | ©2012 IBM Corporation

|54

 (%LOCALAPPDATA%)

File System WRITE Access
 (%LOCALAPPDATA%\Temp)

DENIED DENIED DENIED

File System WRITE Access
(%USERPROFILE%\AppData\LocalLow)

GRANTED DENIED DENIED

File System WRITE Access
 (%SystemDrive%)

DENIED DENIED DENIED

File System WRITE Access
 (%SystemDrive%\Program Files)

DENIED DENIED DENIED

File System WRITE Access
 (%SystemDrive%\Program Files (x86))

DENIED DENIED DENIED

File System WRITE Test
 (%SystemRoot%)

DENIED DENIED DENIED

Registry READ Access
 (HKEY_CLASSES_ROOT)

GRANTED GRANTED DENIED

Registry READ Access
 (HKEY_CURRENT_USER)

GRANTED GRANTED DENIED

Registry READ Access
 (HKEY_LOCAL_MACHINE)

GRANTED GRANTED DENIED

Registry READ Access
(HKEY_USERS)

GRANTED GRANTED DENIED

Registry READ Access
 (HKEY_CURRENT_CONFIG)

GRANTED GRANTED DENIED

Registry WRITE Access
 (HKEY_CLASSES_ROOT)

DENIED DENIED DENIED

Registry WRITE Access
 (HKEY_CURRENT_USER)

DENIED DENIED DENIED

Registry WRITE Access
 (HKEY_LOCAL_MACHINE)

DENIED DENIED DENIED

Registry WRITE Access
(HKEY_USERS)

DENIED DENIED DENIED

Registry READ Access
 (HKEY_CURRENT_CONFIG)

DENIED DENIED DENIED

Network Access GRANTED GRANTED DENIED

Clipboard READ Access GRANTED GRANTED DENIED

Clipboard WRITE Access GRANTED GRANTED DENIED

BaseNamedObjects WRITE Access GRANTED GRANTED DENIED

6.8. SUMMARY: SANDBOX LIMITATIONS
In this section we showed the various limitations and weaknesses of each sandbox. We can also safely conclude

that among the three implementations, Pepper Flash offers the most restriction.

While code running in the Flash sandboxes is severely limited in terms of what it can do, it is still possible to carry

out information theft attacks by leveraging their current weaknesses and limitations. This is an important point to

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX LIMITATIONS

IBM Security Systems | ©2012 IBM Corporation

|55

remember because the result of an information theft attack can be devastating especially for businesses and

governments. And by conveying the security implication of each limitation or weakness, we hope that we can

create an awareness that users should still continue to be cautious when opening unsolicited documents even if

the application they are using has sandboxing capabilities.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ESCAPE

IBM Security Systems | ©2012 IBM Corporation

|56

7. SANDBOX ESCAPE
In this section, we will discuss the different ways that malicious code might use to escape the Flash sandboxes. This

section starts with a discussion of generic escape methods and then moves to the discussion of attacking specific

sandbox mechanisms to conduct a sandbox escape. Furthermore, most of the items discussed in this section are

not specific to the Flash sandbox and can be applied to other sandbox implementations as well.

As a side note, one important advantage for code already running in the sandbox process is that it already has the

necessary information to perform a Data Execution Prevention (DEP) and Address Space Layout Randomization

(ASLR) bypass when exploiting other applications running on the same system. The reason is that a system-wide

value called the image bias which dictates the load address of DLLs is shared across processes and is computed

only once per boot [19]. This means, that for example, code running in the sandboxed Flash plugin process can use

the NTDLL.DLL and KERNEL32.DLL base in the sandboxed process when crafting a ROP sequence for the exploit to

be used against a higher-privileged process.

7.1. LOCAL ELEVATION OF PRIVILEGE (EOP) VULNERABILITIES
The first option when performing a sandbox escape is by exploiting local elevation of privilege (EoP) vulnerabilities.

Exploiting local EoP vulnerabilities, especially those can result in arbitrary code execution in kernel mode are an

ideal way to bypass all the restrictions set on sandboxed code.

With multiple available interfaces to kernel-mode code such as system calls and Device objects which are

accessible to a sandboxed process, we can expect that local EoP vulnerabilities will become more valuable as more

and more critical applications are being sandboxed. An interesting discussion on kernel-mode vulnerabilities can

be found in the presentation “There's a party at Ring0, and you're invited” [20] by Tavis Ormandy and Julien

Tinnes.

7.2. NAMED OBJECT SQUATTING ATTACKS
Named object squatting is an attack involving a malicious application creating a named object that a target

application is known to trust. In the context of a sandbox escape, code running in a compromised sandbox process

can create a malicious named object and wait until a higher-privileged process uses the malicious named object.

An example of named object squatting is an attack against Protected Mode Internet Explorer discussed by Tom

Keetch in his presentation "Practical Sandboxing on the Windows Platform" [18].

7.3. IPC MESSAGE PARSER VULNERABILITIES
Running in a privileged context and being the first code that touches potentially untrusted data from an IPC

connection, the IPC message parser is one of the primary attack vectors in a sandbox implementation for

conducting a sandbox escape. From an auditing perspective, the routines of interest are those that parse IPC

message and those that deserialize IPC call parameters (especially complex parameters types).

In section 5.4, we had discussed the different IPC implementations used by the different Flash sandboxes, all of

them are open source, and thus, a source audit is possible. An interesting exercise is looking at security updates

made in the public sources and then checking whether or not those security updates are propagated to the

binaries released by Adobe – this also applies to other sandbox mechanisms as well.

An example of IPC message parser vulnerability is the SkBitmap deserialization vulnerability discovered by Mark

Dowd [14] in the Chrome sandbox.

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ESCAPE

IBM Security Systems | ©2012 IBM Corporation

|57

7.4. POLICY VULNERABILITIES
Permissive policies, particularly those that allow write access to a resource can also be used as a vector for

sandbox escape.

An example scenario would be write-allowed policies for registry keys – if a particular key has sub keys or entries

that are used for sandbox configuration, the sandboxed code can potentially control the initialization of the

sandbox and use it directly or indirectly to perform a sandbox escape. The same applies to write-allowed policies

for files or folders – if a particular folder contains a configuration file used by a higher-privileged process, the

behavior of the higher-privileged process can possibly be controlled by a sandboxed code and could possibly lead

to a sandbox escape. Also, if a particular folder contains executable files, a sandboxed code can potentially

overwrite the contents of the executable file so that when the executable file is spawned, an attacker-controlled

code will be executed in a privileged context.

Auditing for policy vulnerabilities involves enumerating all the policies in a sandbox implementation and

specifically looking for policies that allow write access. Once all write allowed policies are enumerated, each write

policy is then audited for potential escape by checking if the writable resource can affect the behavior of a higher-

privileged application.

7.5. POLICY ENGINE VULNERABILITIES
Acting as a gatekeeper who decides which potentially sensitive actions are allowed or disallowed, the policy engine

is another sandbox mechanism that can be leveraged to conduct a sandbox escape.

Auditing for policy engine vulnerabilities involves looking for ways to bypass policy checks such as checking if there

is lack of or insufficient canonicalization of resource names when performing policy checks. Additionally, auditing

for memory corruption bugs may also yield results if there is complex preprocessing of resource names during

policy checks.

An excellent example of a policy engine vulnerability is CVE-2011-1353 [21, 22], a vulnerability we discovered (and

also independently discovered by Zhenhua Liu [23] of Fortinet's Fortiguard Labs) in the policy engine of the Adobe

Reader X sandbox. The vulnerability (since patched) is due to lack of canonicalization of a resource name when

evaluating registry deny-access policies. In Reader X, there is a policy allowing full access to the sub keys of the

registry key HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0:

SubSystem: SUBSYS_REGISTRY

Semantics: REG_ALLOW_ANY

Pattern: HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0*

However, one of the sub keys of the previously mentioned registry key is used by Reader X to store sandbox

configuration. An example is the registry entry bProtectedMode under the Privileged subkey which is used by

Reader X to determine whether to enable or disable the Reader X sandbox:

HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\Privileged

bProtectedMode = 0 (disabled), non-zero (enabled)

Accordingly, a registry deny-access policy also exists to prevent access to the Privileged sub key:

SubSystem: SUBSYS_REGISTRY

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ESCAPE

IBM Security Systems | ©2012 IBM Corporation

|58

Semantics: REG_DENY

Pattern: HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\Privileged*

However, since there is lack of canonicalization of registry resource name when performing policy checks, simply

modifying the registry resource name to contain additional back slashes such as:

HKEY_CURRENT_USER\Software\Adobe\Acrobat Reader\10.0\\Privileged

Will result in a bypass of the registry deny-access policy, thereby, allowing a sandboxed code to disable the Reader

X sandbox.

7.6. SERVICE VULNERABILITIES
In the Services section (5.5), we discussed the different services exposed by different Flash sandbox processes. The

services exposed by higher-privileged processes make up a large part of the attack surface in a sandbox

implementation since they are many and run in a privileged context.

Two examples of service vulnerability in a Flash sandbox implementation is CVE-2012-0724 and CVE-2012-0725

[24, 25], two vulnerabilities we discovered (and also independently discovered by Fermin J. Serna of the Google

Security Team). Both vulnerabilities exist in the Chrome Flash Broker and are similar in nature.

CVE-2012-0724 and CVE-2012-0725 exist in two service handlers which are part of the Chrome Flash Broker

Services (5.5.3) and are callable to the sandboxed Flash plugin process via Simple IPC (5.4.3). Essentially, the

vulnerabilities were due to the service handlers accepting and fully trusting a pointer they received from the

sandboxed Flash plugin process. The vulnerable service handlers including their corresponding Simple IPC message

ID and parameters are as follows:

Message ID Parameters Purpose

0x2B

VOIDPTR sec_func_table Broker a call to AcquireCredentialHandlesA()

0x2D VOIDPTR sec_func_table,
ULONG32 cred_handle_lower,
ULONG32 cred_handle_upper

Broker a call to FreeCredentialsHandle()

Notice that in both service handlers, the first parameter is a pointer (sec_func_table), and specifically, a pointer to

a SecurityFunctionTableA [26] structure. Inside the service handlers, sec_func_table is fully trusted (no checks or

further transformation is done) and is dereferenced to invoke SecurityFunctionTableA.AcquireCredentialsHandleA()

and SecurityFunctionTableA.FreeCredentialsHandle():

Service_0x2B_AcquireCredentialsHandleA:

 ...

 mov reg, [sec_func_table] ; sec_func_table is fully controllable

 ...

 call [reg+0Ch] ; sec_func_table->AcquireCredentialsHandleA()

 ; reg+0Ch is fully controllable!

DIGGING DEEP INTO THE FLASH SANDBOXES > SANDBOX ESCAPE

IBM Security Systems | ©2012 IBM Corporation

|59

Service_0x2D_FreeCredentialsHandle:

 ...

 mov reg, [sec_func_table] ; sec_func_table is fully controllable

 call [reg+10h] ; sec_func_table->FreeCredentialsHandle()

 ; reg+10h is fully controllable!

Since sec_func_table is fully controllable, the address used in the call instruction is also fully controllable. With

additional research work of figuring out how to implant data in the stack of the Flash broker process, and using

one of the vulnerabilities to leak the stack address of the Flash broker to the sandboxed Flash plugin, and finally,

with the possibility of predicting the address of APIs in the Flash broker process (as explained in the image bias

side note), we were able to achieve arbitrary code execution in the Chrome Flash broker process.

We expect that in the future, to accommodate new features, new services will continually need to be added to

accommodate the new functionalities.

7.7. SUMMARY: SANDBOX ESCAPE
Sandbox escape involves a sandboxed code exploiting a weakness in a higher-privileged process. The higher-

privileged process can be a process which is a part of the operating system, another application or part of the

sandbox implementation itself. Two prime examples of weaknesses that can lead to a sandbox escape are setting

of permissive policies and improper handling of untrusted data provided by the sandboxed code.

As sandboxes becomes more prevalent in critical applications, an attacker would now need a separate

vulnerability, or in some cases, a few more vulnerabilities [27, 28] to execute code in an elevated privilege in order

to install persistent malware in a target system. That being said, sandbox escape vulnerabilities will become more

important and exploiting them will become a major part of sophisticated attacks targeting critical applications.

DIGGING DEEP INTO THE FLASH SANDBOXES > CONCLUSION

IBM Security Systems | ©2012 IBM Corporation

|60

8. CONCLUSION
In this paper we discussed three different implementations of the Flash Player sandbox. We have concluded that

out of the three implementations, the one that offers the most security is Pepper Flash. As the current

implementation still in the experimental phase, it still remains to be seen how well it would fare in the real world

with its extreme restrictions. In our experience, it is still not stable enough for day to day use (e.g. YouTube

videos). Fortunately, even the less restrictive Firefox Flash and Chrome Flash still offers substantial cost of

exploitation. In fact, we haven’t encountered any public exploits that fully exploits a Flash vulnerability through

Firefox and Chrome since these sandbox implementations were released.

However, it does not mean that users should be complacent. As we have shown in this paper, there are still ways

in which an attacker or malicious code can do damage in spite of running within the sandbox restrictions, and also

that there are still many ways in which a determined attacker can possibly discover how to escape or bypass the

sandboxes. We hope that through the discussion of the internal mechanisms, limitations, and weaknesses of these

sandbox implementations, we have increased the reader’s awareness regarding this topic.

Finally, we hope that this paper will serve as an inspiration and useful resource for our fellow security researchers

for digging more deeply into current and future sandbox implementations.

DIGGING DEEP INTO THE FLASH SANDBOXES > ACKNOWLEDGEMENTS

IBM Security Systems | ©2012 IBM Corporation

|61

9. ACKNOWLEDGEMENTS
We would like to thank Robert Freeman, Justin Schuh, and Peleus Uhley for reviewing and giving feedback on this

paper.

DIGGING DEEP INTO THE FLASH SANDBOXES > BIBLIOGRAPHY

IBM Security Systems | ©2012 IBM Corporation

|62

10. BIBLIOGRAPHY

[1] Mozilla Foundation, “NPAPI,” [Online]. Available: https://wiki.mozilla.org/NPAPI.

[2] P. Sabanal and M. V. Yason, “Playing In The Reader X Sandbox,” [Online]. Available:

https://media.blackhat.com/bh-us-11/Sabanal/BH_US_11_SabanalYason_Readerx_WP.pdf.

[3] The Chromium Authors, “Pepper Plugin Implementation,” [Online]. Available:

https://sites.google.com/a/chromium.org/dev/developers/design-documents/pepper-plugin-implementation.

[4] Adobe Systems Incorporated, "Adobe Flash Player 11.3 Administration Guide," [Online]. Available:

http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/flashplayer/pdfs/flash_play

er_11_3_admin_guide.pdf.

[5] D. LeBlanc, “Practical Windows Sandboxing – Part 1,” [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/27/practical-windows-sandboxing-part-1.aspx.

[6] D. LeBlanc, “Practical Windows Sandboxing, Part 2,” [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/30/practical-windows-sandboxing-part-2.aspx.

[7] D. LeBlanc, “Practical Windows Sandboxing – Part 3,” [Online]. Available:

http://blogs.msdn.com/b/david_leblanc/archive/2007/07/31/practical-windows-sandboxing-part-3.aspx.

[8] Microsoft, “Restricted Tokens,” [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa379316(v=vs.85).aspx.

[9] Microsoft, "Windows Integrity Mechanism Design," [Online]. Available: http://msdn.microsoft.com/en-

us/library/bb625963.aspx.

[10] Wikipedia, “Shatter Attack,” [Online]. Available: http://en.wikipedia.org/wiki/Shatter_attack.

[11] Microsoft, “Job Objects,” [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/ms684161(v=vs.85).aspx.

[12] L. McQuarrie, A. Mehra, S. Mishra, K. Randolph and B. Rogers, "Inside Adobe Reader Protected Mode – Part 2

– The Sandbox Process," [Online]. Available: http://blogs.adobe.com/asset/2010/10/inside-adobe-reader-

protected-mode-%E2%80%93-part-2-%E2%80%93-the-sandbox-process.html.

[13] The Chromium Authors, “Inter-process Communication (IPC),” [Online]. Available:

http://www.chromium.org/developers/design-documents/inter-process-communication.

[14] Azimuth Security Pty Ltd, “The Chrome Sandbox Part 2 of 3: The IPC Framework,” [Online]. Available:

http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html.

DIGGING DEEP INTO THE FLASH SANDBOXES > BIBLIOGRAPHY

IBM Security Systems | ©2012 IBM Corporation

|63

[15] Mozilla Foundation, “NPObject,” [Online]. Available: https://developer.mozilla.org/en/NPObject.

[16] Mozilla Foundation, "Inter-process communication Protocol Definition Language (IPDL)," [Online]. Available:

https://developer.mozilla.org/en/IPDL.

[17] Mozilla Foundation, “Electrolysis Project,” [Online]. Available: https://wiki.mozilla.org/Electrolysis.

[18] T. Keetch, “Practical Sandboxing on the Windows Platform,” [Online]. Available:

http://www.tkeetch.co.uk/slides/HackInParis_2011_Keetch_-_Practical_Sandboxing.ppt.

[19] M. Russinovich, D. Solomon and A. Ionescu, Windows® Internals: Including Windows Server 2008 and

Windows Vista, Fifth Edition.

[20] T. Ormandy and J. Tinnes, “There's a party at Ring0, and you're invited,” [Online]. Available:

http://www.cr0.org/paper/to-jt-party-at-ring0.pdf.

[21] IBM Corporation, “Adobe Reader X Sandbox Bypass Vulnerability,” [Online]. Available:

http://www.iss.net/threats/433.html.

[22] Adobe Systems Incorporated, “Security updates available for Adobe Reader and Acrobat (APSB11-24),”

[Online]. Available: http://www.adobe.com/support/security/bulletins/apsb11-24.html.

[23] Z. Liu and G. Lovet, "Breeding Sandworms: How To Fuzz Your Way Out of Adobe Reader's Sandbox," [Online].

Available: https://media.blackhat.com/bh-eu-12/Liu_Lovet/bh-eu-12-Liu_Lovet-Sandworms-WP.pdf.

[24] Adobe Systems Incorporated, “Security update available for Adobe Flash Player (APSB12-07),” [Online].

Available: http://www.adobe.com/support/security/bulletins/apsb12-07.html.

[25] IBM Corporation, “Adobe Flash Player For Chrome Sandbox Bypass Vulnerabilities,” [Online]. Available:

http://iss.net/threats/446.html.

[26] Microsoft, “SecurityFunctionTable structure,” [Online]. Available: http://msdn.microsoft.com/en-

us/library/windows/desktop/aa380125(v=vs.85).aspx.

[27] J. L. Obes and J. Schuh, "A Tale of Two Pwnies (Part 1)," [Online]. Available:

http://blog.chromium.org/2012/05/tale-of-two-pwnies-part-1.html.

[28] K. Buchanan, C. Evans, C. Reis and T. Sepez, "A Tale Of Two Pwnies (Part 2)," [Online]. Available:

http://blog.chromium.org/2012/06/tale-of-two-pwnies-part-2.html.

DIGGING DEEP INTO THE FLASH SANDBOXES > APPENDIX A: EVICTED DLLS AND PLUGINS

IBM Security Systems | ©2012 IBM Corporation

|64

11. APPENDIX A: EVICTED DLLS AND PLUGINS

11.1. EVICTED DLLS IN FIREFOX FLASH
(As of version 11.3.300.257)

adialhk.dll

acpiz.dll

avgrsstx.dll

babylonchromepi.dll

btkeyind.dll

cmcsyshk.dll

cooliris.dll

dockshellhook.dll

googledesktopnetwork3.dll

fwhook.dll

hookprocesscreation.dll

hookterminateapis.dll

hookprintapis.dll

imon.dll

ioloHL.dll

kloehk.dll

lawenforcer.dll

libdivx.dll

lvprcinj01.dll

madchook.dll

mdnsnsp.dll

moonsysh.dll

npdivx32.dll

npggNT.des

npggNT.dll

oawatch.dll

pavhook.dll

pavshook.dll

pavshookwow.dll

pctavhook.dll

pctgmhk.dll

prntrack.dll

radhslib.dll

radprlib.dll

rapportnikko.dll

rlhook.dll

rooksdol.dll

rpchromebrowserrecordhelper.dll

rpmainbrowserrecordplugin.dll

r3hook.dll

sahook.dll

sbrige.dll

sc2hook.dll

DIGGING DEEP INTO THE FLASH SANDBOXES > APPENDIX A: EVICTED DLLS AND PLUGINS

IBM Security Systems | ©2012 IBM Corporation

|65

sguard.dll

smum32.dll

smumhook.dll

ssldivx.dll

syncor11.dll

systools.dll

tfwah.dll

ycwebcamerasource.ax

wblind.dll

wbhelp.dll

winstylerthemehelper.dll

11.2. EVICTED DLLS IN CHROME FLASH AND PEPPER FLASH
(As of version 20.0.1132.43)

adialhk.dll

acpiz.dll

avgrsstx.dll

babylonchromepi.dll

btkeyind.dll

cmcsyshk.dll

cmsetac.dll

cooliris.dll

dockshellhook.dll

easyhook32.dll

googledesktopnetwork3.dll

fwhook.dll

hookprocesscreation.dll

hookterminateapis.dll

hookprintapis.dll

imon.dll

ioloHL.dll

kloehk.dll

lawenforcer.dll

libdivx.dll

lvprcinj01.dll

madchook.dll

mdnsnsp.dll

moonsysh.dll

mpk.dll

npdivx32.dll

npggNT.des

npggNT.dll

oawatch.dll

owexplorer-10513.dll

owexplorer-10514.dll

owexplorer-10515.dll

owexplorer-10516.dll

owexplorer-10517.dll

DIGGING DEEP INTO THE FLASH SANDBOXES > APPENDIX A: EVICTED DLLS AND PLUGINS

IBM Security Systems | ©2012 IBM Corporation

|66

owexplorer-10518.dll

owexplorer-10519.dll

owexplorer-10520.dll

owexplorer-10521.dll

owexplorer-10522.dll

owexplorer-10523.dll

pavhook.dll

pavlsphook.dll

pavshook.dll

pavshookwow.dll

pctavhook.dll

pctgmhk.dll

prntrack.dll

protector.dll

radhslib.dll

radprlib.dll

rapportnikko.dll

rlhook.dll

rooksdol.dll

rpchromebrowserrecordhelper.dll

r3hook.dll

sahook.dll

sbrige.dll

sc2hook.dll

sdhook32.dll

sguard.dll

smum32.dll

smumhook.dll

ssldivx.dll

syncor11.dll

systools.dll

tfwah.dll

wblind.dll

wbhelp.dll

winstylerthemehelper.dll

11.3. EVICTED PLUGIN DLLS IN CHROME FLASH
rpmainbrowserrecordplugin.dll

rpchromebrowserrecordhelper.dll

rpchrome10browserrecordhelper.dll

ycwebcamerasource.ax

CLRGL.ax

