
Torturing OpenSSL

Valeria Bertacco
University of Michigan

with Andrea Pellegrini and Todd Austin

Back Hat ‘12 Jul 25, 2012

2/40

Cryptography is all around us

online
shopping

email

internet
banking

electronic passports

playstation 3 blu-ray player

3/40

Value of Cryptography

$2.1 billion
1,300 employees

$5.7 billion
1,000 employees

Source: Wiki & NASDAQ

$82 billion
34,000 employees

$39 billion
18,000 employees

by Symantec

4/40

Outline
 Cryptography Introduction
 RSA authentication
 Attacks to RSA authentication
 OpenSSL implementation
 Private key extraction
 Fault injection
 Conclusions

5/40

What is Authenticated Communication?

How do we enable authenticated communication?

Insecure
medium

m

6/40

Asymmetric Cryptography

Insecure
medium

ms

m

7/40

RSA Keys
The protocol is based on two number pairs, called keys

1.Choose two large prime numbers p & q
2.Compute n = p*q
3.Choose two numbers, d & e such that:

d*e = 1 mod ((p-1)(q-1))

Effect: mde mod n = m mod n
4.Keep (d,n) as the secret private key
5.Advertise (e,n) as the public key

Insecure
medium

Private key
(d,n)

Public key (e,n)

8/40

RSA Authentication
Correct Authentication:

• Server challenge:
s = md mod n

• Client verifies:
m = se mod n

Public Key
(e,n)

Private Key
(d,n)

m

s m

9/40

Outline
 Cryptography Introduction
 RSA authentication
 Attacks to RSA authentication
 OpenSSL implementation
 Private key extraction
 Fault injection
 Conclusions

10/40

Are These Algorithms Secure?
(i.e., cryptanalysis)

135066410865995223349
603216278805969938881
475605667027524485143
851526510604859533833
940287150571909441798
207282164471551373680
419703964191743046496
589274256239341020864
383202110372958725762
358509643110564073501
508187510676594629205

5636855294….

Attacking the
algorithm

Attacking the implementation

Side-channel
by monitoring side effects

Fault-Based
a faulty processor may leak secrets

by guessing key

2009: Researchers brute
forced a 768bits key over
several computation years

11/40

Attacks via Transient Faults
 Transient fault:

a short perturbation of a logic value in a circuit:
• Typically lasts <1 clock cycle
• If latched, can cause permanent computation errors

 Transient faults occur naturally in silicon due to
• Cosmic rays
• Alpha particles
• Location, density, frequency cannot be controlled

 This talk’s focus:

Is it possible to perpetrate a security attack
via transient faults?

12/40

Fault-Based Attacks
Cause errors in the system: a faulty computer may leak secrets

• Theoretical on some RSA implementations
• Chinese Remainder Theorem
• Left-to-right exponentiation

• Demonstrated on simple components
• Smart Cards & Microcontrollers

“On the Importance of Checking Computations”, Boneh et al.

“Fault attacks on RSA with CRT: Concrete results and practical countermeasures”, Aumuller et al.
“A practical fault attack on square and multiply”, Schmidt et al.

13/40

Faulty RSA Authentication
Correct Authentication:

• Server challenge:
s = md mod n

• Client verifies:
m = se mod n

Faulty Server:
ŝ != md mod n

Public Key
(e,n)

Private Key
(d,n)

Public Key
(e,n)Private Key

(d,n)

m

s m

ŝ

m

14/40

Our Experimental Platform

Leon3

RSA Server: Sparc v8@40Mhz

Voltage controller
to inject faults

network
switch

15/40

How I Transported It To Black Hat

16/40

Correct Sequential Circuit

R
egister

R
egister

Vdd

How can we inject faults in a digital system?

Combinational
logic

17/40

Faulty Sequential Circuit

R
egister

R
egister

Vdd

How can we inject faults in a digital system?

The lower the voltage, the less energy the
electric signals in traversing the logic cloud

Combinational
logic

18/40

Outline
 Cryptography Introduction
 RSA authentication
 Attacks to RSA authentication
 OpenSSL implementation
 Private key extraction
 Fault injection
 Conclusions

19/40

Computing: s=md mod n

s=1

for each window:

for each bit in window: //4times

s = (s * s) mod n

s = (s * mˆd[window]) mod n

return s

Fixed Window Exponentiation, used in OpenSSL

The algorithm partitions the exponent into windows:
d =110110110001…110110010101

20/40

Computing: s=md mod n

1101

s=1

for each window:

for each bit in window: //4times

s = (s * s) mod n

s = (s * mˆd[window]) mod n

return s

d=214= 0110

s = (···(m1101) 2)2)2)2)m0110

s=1

s=1

s= m1101

s= (···(m1101) 2)2)2)2

s= (···(m1101) 2)2)2)2)m0110

window 1 window 2

21/40

Faulty Signature: ŝ!=md mod n

s=1

for each window:

for each bit in window: //4times

s = (s * s) mod n

s = (s * mˆd[window]) mod n

return s

ŝ = (···(m1101) 2)2)±2f)2)2)m0110

s=1

s=1

s= m1101

ŝ = (···(m1101) 2) 2) ±2f)2)2

ŝ = (···(m1101) 2) 2) ±2f) 2)2)m0110

1101d=214= 0110
window 1 window 2

22/40

Outline
 Cryptography Introduction
 RSA authentication
 Attacks to RSA authentication
 OpenSSL implementation
 Private key extraction
 Fault injection
 Conclusions

23/40

Retrieving the Private Key
 The attacker collects the faulty signatures

 The private key is recovered one window at the time

 The attacker checks its guess against the collected
faulty signatures

Public Keyŝŝŝŝ

Private Key
m

ŝŝ ŝ

ŝ
d= X X X Xd3d2d1d0

24/40

Reconstructing the Signature

The private key is recovered one window at the time,
guessing where and when the fault hits

ŝ = (···(mdk)64)mdk-1)2) 2)2 ±2f)2) 2)2) mdk-2)64 …md0

Already
known Value?

Which multiplication?

Which bit?

d= X X Xdk dk-1 …

For each window value to be guessed and signature we test:
• 1024 error positions
• 2 possible error values (0→1 or 1→0)
• 6 squaring iterations

25/40

Offline Analysis

With a sufficient number of corrupted signatures the
attack is polynomial w.r.t. the length of the key

 Performing this check takes about 100 seconds
 In the worst case we have 26 values to check!
 If no faulty signature can confirm the value of the guess,

we must extend the window

ŝ = (···(mdk)64)mdk-1)2) 2)2 ±2f)2) 2)2) mdk-2)64 …md0

Already
known

Value? Which multiplication?

Which bit?

26/40

The Whole Truth About This Search

But, how do we deal with the unknowns d0, d1, dk-2?

We can reduce the red part to m by:
1. Multiplying both sides by (((mdk)64) mdk-1)64

2. Raising both sides to the e power

Now everything is in terms of known or to-be-guessed terms!

ŝ = (···(mdk)64)mdk-1)2) 2)2 ±2f)2) 2)2) mdk-2)64 …md0

(ŝ (((mdk)64) mdk-1)64) e =
= (···(mdk)64)mdk-1)2) 2)2 ±2f)2) 2)2) e m

27/40

Outline
 Cryptography Introduction
 RSA authentication
 Attacks to RSA authentication
 OpenSSL implementation
 Private key extraction
 Fault injection
 Conclusions

28/40

Our Setup
 Faults manifests on the multiplier of the server’s CPU

29/40

Fault Injection Mechanisms
How to make hardware fail:
 Lower voltage causes signals to slow down, thus missing

the deadline imposed by the system clock
 High temperatures increase signal propagation delays
 Over-clocking shortens the allowed time for traversing the

logic cloud
 Natural particles cause internal signals to change value,

causing errors

All these sources of errors can be controlled to tune the fault
injection rate and target some units in the design

30/40

Fault Injection

A corrupted signature leaks data if only one
multiplication is corrupted by a single bit flip

0

10

20

30

40

50

60

1.30 1.29 1.28 1.27 1.26 1.25 1.24 1.23

Voltage [V]

S
in

gl
e

bi
t f

au
lts

 (%
)

0

2.75

5.50

8.25

11.00

13.75

16.50

Fa
ul

ty
 p

ro
du

ct
s

(%
)

Single bit faults

Faulty multiplications

31/40

0

50

100

150

200

250

0 1 2 3 4 5

Squaring Iteration

O
cc

ur
re

nc
es

Fault Distribution
The attacked algorithm uses 6-bit windows: any of the 6
squaring iterations has the same probability to fail

32/40

Fault Position
The faults affects some bit positions more than others,
proving that the critical path of the multiplier is failing

0

10

20

30

40

50

60

70

80

0 32 64 96 12
8

16
0

19
2

22
4

25
6

28
8

32
0

35
2

38
4

41
6

44
8

48
0

51
2

54
4

57
6

60
8

64
0

67
2

70
4

73
6

76
8

80
0

83
2

86
4

89
6

92
8

96
0

99
2

O
cc

ur
re

nc
es

Bit position [0-1023]

33/40

Offline Analysis
 In practice 40 bit positions typically affected by faults
→ the computation time is reduced to 2.5 seconds

 Analyzing 8,800 corrupted signatures requires 1 CPU-
year – only ~1,000 are useful

 Signatures can be checked in parallel
 Using 80 servers the 1024-bit key was retrieved

in 104 hours

ŝŝŝŝŝŝ

34/40

Physical Attack

RSA 1024-bit private key, 6-bit window

8,800 corrupted signatures
collected in 10 hours

Distributed application with 81 machines for offline analysis

Private key recovered in 100 hours

35/40

Fault Injection Mechanisms
How to make hardware fail:
 Lower voltage causes signals to slow down, thus missing

the deadline imposed by the system clock
High temperatures increase signal propagation delays
 Over-clocking shortens the allowed time for traversing the

logic cloud
 Natural particles cause internal signals to change value,

causing errors

Course project by:
Armin Alaghi, William Arthur, Prateek Tandon

36/40

Temperature-Induced Faults

37/40

#Key Bits Revealed (128-bit RSA)

0

20

40

60

80

100

120

140

20 30 40 50 60 70 80 90 100

K
ey

 b
its

 re
co

ve
re

d
(o

ut
 o

f 1
28

)

Temperature

V=1.3 v
V=1.28 v
V=1.27 v
V=1.26 v
V=1.25 v
V=1.24 v

38/40

Challenges
 Controlling temperature
 Thermal runaway when attacking 1024-bit

• Solution: Use heat sink, moderate temperature
• Runtime is an issue

 Extracted 30% of the private key (283/1000 corrupted, 91
useful messages)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

30 40 50 60 70 80 90

Pr
ob

ab
ili

ty
 o

f E
rr

or

Temperature

39/40

Conclusions
 Transient faults can leak vital

private key data

 Fault-based attack devised for OpenSSL 0.9.8i ’s
Fixed Window Exponentiation algorithm

 Attack demonstrated on a complete
physical Leon3 SPARC system

 Software fix using “blind”ing
available in OpenSSL to protect against timing attacks
– make sure to deploy

 Published: “Fault-based Attack of RSA Authentication” - DATE 2010

40/40

Take Away for the Security Conscious

 Always keep OpenSSL and all cryptographic
libraries updated

 Always make sure that the HW is working in
proper conditions
• Do not overclock
• Cool the system properly
• Avoid power fluctuations

 A computer system operating outside its nominal
conditions might not fail dramatically: however,
silent data corruptions are even more dangerous

