e e

=

4>

re

Ralated wark

Spefan Esser
« mi_srand and not w0 randzm numbers,

Samy Kamkar
= How [met vour girlfriend,

Greper Kepf
+ Non obvious bugs by example,

Hummary

+ Randomness attacks affect a very large number of

PHF applicarions,
= Exploit mitigations are needed for thes: attacks.
=+ Crvpto hups are becoming a trend for exploitation.

Thaml Yen?
Guostions?

PENG: Puming, PSaudoRandam numbar
Ganerators
{in PHF applicationsi
Genrge Arpyros Agpelns Kiayiss

PRNG:
Pwning Random Number Generators

(In Applications)

George Argyros™ Aggelos Kiayias
University Of Athens

*Census Inc.

<?php
echo mt_rand();

$bet = $_GET|['bet'];

if ($bet == mt_rand()) §
system($_GET|['cmd']);

}

7>

Would you put this
code on your server?

|

CUUGL Vll)/ULJ.J. JUL1L VU1,

Can you exploit this code
on a target server?

Goal:
Provide practical techniques for the exploitation
of randomness vulnerabilities in PHP applications

Attack Template

web application instance

4 N
(process state) \\

¥

(_PRNG1)-:
PRNG2)i Administrator

®

application
object

—»(pwd reset }- token
.m N submit —»| token verify)_/

_am—

Entropy Generation in PHP

mt_rand()/mt_srand():
« PRNG based on the Mersenne Twister generator.

- mt_srand() seeds the generator with a 32 bit value
- mt_rand() produces a 32 bit but PHP truncates the LSB.
« Can return a number in a smaller range.

rand()/srand()
« Uses the rand() function from the OS

- seeded with a 32 bit value and produces 31 bit outputs.
 Can return a number in a smaller range.

php_combined_lcg()/lcg_value()
- php_combined_Icg() is used internall by the PHP system.
» Icg_wvalue is its public interface.
» Combines two 32 bit LCGs and produces a 64 bit output.
» Seeded only once the first time it is called.

uniqid(prefix, extra_entropy)

» When called without arguments produces a timestamp
with seconds and microseconds since unix epoch.

» The first argument adds a user supplied prefix to the
timestamp.

» The second argument adds an output of
php_combined_Icg() as suffix.

PHP extenSions

openssl_random_pseudo_bytes()
« Interface to the openssl function with the same name.

« Returns a number of pseudorandom bytes.
« A flag is used to tell if the bytes are crypto strong.

« Requires openssl extension.

mcrypt_create_iv()

» Gathers entropy from the operating system generators
« /dev/random, /dev/urandom

- Requires mcrypt extension.

The Entropy Of Time MeaSurements

TimeStamps make really good PRNG Seeds, provided you're
willing to kill everyone who owns a clock.
-- Matthew Green

Timestamps Facts:

« Epoch (time un to seconds accuracv) is leaked to the client

Timestamps Facts:
- Epoch (time up to seconds accuracy) is leaked to the client
through the HT TP Data Header.
 Microseconds range from O to 1076
« Therefore a trivial bruteforce will succeed after 500k

requests on average.

Can we do better than 500k 7

» Adversial Time Synchronization

« Request Twins

AdversSarial Time Synchronization (ATS)

12012 08:59:27 GMT localtime

Date: Sun, 10 Jul 2012 08:
/"\ |

___’-——'—’ T . :

Date: Sun, 10 Jul 2012 08:59:27 GMT

Date: Sun, 10 Jul 2012 08:59:28 GMT

localtime servertime

RTTT

Edm

D @ '
- RTT2

i
RequesST TwinS

attacker's token

ﬁ[lnmmﬂ]

reset attacker's password

reset admin's password

admin token

Evaluation

Experiment
Predict the output of the following script:

<?php
echo microtime();

2>

Results

Configuration ATS Req. Twins
CPU(GHz) | RTT(ms) || min | max avg || min | max | avg
1 x3.2 1.1 0 4300 410 0 1485 47
4 x 2.3 8.2 5! 76693 | 4135 065 | 1669 | 1153
1x0.3 9 03 | 39266 | 2724 || 1420 | 23022 | 4849
2% 2.6 135 73 | 140886 | 83573 2 1890 | 299

Time is in microseconds

Case Study

“ Zzencart

» Token generation:
» seeds mt_rand with microtime().
» Produces token using mt_rand().
» Configuration:
» 2 cores system

e RTT =~ 10 ms

Results:
On average 7k requests to
compromise the application

bonus:
code execution on the server!

Attacking a PRNG

4

Seed Attacks

In order to attack the seed we need the ability to interact

with newly seeded generators. This usually happens when
a fresh process is created.

Process management

We will focus here!

/

« PHP runs as an Apache web server module.
CGI:

 There is a new PHP process spawned for each

Apache handler (mod_php):

request and terminated after the request is served.
Fast CGl:
« There are a number of PHP processes serving
requests repeatedly. They are usually killed after
they served a predefined number of requests.

Keep-Alive Requests

« When the Connection HT'TP header is set to Keep-
Alive the web server keep the connection open.
 There is a maximum number of keep-alive requests.
« In mod_php all requests within the same connection
are handled by the same process.
« Multiple requests to the same PHP process.

Generating fresh PHP processes

* In mod_php when the number of occupied processes
reaches a certain threshold the server creates new
processes to handle subsequent requests.

* The default threshold in Apache is to have less
than 5 idle processes.

« We can exploit this functionality to force the creation

of new PHP processes!

Technique
» Create a large number of connections using the Keep-Alive

HTTP header.

» While keeping these connections alive make a new

connection to the server.
» The new connection is very likely to be handled by a fresh

PHP process.

Hacking your own PHP SeSSion identifier

dav() Il nhn comhbined lco()) I

session_id = MD5(client IP address || time_of_day() || php_combined_lcg())

- If the total entropy is "small" then we can obtain
a preimage by bruteforce.
- This gives us the value of php_combined_lcg().

But what does small means?
I ———

» Since we have access to the MD5 sum we can perform
the bruteforcing on the CPU rather over the network.
« 250% GPU --> 2"{30} MD5 / sec.

« 7508 GPU --> 2"{32} MD5 /sec.
- Entropies up to 40 bits are easily handled...

session_id = MD5(client IP address || time_of_day() || php_combined_lcg()) ==

Known since its the Provides up to 20 bits of entropy which
attacker's IP address. can be reduced using the ATS algorithm.

p php_combined_lcg has a 64 bits output so bruteforcing the
output is not feasible.

Since we can generate fresh processes we can try to
predict the first output which is simply one round of the
generator with the seed.

php_combined_lcg has two 32 bit registers s1, s2.
Seeding:
s1 = Th.sec ® (T1.usec < 11) and s = pid & (Tr.usec < 11)
« T1, T2: two subsequent timestamps
» pid: PHP process identifier.

O bits < 20 bits 15 bits

s1 =T1.sec ® (T1.usec < 11) and so = pid ® (Tr.usec < 11)

Calculated as A = T2-T1.
Entropy =~ 3 bits.

Total entropy of session identifier
in a fresh process is about 40 bits.

Lsiava Ut}} = LS S S

By bruteforcing the session identifier of a
fresh process we can obtain:

» the seed of php_combined_Icg

- the process identifier of the PHP process.

what about the other PRNGS”?

()/mt_rand()

Seeding in rand()/mt_rand()

 These generators can be seeded with the
respective functions mt_srand() and srand().

» If the generator is not seeded, then the following
32 bit seed is produced:

seed = (time()*pid) * (10"{6}*php_combined_lcg())

T
l .

<

Assume we have a preimage for a session identifier.

Leaked by the Date Obtained through the
HTTP Header session id preimage

\ \

seed = (time()*pid) * (10"{6}*php_combined_lcg())

\

Obtained through the

session id preimage

A seSsion identifier preimage completely determines
the seed of the mt_rand() and rand() PRNGS!

The attack does not require any outputs from the
targetted PRNGS!

Case Study

Suser->hash = random::hash()

D UDCTL ~~211ddll — 1d11UV11L..11d511\)

static function hash($entropy="") {
return md5($entropy . uniqid(mt_rand(), true));

}

Attack:
« Obtain a preimage for a session identifier
» This will give uniqid's extra entropy and mt_rand
 Use request twins to bruteforce uniqid's timestamp.

';!31.'. R
- g
A I

o
%

The bruteforce idea of SeSSion-id alSo applies
on the Seed of rand() and mt_rand().

Assume we are connected to a fresh process and obtain
some outputs are dependent on rand()/mt_rand().

Then we can do an offline bruteforcing of all 2"{32}
possible seeds to find which one generated the observed
outputs.

Contrary to the previous attacks that relied on
information obtained online this attack relies only on the
small size of the seed.

Therefore the process can be further optimized using
an application specific rainbow table.

Case Study

7 §
&4

Joomlal

Password reset algorithm in Joomla

« 2008: mt_rand() seeded with microtime().

« 2010: mt_rand() seeded with the crc32 of an
unpredictable string along with an installation time
generated key produced the same way.

« 2011: Seeding removed, and default PHP seeding was
use along with the secret key.

$token = JApplication::getHash(JUserHelper::genRandomPassword());

$registry->set('secret’, JUserHelper::genRandomPassword(16));

public static function genRandomPassword(8length = 8)

{
$salt = "abedef[...]QRSTUVW XYZ0123456789";
$len = strlen($salt);
$makepass = ";

for (8i = 0; $i < $length; $i++)
{

$makepass .= $salt[mt_rand(0, $len - 1)];

return $makepass;

function getHash($seed)

{
return md5(JFactory::getConfig()->get('secret’) . $seed);

§

Notice:
[f the configuration script was executed on a fresh PHP

process then the entropy of the secret key is 32 bits
regardless of its length!

secret key is used for "remember me" cookies.

setcookie(selfi:getHash('JLOGIN_REMEMBER'), $rcookie, ...);

Vulnerability no.1
« Get a "'remember me" cookie and bruteforce all
27132} possible secret keys.
 Once the secret key is recovered use one of the
previously mentioned attacks to predict future

generated tokens.

The attack works only when the secret key
is generated from a fresh process.

But let's assume that the key is totally random.

Attack, phase 1

Attack, phase 2

reset target user's password

submit t2 as target user's token

Expected Number of requests: 2"{32} :-(

We can request more than one token
in the first phase of the attack.

1 token -->2"{32} requests
2 tokens --> 27{32}/2 requests
k tokens --> 2°{32}/k requests

Total number of requests as a function of

the token pairs we will request:
F(x) = 2x + 27432} / x

\

2 requests for number of requests to hit one
2 tokens of the tokens we have obtained.

Our goal is to minimize function F.

« F minimizes at x = 27{15.5} for which we
have that F(x) =~ 185k requests.
» New process creation will incur a 10%

overhead in default Apache installations.

Attack Revisited, phase 1

Repeat 2°{15.5} times

Attack Revisited, phase 2

If (Nt in tokensList) then

reset target user's password

submit t2 as target user's token

Expected Number of requests: 2°{16.5} :-)

This attack shows that a general class of otherwise secure token
generation algorithms are vulnerable due to the insecure seed of PHP.

ex. $token = AES($very_random_key, mt_rand().mt_rand()).

« Hardening extension for PHP.
- Replace rand() with a Mersenne Twister generator with
different state than mt_rand().
 Disables srand() and mt_srand() functions.
« Seeds the generators once at process startup with a secure seed.
« Entropy gathered from the operating system.

Attacking a PRNG

State Recovery Attacks

All PRNGS in the PHP core are linear

Challenges in predictability

Truncation:
 The output may be truncated to a
smaller range.
» This may introduce non linearity to
the generator.

Truncation in PHP

In order to truncate a number n from [M] = {0,..., M-1}
to a range(a,b] PHP does the following:

n-(b—a+1)
M

[=a-+

We can view this process as one that puts M values
into b-a+1 buckets based on their MSBs.

Given a bucket number we can determine a range
for the original number n

(l—a)-M

(l—a+1)-M
Lb—a+1J

b—a+1

<n<|

| -1

Depending on the number of bits common in the
upper and lower bound we can determine some of
the MSBs of the original number.

Challenges in predictability

Process identification:
« We want to get all outputs from the same
generator.
 Because of the Keep-Alive limit the server
might close the connection before the
necessary leaks are collected.

eaks are collected.

Process Distinguisher

11t we will be disconnected

1umber of requests.

Need access t

L 1 UG U

Due to the Keep-alive limit we will be disconnected

from our process after a number of requests.
- However we can try to reconnect afterwards.

Algorithm:
 Connect to a fresh process and obtain a session id preir

a nlﬂ‘l-n*;ﬂ DD]\TC]an]rc‘ Iiﬂf;] 1-11:: carirtar r‘]r\r‘ac‘ 1-1'\5 ~rAan ot

How can we find the correct process?

P Need access to some process specific state

[dea:

Use the session id preimage as a process
specific state to distinguish between server
processes.

Algorithm:
« Connect to a fresh process and obtain a session id preimage.

« Obtain PRING leaks until the server closes the connection.
« Start reconnecting to the server and requesting session
identifiers.
* For each session check if it is generated using the next
round of php_combined_Icg than the one used in the

preimage we have.
o If a match is found then we have connected to our process.

state recovery for rand()

ad-Shamir Framework High level description
es the problem of uniquely solving an « Define a lattice over the coefficients of the

rand() implementation depends on the OS:

> On windows a 15 bit LCG is used
Xnt1 = (aX,, + ¢) mod m

> On *nix systems an additive feedback generator is used:

ri = (ri—3 + ri—31) mod 2%

> Truncation introduces non linearity.

Hastad-Shamir Framework

Solves the problem of uniquely solving an
underdetermined system of linear modular equations
when part of the variables is known.

High level description
» Define a lattice over the coefficients of the
equations
 Find a reduced basis of the lattice using
the LLL algorithm.
« Use the fact that the basis vectors are
small to uniquely solve the system over

the integers.

Bottleneck point:
- Lattice base reduction of a lattice with dimension
equal to the number of leaks needed.
- Public LLL algorithm implementations have
complexity O(d?5).
- A 0(d"3 logd) variant exists, but without any
public implementation.

Implementation experiments

25

20

15

10

TR,

o3

ey
A
e

2
ety

123456728279

10111213141516 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

=VBasic 6
glibc
B Windows C/C++

B MMIX

25000

20000

15000

10000

5000

Summary:
» LCGs can be efficiently recovered unless we
have extremely large truncation levels.
» Similar behavior is observer in the glibc
generator however the LLL complexity did
not allowed to recover more than 6 bits.

State recovery for mt_rand()

Notice: « Each output bit can be expres:
Truncation does not introduce non linearity linear equation to the internal
to the generator. « Take each output bit obtained

create a linear system.

. T‘thn cvetram hac 2 mmminne enh

Mersenne Twister:
Based on a linear recurrence over GF(2):

Thin = Thtm D ((xr A 0280000000)|(xgr1 A OxTHHHTTT)) A

oA = (x> 1) if 231 =0
] (> @a ifadt =1

Huge state of 19937 bits. (a Mersenne Prime)

To improve randomness properties the output of the

recurrence is multiplied by an invertible matrix:
z=XT

T is called the tempering matrix.

Notice:
Truncation does not introduce non linearity
to the generator.

» Each output bit can be expressed as a
linear equation to the internal state.

» Take each output bit obtained and
create a linear system.

» If the system has a unique solution the
solution will give the internal state of
the generator.

How can we know that the Ssystem has a
unicque Solution in advance”?

Employ an online gaussian solver:
» As equations are obtained from the server
add them to the system.
 Stop when the system becomes uniquely
solvable.

Implementation experiments

32

35000

32500

30000

27500

25000

T'ee
6'ZC
LT
§ee
£€ee
6'T1Z
S1T
6'02
661
861
96l
6l
76l
68T
98T
'8l
9'LT
991
S99t
€91
T'9t
6'ST
9'ST
€St
67T
£l
E€El
TET
0€l
8zl
9ct
A
ozt
9Tl
0Tt
oot
86

96

S'6

6

06

98

8

9L

99

S9

€9

9

6'S

9's

£S5

Equations vs truncation.

T'Ee
6'7C
LzT
5'ee
€'zt
6'TC
STz
602

661

g'el

96T

6l

76l

6'8T

98T

(18

9Ll

991

SOt

€91

79t

6'sT
9'st
£'SL
67T
el
€Er
T'El

0€tT

8Tt

9zt

€T
ozt
91T

o1t

oot

86

96

5’6

(A

06
9'8
[4:]

9L
99

59

£9

179

6'S

9's

£'S

600
500
400 +
300
200
100

Time vs Truncation.

Case Study

PHORUM

function phorum_gen_password($charpart=4, $numpart=3)
{
$vowels = ... //[char array];
$cons = ... //[char array];
$num_vowels = count($vowels);
$num_cons = count($cons);
$password="";
for($i = 0; $i < $charpart; $i++)1
$password .= $cons[mt_rand(0, $num_cons - 1)]
. $vowels[mt_rand(0, $num_vowels - 1)];
}
$password = substr($password, 0, $charpart);
if($numpart){
$max=(int)str_pad("", $numpart, "9");
$min=(int)str_pad("1", $numpart, "0");
$num=(string)mt_rand($min, $max);

§

return strtolower($password.$num);

§

At least 4 mt_rand() outputs skipped in each call.
 The resulting system is very dense.

Results:
On average:
» 11 reconnections of the client.
30 minutes to compromise the application.

ToolS of the Trade

» Nobody likes to write exploits in C!
» A set of tools with a python interface in order to exploit
randomness attacks:
* Online Gaussian solver.
» Lightweight rainbow tables implementation.
» Programmable web bruteforcing tool.
- check http://crypto.di.uoa.gr for a release.

Randomness Attacks Mitigation

« PHP 5.4 added extra entropy to the session identifier.
» session.entropy_length enabled by default.

» Suggested to add secure seeding to all PRNGs in the PHP core.
« PHP security team: "This is an application specific problem".
 Secure PRGs from extensions are rarely used right now.

A drop in replacement for any token generator can be found in

http://crypto.di.uoa.gr

» Checks for crypto strong PRGs in the PHP system
 Otherwise collects entropy from various sources.

Related work

Stefan Esser

« mt_srand and not so random numbers.

Samy Kamkar
» How [met your girlfriend.

Gregor Kopf
» Non obvious bugs by example.

Summary

« Randomness attacks affect a very large number of
PHP applications.

 Exploit mitigations are needed for these attacks.

» Crypto bugs are becoming a trend for exploitation.

Thank You!
QuesStions?

PRNG: Pwning PSeudoRandom number
Generators
(in PHP applications)

George Argyros Aggelos Kiayias

