USB — Undermining Security Barriers

Andy Davis
Research Director
andy.davis@ngssecure.com

ngssecure

an ncc group company

An NGS Secure Research Publication
4 August 2011
© Copyright 2011 NGS Secure

http://www.ngssecure.com

http://www.ngssecure.com/

USB — Undermining Security Barriers

Contents
T o e [V Tt d o] o WU PSP U PP PP PPTPPPTUPPRPOR 3
2 F 1ol =04 o YU T o U 3
USB PriMIEE ettt ettt ettt ettt e st e e st e s s mr et e e s bt e e s mre e e s smre e e e e amreeesenreeeeeanreeeseaareeeeeanrenas 3
THE USB DUS ..ttt ettt et e sttt e ab e st e e bt e e s be e e beeesabeeebeeesabeeenseesabeesareeesareeaan 4
[0 Te oo 11 Y £ SRR 5
e =N 5
DEVICE CONFIGUIATIONS .. .viiiiiiiiee et ee ettt e e e et e e et e e e e s abte e e e e aateeeeaastaeesenstaeesasraeeeesteeasensenas 5
INSEIrtioN OF @ USB EVICE ...eeiiiiieiiieeiie ettt ettt sttt ettt st e st e s bt e e sabeesbeeesabeesabeeeseeesabeeenns 6
PrEVIOUS WOTK . ..eiiutiieiieeette ettt ettt ettt ettt e sttt e bt e s bt e e s bt e s bt e e sabeesabeeesabeesabeesasbeesabeesabbeessseesneeesareenn 8
RESEAICN ...ttt bbbt s h e st et e e b e e e bt e s he e s a bt et e et e e bt e beeehe e eaee et e e teenbeenheenaeenas 9
USB VUINEIaDIlity ClaSSES.....uviiiiiiiee ettt et e e et e e e e et e e e e s be e e e e abaeaeeenbaeeseearaeeeenrenas 9
SEACK OVEITIOWS ...ttt sttt et e sbe e s bt e st e sabe e b e e b eas 9
Heap and INtEEEN OVEITIOWS.......coiiiiiiee et s e e s s be e e s ssbee e e esabeeeeennreeas 9
NUI-POINTEr AEIEIEIENCE oot e s e e s st e e s st eee e e s beeeeesareeas 10
[0 =[Ol =T 0 N 10
PRAase ONE = FUZZDOX ..ceuiiiiiiiiete ettt sttt ettt e s bt e s at e st et e e bt e bt e bt e sbeesaeesaeeentean 10
Phase Two — Commercial test @QUIPMENTcoiiciiiii e e et e e s srre e e s sareeeesanes 11
Packet Master USB500 AGcoiiiieeiierieeieeie et et st sttt ettt sseesaee e et e bt e bt e sneesanesanesneenneennes 12
Phase Three - FriShEE.....ui ettt st sttt ettt b e b e b e saeesateeaneas 12
Why the new approach is diffErent ..o eeaae e 14
What has been fOUN SO far........oouiiiiii ettt st 14
SECUNIEY IMIPACT coiiiiiiiiieeee ettt ettt e e s s sttt e e e e s s s s aabaa e e e eessessssbbesaeeeessansasnseaaeeassssnssssseaeeesssssssssnes 15
ENdpoint proteCtion SOftWAIE.......uiii i e e stte e e e s te e e e sbtaee e srreaeesanes 16
Why USB vulnerabilities are still prevalent........... e 16
16073 ol 1o 1o F OO PSTTORTOTSRPI 17
2 (=T =T (ol TP P PP PP PRSP 18

Page 2 of 18 “‘3

ngssecure

an ncc group company

USB — Undermining Security Barriers

Introduction

USB ports are everywhere, from laptops and phones to TVs and even microwave ovens. They provide a
convenient, reasonably fast interconnect that consumers are familiar with. However, many users of the
technology are completely unaware of the amount of interaction that takes place between a USB device
and its host at the point of insertion. Just by plugging in a USB device you trigger a flurry of
communication in which the capabilities of the device are explained to the host, all before any real
device-specific data is exchanged. It is this communications interchange that has been the focus of this
research.

Although the concept of identifying and exploiting vulnerabilities in USB drivers is not new, the approach
presented here is, as it provides the capability to test any USB platform or device (previous techniques
have been either device or USB-host dependent). Although the approach is simple, its effectiveness has
been clearly demonstrated by the identification of vulnerabilities in USB drivers of many of the well-
known operating systems. This paper will cover USB fundamentals, typical USB vulnerability classes and
also discuss the real-world impact of exploiting USB vulnerabilities along with their implications for
endpoint security products.

Background

USB Primer

Before discussing USB vulnerabilities it is important that the reader has a basic understanding of the USB
protocol and its usage. There are a number of protocol-specific terms that must be explained in order to
understand USB and although there are many more technical details to USB, this section aims to provide
a concise overview of the protocol focusing on information that will provide more clarity to the
remainder of the paper. All the research performed to date has focused on USB v2.0 [1] — the most
commonly used at the time of publication. Other versions will only be mentioned briefly for comparison
purposes.

The primary aim of the USB interface was to develop a simple, flexible solution to the mixture of
connection methods to the PC. Although USB v1.0 [2] was released in January 1996, the first widely used
version of the protocol (v1.1) [3] was released in September 1998 and offered two different speeds:

e Low speed — 1.5Mbps (keyboard, mouse etc.)
e Full speed —12Mbps (faster devices such as disk drives)

The currently most popular version of the standard (v2.0) was then released in April 2000, which offered
an additional higher speed capability:

e High speed — 480Mbps (reputedly developed in response to FireWire)

The most recent version (v3.0) [4], which was released in November 2008, offers an even higher speed
and backward compatibility with v2.0:

e SuperSpeed — 5Gbps (the version also offers lower power consumption)

Page 3 of 18 ’d

ngssecure

an ncc group company

USB — Undermining Security Barriers

The USB architecture is a tiered star topology (see Figure 1) with a single host controlling up to 127 slave
devices (devices are officially called “functions” in USB terminology, however devices with more than
one function are called composite devices). Devices can be plugged into hubs and hubs can be plugged
into other hubs, however the maximum number of tiered hubs permitted by the protocol is six.

Host / Root Hub

Figure 1 — The USB tiered star topology

The host is considered to be the Master and therefore, all communications on the bus are initiated by
the host. Furthermore, as all USB devices are treated by the host as slaves, so devices cannot
communicate directly with other devices (except when using the USB On-The-Go protocol [5]).

The USB bus

When the host is transmitting a packet of data, it is sent to every device connected to an active port on a
hub. It travels downwards via each hub, which in turn relays the packet to the next in the chain until it
reaches all connected devices. However, the packet is only accepted by the device for which the packet
is addressed.

Page 4 of 18 ‘,é

ngssecure

an ncc group company

USB — Undermining Security Barriers

Endpoints

Each USB device has a number of endpoints, each of which is a source or sink of data. A device can have
up to 16 OUT and 16 IN endpoints. OUT always means from host to device and IN always means from
device to host. Endpoint 0 cannot be used for general communication, as it has been implemented
purely for controlling the device.

Pipes

These are logical data connections between the host and endpoints. The device communicates using
endpoints, but the client software communicates through pipes. There are a set of parameters
associated with each pipe to describe capabilities such as allocated bandwidth, transfer type and data
flow direction.

Device Configurations

The device contains a number of Descriptors (see Figure 2) which help to define the device’s
capabilities. A device can have more than one Configuration, though only one at a time and to change
configuration the device must be reset. A device can have one or more Interface and each interface can
have a number of Endpoints and represents a functional unit belonging to a particular class. Certain
classes of device have class-specific descriptors, such as the HID (Human Interface Device) class.

Device Descriptor

Configuration Descriptar

Interface Deseriptor

Interface Descriptor

Endpeint Descriptor Endpoint Descriptor
— ———
Endpuoint Descriptor HID Descriptor

Configuration Descriptor Set 1

‘ Configuration Descriptor Set 2

‘ Configuration Descriptor Set x

Figure 2 — USB Configuration Descriptor Set

Page 5 of 18

33

ngssecure

an ncc group company

USB — Undermining Security Barriers

Insertion of a USB device
When a USB device is inserted, a number of specific actions are performed which result in different
software components processing data provided by either the host or device. Figure 3 summarises this

process.
* Pull-up resistor on data line - Indicates device was connected (reset device|
« (et Device descriptor —what’s the maxpacket size? — address 0
* Reset then Set Address - for the rest of the communications use this address
+ (et Device descriptor — What are the device basic capabilities? HCI Driver
+ Get Configuration descriptor — What are the configuration details?
+ Interface descriptors
* Endpoint descriptors
* HID descriptors
+ Get String descriptors — Get stringlanguage + product name etc.
- Set Configuration — Configurationis chosen — the device can be used USB Bus Driver
* Class-specific communication - from this point onwards USB Device Driver

Figure 3 — Device insertion and enumeration process

1. The host first detects that a device has been inserted due to one of the data lines (if it’s the D-
data line then it is a “Low speed” device otherwise, the D+ line indicates the presence of a “Full
speed” device) being pulled high by the 1.5k resistor at the device.

2. The host issues a RESET command to the device to ensure that it is in a known state.

The host issues a GET_DESCRIPTOR command for the Device descriptor to address 0.

4. The device sends the Device descriptor, which includes the maximum packet size defined for the
control endpoint.

5. The host issues another RESET command and then a SET_ADDRESS command with an address
>=1 (all subsequent communication will use this address).

6. The host issues another GET_DESCRIPTOR command for the Device descriptor and the device
replies with the Device Descriptor.

7. The host requests the Configuration descriptor, which includes the Interface and Endpoint
descriptors (and in some instances other descriptors e.g. HID descriptor) to which the device
replies.

8. The host requests String descriptors, which contain the list of supported string languages and
various strings associated with the vendor name and product name of the device.

9. Sometimes the host may ask for some of the previously discussed information again, which is
often the result of different drivers in the USB stack requesting the same information.

Page 6 of 18 /d

canrlire
ngssecure
an nce group company

w

USB — Undermining Security Barriers

10. The host issues a SET_CONFIGURATION request and the device may now be used.
11. At this point class-specific descriptors may be requested from the device e.g. HID Report
Descriptor
12. The host identifies which device driver to load based on the Vendor and Product ID in the Device
descriptor. Class-specific communication is now performed between the host and the device.

An example of a typical USB command packet sent from the host to a device is shown in Figure 4.

Value

Meaning

bmRequesiType 1 Device-to-host
(direction)
bpmRequesiType 0 Standard
itype)
bmRequesiType 0 Device
(recipient)
bRequest 0x06 Get Descriptor
whialue 0x0100| DEVICE

Index =10
windex 0x0000] Zero
wLength 0x0012]| Length Requested =18

Figure 4 — A GET_DESCRIPTOR command to obtain the Device descriptor

Examples of the type of information found in common USB descriptors are shown in Figures 5 to 8.

Value Meaning

bLength 9 Valid length

bDescriptorType 2 CONFIGURATION

wTotalLength 34 Total combined size
ofthis set of
descriptors

bMuminterfaces 1 Mumber of
interfaces
supported by this
configuration

bConfigurationValue | 1 Value to use as an
argument to the
SetConfiguration()
request to select
this configuration

iConfiguration 0 Index of string
descriptor
describing this
configuration

bmAttributes 0 Bus-FPowered

(Sel-Powered)

pmAttributes 1 Yes

(Remote Wakeup)

bmaAttributes 0x80 Valid

(Other bits)

bMaxFower 100 mA Maximum Current

Drawn by Device in
This Configuration

Figure 5 — Configuration descriptor

bLength

Value

Meaning
Valid length

bDescriptorType

INTERFACE

binterfaceNumber

Zero-based Mumber
of this Interface.

bAlternateSetting

Value used to select
this alternative
setting for the
interface identified
in the prior field

bMumEndpoints

Mumber of
endpoints used by
this interface
(excluding endpoint
Zera).

binterfaceClass

0x03

HID

binterfaceSubClass

0x01

Boot Interface

binterfaceProtocol

0x02

Mouse

ilnterface

Index of string
descriptor
describing this
Interface

Figure6 — Interface descriptor

Page 7 of 18

g

ngssecure

an ncc group company

USB — Undermining Security Barriers

Value Meaning
bLength 18 Valid Length
bDescriptorType 1 DEVICE
bcdUSB 0x0200 | Spec Version
bDeviceClass 0x00 Class Information in
Interface Descriptor
bDeviceSubClass |0x00 Class Information in
Interface Descriptor
bDeviceProtocol 0x00 Class Information in
Interface Descriptor
bMaxPacketSize0 |64 Max EPO Packet Size
idVendor 0x05AC| Apple Computer
idProduct 0x1287 |Unknown
bcdDevice (x0001 | Device Release No
iManufacturer 1 Index to Manufacturer
String (Not known)
iProduct 2 Index to Product
String "iPhane”
1SerialNumber 3 Index to Serial
Number String
bNumConfigurations| 4 Number of Possible
Configurations

Figure 7 — Device Descriptor

Previous Work
Previous work in USB vulnerability discovery and exploitation has been done by a number of people,

including:

Value Meaning
bLength 7 Valid length
bDescriptorType 5 ENDPOINT
bEndpointAddress | 0x81 Endpoint 1-11
bmaAttributes 0x03 Interrupt. Data

Endpoint.

whMaxPacketSize Ox0004 Maximum Packet
Bits 10:0 Sizeis 4
binterval Ox0A 10 Frames (10 ms)

Figure 8 — Endpoint descriptor

o Rafael Dominguez Vega used a number of different approaches including USB over IP, QEMU
and a microcontroller to discover Linux-based USB vulnerabilities in String descriptors [6] [7]

e David Dewey and Darrin Barrall used an SL811 USB controller to discover a heap overflow in
Windows XP [8]

e Moritz Jodeit emulated USB devices in software and with a Netchip NET2280 peripheral
controller [9]

o Tobias Mueller used virtualisation techniques with QEMU to identify USB vulnerabilities in a
number of different operating systems [10]

e Jon Larimer investigated USB drive security and associated file system vulnerabilities in
Windows and Linux [11]

Page 8 of 18

ngs:

an ncc group company

USB — Undermining Security Barriers

Research

The primary goal of the research was to develop a USB host and device independent “black box”
security testing capability, as all of the publicly discussed attempts to perform runtime security testing
of USB driver software have been in some way tied to a specific operating system.

USB vulnerability classes
Before deciding how to approach the emulation of USB devices and hosts, it made sense to look at what
could actually be tested and the types of vulnerability class that may be identified.

Stack overflows

This class of vulnerability is becoming rarer these days. However, they are still being discovered. As can
be seen in [12] and [13], lazy programming associated with the processing of String Descriptors resulted
in the presence of exploitable stack overflows.

As Figure 8 shows, each string descriptor has a bLength field associated with the length of bString,
however, in both [12] and [13] a fixed length buffer, which was smaller than the maximum bLength
value (255) had been allocated into which the strings were copied.

Walue Meaning
blLength 14 Valid Length
bDescriptorType | 2 String Descriptor
bString “iPhone”

Figure 8 — A typical String descriptor

Heap and Integer overflows

Scattered throughout the descriptors and class-specific data are length fields representing sizes of
chunks of data that may result in drivers needing to dynamically allocate memory in which to store
them; examples include:

e Each descriptor starts with a bLength field, which represents the length of the descriptor
e Configuration Descriptor — wTotalLength

e Endpoint Descriptor — wMaxPacketSize

e Image class: Devicelnfo - Capture Formats Supported Array Size

e Printer class: DevicelD - Device ID Length

Any of these, plus many others could potentially result in an integer overflow, which in turn could
trigger another vulnerability such as a heap overflow.

Examples of publicly released USB-based heap overflows include:

e USB hub class configuration descriptor - Sony Playstation 3 [14]
e “OxA1,1”* USB control message — Apple iPod Touch [15]

* OxAl is the “RequestType”, 1 is the “Request” (see Figure 4 for an example USB device request) i

Page 9 of 18
ngssecure

an ncc group company

USB — Undermining Security Barriers

Null-pointer dereference
More often than not, null pointer dereference bugs cannot be exploited, however in some instances,
such as the example below, data can be written to address zero and exploitation becomes possible.

e “0x21,2” USB control message — Apple iPhone and iPod Touch [16]

Logic errors

The HID report descriptor is a notoriously complicated structure and therefore, “the parser for the
Report descriptor represents a significant amount of code” [17]. There is certainly scope for the
presence of logic errors in this code.

Once it had been established that there were plenty of potential fuzz test cases, all that was needed was
a fuzzer. The initial attempts followed a similar approach to a number of other researchers — using a
microcontroller to emulate a USB device.

Phase One - Fuzzbox
The “Fuzzbox” approach was developed using an Arduino microcontroller.

Figure 7 — Fuzzbox -the Arduino-based USB fuzzer

“Arduino is an open-source electronics prototyping platform based on flexible, easy-to-use hardware
and software. It's intended for artists, designers, hobbyists, and anyone interested in creating interactive
objects or environments” [18]

In other words, it’s great for prototyping hardware e.g. pretending you’re a USB device. Also, much of
the hard work had already been done by others; a circuit had been designed to interface the Arduino to
a USB host, acting as a HID device [19]:

Page 10 of 18 “’3

ngssecure

an ncc group company

USB — Undermining Security Barriers

| uss“B*
Sotket
22
L IR
DIos > AN\ ce
68R)
oos [ANN 2! o-
62R
bz [O>——AAN, 2 o
6 Ve
ZS 2| Gno

aND |

Figure 9 — A circuit to interface an Arduino microcontroller to a USB host
Driver code had also been written to emulate a HID device [20].

What was missing was the application of this technology to security testing. With an understanding of
the likely vulnerability classes to test for and the ability to insert arbitrary data into the USB device
enumeration phase, additional Arduino-based code was developed to automate the fuzzing of USB host
drivers on any platform. Fuzzbox was created and quickly started to discover bugs:

e (S X - (at time of publication these are being investigated by Apple)
e Windows XP —a number of bugs were identified but nothing that appeared exploitable
e Windows 7 — (three bugs, which at time of publication are being investigated by Microsoft)

However, it soon became apparent that this approach had some pretty fundamental drawbacks. Firstly,
new driver code would need to be discovered, adapted or written from scratch for each USB device class
and secondly, the Arduino microcontroller would not be fast enough to emulate some of the higher
speed devices. Therefore, a new approach was required — one that was more flexible.

Phase Two - Commercial test equipment

There are many commercially available (and some free, software-based) USB analysers, however only a
very small number of these also allow USB traffic to also be generated. An analysis of the available
devices at the time of the research revealed that the following USB analyser was the best fit for our

requirements:

Page 11 of 18 "é

ngssecure

an ncc group company

http://www.practicalarduino.com/pics/virtual-usb-keyboard-schematic.jpg
http://www.practicalarduino.com/pics/virtual-usb-keyboard-schematic.jpg

USB — Undermining Security Barriers

Packet Master USB500 AG

Yaiixsydl

The Packet Master device [21] has the following capabilities:

Dedicated USB test equipment hardware

USB capture and playback

Can emulates any USB host or device (USB v1.1 or v2.0)
Understands and analyses the different USB device classes
Uses a scripting language to generate USB traffic

Costs approx. $1400 (plus specific class analysis options)
Limitations — doesn’t currently have a software API to control it

The three important capabilities are the ability to play back captured USB traffic, generate traffic using a
scripting language and emulate either a USB host or device. These capabilities, combined with an
understanding of where potential USB vulnerabilities may exist formed a solid base from which the USB
fuzzer could be developed.

Phase Three - Frisbee

Although there is a comprehensive Win32 GUI application (GraphicUSB) to control the device, the main
limitation of the Packet Master is the lack of a software control API. Therefore, we needed to develop a
different way to control it. The initial plan was to write the fuzzer using the USB scripting language
provided with the device, however, it soon became clear that the language was not fully-featured
enough to do this e.g. there is no concept of variables or of conditional loops.

One issue with fuzzing USB that was discovered during Phase one was the speed limitations imposed by
the protocol during the emulation of the device insertion and removal. In order to allow a host enough
time to fully enumerate an inserted USB device, fuzz test cases could only be sent approximately every
six seconds. Although frustrating, this limitation meant that the subsequent remote control technique
developed for the Packet Master, which was itself quite slow, did not actually matter. It was decided
that at least in the short-term, the easiest way to control the Packet Master was to inject Windows
events into GraphicUSB, as there would only need to be limited interaction to perform the fuzzing.

The Packet Master has the ability to create a “Generator script” (See Figure 11) for either a host or
device, based on a previous capture (See Figure 10). As can be seen in Figure 11, the bytes highlighted
are the contents of the Device descriptor displayed in Figured 9. This script is saved as a text file, then
compiled and uploaded to the Packet Master via USB. An option within GraphicUSB will then execute

Page 12 of 18 “’3

ngssecure

an ncc group company

USB — Undermining Security Barriers

the script, replaying the traffic previously captured. Alternatively, scripts can be developed from scratch
and executed.

The design of the fuzzer would therefore be as follows:

e The USB traffic associated with the insertion of a device (for either a host or device of interest)
would be captured and a generator script created.

e The Python-based fuzzing engine (Frisbee) would then iteratively modify the generator script
with fuzz test cases developed based on an understanding of the USB protocol and likely
potential vulnerability classes.

e For each test case Frisbee would open GraphicUSB with the generator script, inject the
appropriate Windows events into the application using the Python SendKeys library [22] in
order to compile the generator script, execute it and then exit the application. Although this
somewhat “clunky” approach was quite slow, it could still be performed for each test case
faster than the enumeration phase could be performed by a USB host.

e Basic instrumentation would be performed via ICMP ping packets sent to and received from
the target, based on the premise that most of the bugs, when triggered would cause a
Windows Bugcheck, Unix kernel panic or reboot to either a USB device or host.

The fuzzer was successfully developed in Python and then used to identify bugs primarily in USB host
implementations by capturing the traffic associated with a range of different classes of USB device and
then fuzzing this traffic associated with USB enumeration. With respect to instrumentation, after using
Frisbee for a while, it became apparent that in some circumstances the bug identified would crash part
of the USB stack, but not the underlying operating system and hence the simple ICMP ping approach
was considered inadequate. Therefore, it was updated to execute a “known good” generator script after
each test case to establish if the USB stack on the target was still correctly functioning.

&4 GraphicUSB - [iphone_capture.mqu] =] 4]
¥ Ble Edt View Operations Windew Help 3l x|
[elzaEreE@fms as a2 2|2 CH =« a2 ||B||@]| vous:[s.060v [63ua _
Hin o P s i e Control Transfer
@
Get Device Descriptor
i F5_4555
& kT
Adevice descriptor describes general information about a USB device. It includes information that applies globally
=| [Cont . Addr Endp Data(13byies) Stats to the device and all of the device's configurations. A USB device has only one device descriptor.
= Th03.307% [Get Devics Desoriptor] 0x02] 0x0 1201000200 0000 40...] Ok |
Tz 5078 Addr Endp Data (9 bytes) Sistus el EER M
Tousess [0x02] 0x0 05025700 070105 C0. [OK_| Cenoft M| il Bt
@ bDescriptorType |1 DEVICE
il B (e 010200 | SpecVersion
s 00,1575
) bDeviceClass 0x00 | Class Information in
Y| [Ere= Interface Descriptor
- TO0%5E3S bDeviceSubClass [0:00 | Class Information in
= Interface Descriptor
S
s e bDeviceProtocol | 000 | Class Infarmation in
3 Interface Descriptor
bHaxPacketSize0 |64 | lax EPO Packet Size
R| [omre: Tavendor 00530 | o
ES

idProduct 0x1297 | Unknown
bedDevice 0x0001 | Device Release No
iManufacturer 1 Indexto Manufacturer

56551 _6E3
70101155

Seaas 6712

strin
Tom 1500

iProduct E Indexto Product String
iSeriaNumber B Indexto Serial Number
String
bNumConfigurations [4 Number of Possible
Configurations

BET1T. 6758
70555

Fr0a4_ 16T
7oaig5es

FT1a4 7038
ATEEER

Addc Endp Data (9bytes) Siatus
[02| ©x0 {09 02 27 00 07 0105 CO

FraaTraes
T0e38as

H il
i s

Data Content

#7308 7518
70237055

=== End of Capture ===

For Help, press F1 755 events 7

Figure 10 — A sample capture of USB traffic in GraphicUSB

Page 13 of 18 /d

ngssecure

an ncc group company

USB — Undermining Security Barriers

25 GraphicUS - [ihone_capture=] =lolx|

[El Fle Edt view Operatons Window Help == x|

|0 Zd Rt B & whawd =Y SE|=mE e @R a2 ||| =] vbus: [5.060v | esum _

[2:] Generator File originally exported from file: iphone capture.mgu

; Host end packsts were included as comments during export
; NARed transactions were filtered out during export

: EmolationMode STANDARD
ControlMode DEVICE
: VbusOn

3
4
5
6: FileType MQPGEN 2
7
8
9:
: Idle 176999

EErrYSE e

i WaitPullupOn FULLSPEED
12: PullupOn FULLSPEED

13: WaitSuspend

14: : Suspend 113

=

15: WaitReset
16: ; Reset 0

17: ; WaitChirp

: SendChirp 1 2000 0
19: ; SendChirp 750 50 50
20: WaitChirp

21: ; SOFs 882

| St < i

22: ; *** Get Device Descriptor
23: WaitPacketHs (SEIUP)

24: ; sendPacketHs (SETUP AD_EP CS(00 00))
25: ;)

26: WaitPacketHs (DATAD)

27: ; SendPacketis (DATAD
28: ; 0xE0 0x06 0x00 0x01 0x00 0x00 0x40 0x00
29: ; CRC16L CRC16H)

30: SendPacketHs (ACK)

31: ; 50Fs 1

32: WaitPacketHs (IN)

33: ; SendPacketHs (IN AD_EP_C5(00 00))

H }
35: Idle 12
36: SendPacketHs (DAT.

39: CRC16L CRC16H) =

For Help, pressF1 [38, Col 13 A

Figure 11 — A GraphicUSB generator script created from the capture in Figure 9

Why the new approach is different

Because there is no reliance on any underlying operating system (apart from for control, which needs to
be Windows-based to run GraphicUSB), the approach is USB host and device independent, which allows
for complete “black box” testing of USB targets. However, the hardest part of fuzzing driver code will
always be effective instrumentation and subsequent debugging, which obviously would need to be
target-specific.

What has been found so far
Although many of the technical details associated with these bugs cannot be revealed, as they are still
being investigated by the vendors, below is a list of bugs discovered by Frisbee in the first half of 2011:

e Multiple HID class memory corruptions in Windows 7

e Hub class kernel stack overflow in Solaris 11 Express

e Printer class kernel stack overflow in Solaris 11 Express

e Multiple Image class integer overflows in Microsoft Xbox 360
e Interface Descriptor memory corruption in OS X

This therefore demonstrates that bugs are still present in the drivers of common operating systems,
some of which are potentially exploitable, as can be seen below:

Page 14 of 18 “’3

ngssecure

an ncc group company

USB — Undermining Security Barriers

Windows 7 - HID class memory corruption #1

0: kd> 'exploitable

Exploitability Classification: PROBABLY EXPLOITABLE

Recommended Bug Title: Probably Exploitable - Data from Faulting Address
controls subsequent Write Address starting at Unknown Symbol @ 0x..

Windows 7 - HID class memory corruption #2

0: kd> !'exploitable

Exploitability Classification: PROBABLY EXPLOITABLE

Recommended Bug Title: Probably Exploitable - Memory Read Access Violation on
Block Data Move starting at nt!memcpy+0x..

This is a second chance read access violation in a kernel mode block data
move, and is therefore classified as probably exploitable.

Solaris 11 Express - kernel stack overflow #1

Jan 27 13:36:59 solaris "Mpanic[cpul]/thread=xxxXxXxxxX:

Jan 27 13:36:59 solaris genunix: [ID 549817 kern.notice] segkp fault:
accessing redzone

Jan 27 13:36:59 solaris unix: [ID 100000 kern.notice]

Jan 27 13:36:59 solaris genunix: [ID 353471 kern.notice]

Solaris 11 Express - kernel stack overflow #2

Jan 26 10:47:08 solaris genunix: [ID 335743 kern.notice] BAD TRAP: type=e
(#pf Page fault) rp=xxxxxxxx addr=xxxxxxxx occurred in module "unix" due to
an illegal access to a user address

Jan 26 10:47:08 solaris unix: [ID 100000 kern.notice]

Jan 26 10:47:08 solaris unix: [ID 839527 kern.notice] sched:

Jan 26 10:47:08 solaris unix: [ID 753105 kern.notice] #pf Page fault

Security Impact

Many times in discussions about USB vulnerabilities with vendors they quote the standard line “...but if
you have physical access to the machine then you already have full control” — yes, and no. Mobile
devices have already been exploited using USB-based vulnerabilities to “jailbreak” them allowing for the
unauthorised installation of software. Increasingly users are storing sensitive data in mobile-based apps,
which could potentially be compromised on a “jailbroken” device. Agreed, with a PC, if there is no
additional protection to the file system such as full disk encryption then yes, there are much easier ways
to gain access to the data stored on the machine than by exploiting a memory corruption bug in a USB
driver. However, if full disk encryption has been implemented and the operating system is running, a
kernel-level attack could easily result in full access to all the data on the machine. Even if the
vulnerability was in a userland application communicating with USB (this scenario has been observed by
the author), access to data as the logged in user would still prove extremely damaging. Not only could
an attacker exfiltrate data, they could also infect the machine with malware, just by inserting a rogue
USB device. But surely that’s what endpoint protection software is there to prevent, isn’t it?

Page 15 of 18 ’d

ngssecure

an ncc group company

USB — Undermining Security Barriers

Endpoint protection software

Over the last few years a number of different vendors have produced what have been generically called
“endpoint protection solutions” (in this context “endpoints” refer to network endpoints such as
workstations or servers rather than the USB protocol definition of an endpoint provided earlier in this
paper). Some examples of these products are:

e Lumension (formerly Sanctuary) - Device Control [23]
e CoSoSys — Endpoint Protector [24]
e Devicelock - Endpoint DLP Suite [25]

The purpose of the products is to provide more granular control over what devices can be connected to
an organisation’s endpoints. A common requirement for organisations is the control of USB — to prevent
users from inadvertently or maliciously adversely affecting the security of the IT estate by plugging in
various USB devices. However, although they appear to effectively control conventional USB devices
that are inserted into endpoints, our research has shown that kernel-level driver vulnerabilities are often
triggered lower down in the USB stack, before the endpoint protection software has even registered
that a device has been inserted — effectively undermining this security barrier.

Why USB vulnerabilities are still prevalent
Different vendors appear to view USB-based vulnerabilities in different ways. As explained earlier, some
vendors just don’t perceive USB vulnerabilities to be a security issue.

Quote from vendor x:
“Thank you for sending this to us. This is something that | will definitely pass on, however since this
requires physical access it’s not something that we will fix in a security update”.

However, in other cases although they take it more seriously, they don’t appear to have the capabilities
to thoroughly test their own code.

Quote from vendor y:
“We think we’ve fixed this issue, but we’ll need to get you to test it as we don’t have the ability to
replicate your attack”.

Page 16 of 18 "d

ngssecure

an ncc group company

USB — Undermining Security Barriers

Conclusion

Despite the best efforts of many vendors, there are still plenty of USB-based vulnerabilities out there,
many of which will be exploitable. The reason they have not yet been discovered is that until now,
runtime security analysis of USB has been challenging. The use of off-the-shelf test equipment combined
with knowledge of the USB protocol and of different vulnerability classes, has resulted in NGS Secure
developing a powerful USB security testing capability.

Hopefully, it has been shown that even though limited physical access is required, USB vulnerabilities
still constitute a serious security risk to organisations and that endpoint protection software is in many
cases unlikely to protect you from these attacks.

If you really don’t want people to exploit USB on your workstations, disable USB in the BIOS and prevent
unauthorised access to the BIOS with a suitably strong password. However, for the ultimate solution,
take the military approach and fill the USB sockets with epoxy resin ©

Page 17 of 18 “’3

ngssecure

an ncc group company

USB — Undermining Security Barriers

References

1 - http://www.usb.org/developers/docs/usb_20_021411.zip

2 - http://fl.hw.cz/docs/usb/usb10doc.pdf

3 - http://esd.cs.ucr.edu/webres/usb11.pdf

4 - http://www.usb.org/developers/docs/usb_30_spec_020411d.zip

5 - http://www.usb.org/developers/onthego/USB_OTG_Intro.pdf

6 - http://labs.mwrinfosecurity.com/files/Advisories/mwri_linux-usb-buffer-overflow_2009-10-29.pdf

7 - http://labs.mwrinfosecurity.com/files/Advisories/mwri_caiag-usb-drivers-buffer-overflow _2011-03-07.pdf
8 - http://www.blackhat.com/presentations/bh-usa-05/BH_US_05-Barrall-Dewey.pdf

9 - http://www.informatik.uni-hamburg.de/SVS/archiv/slides/09-01-13-0S-Jodeit-Evaluating_Security_Aspects_of USB.pdf
10 - https://muelli.cryptobitch.de/paper/2010-usb-fuzzing.pdf

11 - https://media.blackhat.com/bh-dc-11/Larimer/BlackHat_DC_2011_Larimer_Vulnerabiliters_w-removeable_storage-wp.pdf
12 - http://labs.mwrinfosecurity.com/files/Advisories/mwri_caiaqg-usb-drivers-buffer-overflow_2011-03-7.pdf
13 - http://labs.mwrinfosecurity.com/files/Advisories/mwri_linux-usb-buffer-overflow_2009-10-29.pdf

14 - http://ps3wiki.lan.st/index.php?title=PSJailbreak_Exploit_Reverse_Engineering

15 - http://theiphonewiki.com/wiki/index.php?title=Usb_control_msg(0xA1%2C_1)_Exploit

16 - http://theiphonewiki.com/wiki/index.php?title=Usb_control_msg(0x21%2C_2)_Exploit

17 - http://www.usb.org/developers/devclass_docs/HID1_11.pdf

18 - http://www.arduino.cc

19 - http://www.practicalarduino.com/projects/virtual-usb-keyboard

20 - http://code.google.com/p/vusb-for-arduino/

21 - http://www.mgp.com/usb500.htm

22 - http://www.rutherfurd.net/python/sendkeys/

23 - http://www.lumension.com/device-control-software/usb-security-protection.aspx

24 - http://www.cososys.com/software/endpoint_protector.html

25 - http://www.devicelock.com/dl/index.htm

Page 18 of 18 “’3

ngssecure

an ncc group company

