Fingerprint-Jacking: Practical Fingerprint Authorization Hijacking
in Android Apps

Xianbo Wang!, Yikang Chen', Ronghai Yang!?, Shangcheng Shi!, Wing Cheong Lau!

'The Chinese University of Hong Kong
2Sangfor Technologies Inc.

Abstract

Many mobile devices carry a fingerprint scanner nowadays. Mobile apps utilize the fingerprint scanner to facilitate
operations such as account login and payment authorization. Despite its security-critical nature, relatively little effort
has been devoted to the security analysis of fingerprint scanner, especially from the system security aspect. In this
paper, we introduce fingerprint-jacking, a type of User-Interface-based (UI) attack that targets fingerprint hijacking
in Android apps. We coin the term from clickjacking, as our attack also conceals the original interface beneath a
fake covering. Specifically, we discover five novel attack techniques, all of which can be launched from zero-permission
malicious apps and some can even bypass the latest countermeasures in Android 9+. Our race-attack is effective
against all apps that integrate the fingerprint API. As apps’ implementation flaws intensify the fingerprint-jacking
vulnerability, we have designed a static analyzer to efficiently identify apps with implementation flaws that can lead
to fingerprint-jacking. In our evaluation of 1630 Android apps that utilize the fingerprint API, we found 347 (21.3%)
apps with different implementation issues. We have successfully performed proof-of-concept attacks on some popular
apps, including stealing money via a payment app with over 100,000,000 users, gaining root access in the most widely
used root manager app, and much more. We have also reported related vulnerability to Google, which is identified as
CVE-2020-27059 and will be fixed in next Android patch release. Finally, we give guidance to Android app developers
for secure fingerprint implementation.

1. Introduction

Due to its high accuracy and low cost, fingerprint scanners are the most commonly installed biometric hardware in
smartphones nowadays to facilitate authentication/authorization in mobile apps. Operating systems (OS), as the bridges
between hardware and software, should provide an easy way for apps running on smartphones to access the fingerprint
scanner. Android, as the most widely used OS in smartphones, does provide a set of Application Programming Interfaces
(APIs) dedicated for apps to use fingerprint scanners. With the fingerprint API, developers do not need to worry about the
variation in the hardware, even when the fingerprint scanners are from different vendors, or in different types (rear-mounted
or in-display).

While convenient, the security of fingerprint authentication is essential as well. In addition to the security of the scanner
itself, most smartphones also use Trusted Execution Environments (TEE), a hardware-forced isolated execution environment
to enforce the security of fingerprint data processing and storage. Meanwhile, fingerprint security from the software aspect
also worths attention, for instance, the authenticity of the user interface (UI). When the fingerprint scanner is waiting for
physical touch, the UI must provide the user with a clear context and show exactly the purpose of the fingerprint. Ideally,
a secure Ul should be enforced by the OS, or even from the hardware level.

When studying the design of the Android official fingerprint API, as well as apps’ implementation details, we observe
three important issues:

e The FingerprintManager API [1], the most widely used fingerprint API in Android, delegates the duty of
implementing fingerprint UI to app developers.

e A significant portion of apps implements the fingerprint UI improperly, leaving the app susceptible to UI attacks
during the fingerprint authentication process.

e Countermeasures introduced in Android 9+ for mitigating the fingerprint hijacking attack contain flaws and can be
bypassed.

Based on these observations, we discovered several attack techniques that enable fingerprint hijacking in apps with the
FingerprintManger API. We model such type of attacks as fingerprint-jacking, with the definition: fingerprint-jacking is a
type of attack that the attacker conceals the actual fingerprint UI beneath a deceptive covering, luring the victim
to touch the fingerprint scanner and conduct unintended action. More specifically, we introduce five novel techniques,
namely translucent-attack, wakeup-bypass, splitscreen-bypass, crash-bypass, and race-attack, which make fingerprint-jacking

practical: 1) All attacks can be launched from a zero-permission malicious app or even from a web page. 2) Some attacks can
bypass the countermeasures introduced in Android 9+, or are still effective even if the apps implement the APIs correctly.
The security impact of fingerprint-jacking can range from money stealing to root access gaining in different apps.

To summarize, we have made the following technical contributions:

o We discovered five novel attacks for Android fingerprint hijacking, which are practical as they can be launched from
a zero-permission malicious app or a web page.

o We identified flaws in Android’s countermeasure, enabling the fingerprint-jacking attack in even Android 9+. We
also found a race-condition bug in Android that can make even apps with no implementation flaws vulnerable to
fingerprint-jacking.

o We designed a static analyzer to check fingerprint-jacking vulnerable implementations in apps. It automatically
identified 347 (21.3%) apps with implementation flaws within 1630 evaluated fingerprint apps, including some
popular apps with millions of installs.

2. Background

2.1. Android security mechanisms for fingerprint

Fingerprint sensors are used for authentication and authorization, which are the keys to protect privacy. In most cases,
authorization is combined with authentication as only an authenticated user is allowed to grant the authorization. Use cases
for authentication include device unlock and account login. Payment and access-granting are common usage scenarios for
fingerprint authorization. Due to the essentiality of fingerprint, Android has deployed various mechanisms to protect its
security.

2.1.1. Permissions. Android framework defines three permission levels for apps, namely, normal, signature and dangerous.
Dangerous permissions need to be explicitly granted by the user at runtime, while normal level permissions are granted
automatically at installation time. All permissions need to be declared statically in the Android manifest file. To use the
fingerprint sensor, the app needs to request the USE_FINGERPRINT permission, which is under the normal level and is
auto-granted. Therefore, every app that integrated with fingerprint functionalities will declare this permission in its Manifest
file.

2.1.2. Hardware. The permission model for apps can limit their resources access and capabilities. However, for apps running
in an insecure environment, e.g., rooted system, the manufacturers need to develop hardware-level protection mechanisms
to avoid data leakage. For instance, to prevent attackers with root privileges from accessing sensitive data, manufacturers
nowadays ship the chips with separated hardware (e.g., TrustZone for ARM) that can execute code in an isolated world.
With TrustZone, the raw fingerprint data is encrypted and stored securely even when the Android OS is fully compromised.

2.2. Fingerprint API in Android

Android released the first official fingerprint API in Android 6.0 (2015), wrapped in the FingerprintManager
class. This API was the only official API for apps to use the fingerprint scanners across vendors, not until the new
BiometricPropmt API [2] rolled out in Android 9. The most noticeable difference in this new API is that it provides
a unified Ul when prompting the user to input their fingerprint. Apart from easing developers to implement the Ul of
their own, it also reduces the risks of problematic implementation by app developers. However, this API is not backward
compatible with devices before Android 9. According to the Android official website [3], until March 2020, more than 60%
of devices are still running versions older than Android 9. This is why we find a significant portion of apps in the market
are still using the FingerprintManager APL

To further mitigate risks and guarantee What You See is What You Sign (WYSIWYS), new Android versions also
patched the code of FingerprintManager API to add some foreground-checking logic to guarantee the app occupying
the fingerprint scanner is running in the foreground.

As our attacks only apply to the classic FingerprintManager API, we will use it to illustrate the typical usage of
fingerprint API. The general usage can be simplified to the following steps:

1) Generate a cryptographic key: apps usually use fingerprint to decrypt a key for the purpose of encryption/decryption
or signing/checking. The generated key will only be available to the app after fingerprint authentication.

2) Start listening to fingerprint scanner: call the FingerprintManager.authenticate () to listen on the
fingerprint scanner.

3) The app can stop the fingerprint listener by calling CancellationSignal.cancel (), for example, when the
app is switched to background.

4) After the fingerprint is scanned successfully, the callback will be invoked with the unlocked cryptographic key.

2.3. Android Activity lifecycle

Activities are pages with widgets that are shown to users and are basic components of Android apps, with the analogy to
windows in PC systems. An Activity, whose lifecycle is modeled and managed by the Android framework, can be created,
paused and destroyed. Fig.1 shows the whole picture of the Activity lifecycle model.

When user enters a new Activity, the onCreate event will be triggered first, then follows the onStart and onResume
events. In usual cases, when an Activity is switched to the background, onPause and onStop will be triggered sequentially.
However, if the background Activity is still visible, e.g., it is covered by a translucent Activity, it stays in the paused state
instead of being stopped. Finally, when the user brings the background Activity to the foreground, the onRestart and
onStart (only if it’s previously stopped), as well as onResume events will be triggered sequentially.

Non-translucent New translucent activity: start and
activities press back
Activity 1 Activity 2 Activity 1 Translucent Activity
Activity 1 starts ! Activity 1 starts

onCreate(null)

onCreate(null)

onResume

Activity 2 starts ! New Activity staris:

onCreate(null) onCreate(null)
onSavelnstanceState

Back pressed Back pressed -

-

Figure 1. Diagram of Android lifecycle, highlighting the difference between normal v.s. translucent Activity. It shows the lifecycle when Activity 1 brings
Activity 2 to the foreground, then Activity 2 was destroyed and Activity 1 gets back to the foreground. This diagram was made by J. Alcérreca [4].

The implementation of the fingerprint authentication process is tangled with the Activity lifecycle. A common practice
is to start fingerprint listening in the onResume event of the associated Activity and cancel the listener in the onPause

event. In this way, the app will start listening to the fingerprint sensor once the Activity is shown and will close the sensor
once the Activity disappears.

3. Threat Model

The overall model of the fingerprint-jacking attack is similar to other UI redressing attacks in Android. In this paper,
we assume that the victim’s device is not rooted, otherwise, the attacker can perform more privileged attacks other than UI
attacks. We also assume that the attacker has no physical access to the targeting device. Regarding the attacker’s capabilities,
our attack can be applicable under different settings:

Malicious app attacker. We assume the attacker can install a malicious app on the victim’s device, e.g., by uploading
the malicious app to either Google Play or some other unofficial app markets and waiting for victims to install it. Note
that the malicious app requires no permission that users need to explicitly grant, and its capabilities are the same as other
normal apps, which are limited by the Android framework. Finally, we assume that the victim will launch the malicious
app at least once. Unless otherwise stated, the attacks we discuss in this paper follow this threat model by default.

Web attacker. Under this threat model, we assume that there is no malicious app installed on the victim’s device. The
attacker can only lure the victim to visit a crafted web page in the mobile browser. We also assume that the attacker knows
or can guess that 1) the targeted app is installed on the victim device, 2) some assistant apps, which can be some popular
benign app, e.g., Facebook, are installed.

4. Fingerprint-Jacking Attacks

In this section, we will introduce five novel fingerprint hijacking attacks. Before that, we will first briefly introduce
three existing attacks. Then, we will discuss in detail the key idea of our novel attacks and their advantages. In the end, we
will summarize the overall fingerprint-jacking attack process while considering different conditions and scenarios, as well
as how to launch the attack from a web page. As an overview, Fig.2 shows the overall taxonomy of related attacks and our
new attacks.

Taxonomy of Fingerjacking Attacks
Work in Android 9+ . . . Our new attacks
Fingerjacking
Only work before Android 9 Existing attacks
Exploit unusual| |, _EXPloit app Exploit Android
implementation :
features lifecycle bug
flaws
I
h 4 ¢ ¢ \ 4
Require user-grant Rely on Rely on pause-failure flaw (new) (new)
app permissions never-cancel flaw
translucent-attack™
float-attack [6] . . [
trivial-attack* [5] v v v race-attack
dimming-attack [6 wakeup- splitscreen- . o
g (6] oy e crash-bypass
* Attacks that can be extended with the webpage based attack discussed in Section.4.5.1

Figure 2. Overview and taxonomy of new and existing fingerprint-jacking attacks.

4.1. Review of Existing Attacks

The basic idea of the fingerprint-jacking attack is crafting visual content to lure the victim to input his/her fingerprint.
We were only able to find two existing works that mentioned related attacks.

The first is the UI confusion attack demonstrated in Black Hat 2015 [5]. The speaker showed the concept of using a lock
screen to lure the fingerprint for money transfer. However, at that time, the Android official fingerprint API had not even
been released yet and there was not much technical detail about this attack. Based on testing and guessing, we reconstruct
the process of this attack is as follows:

1) Initiate the fingerprint listening in the fingerprint app from the malicious app.
2) The malicious app starts a new Activity to cover the fingerprint app and trick the victim to touch the fingerprint
scanner.

We will call this attack the trivial-attack from now on. For this attack to work, the following implicit requirements have to
be satisfied:

o The fingerprint app will not cancel the fingerprint authentication when the corresponding Activity is switched to the
background.

e Android OS allows apps running in the background to continue occupying the fingerprint scanner.

In current practice, with the Android fingerprint API, both requirements are not trivial to satisfy. We will address them in
the discussion of our new attack techniques.

A more recent study was performed by [6] on Android 7. The authors proposed fingerprint UI attacks with the floating
window or the trick of dimming screen, both require some special permissions being granted by the user to the malicious
app. We will refer to them as float-attack and dimming-attack respectively. In our new attacks, we eliminate the permission
requirement of the malicious app to achieve better practicability.

4.2. Exploiting the Translucent Activity: Common Failure in Pause Handling

The trivial-attack assumes that the fingerprint app does not cancel listening even when switched to the background
(we call this behavior never-cancel), which unluckily is rare in practice. However, we observed that there are a significant
portion of apps (data will be shown in Section.5) that have fingerprint cancellation logic but implemented incorrectly. More
specifically, our key observations are as follows:

o Many apps only cancel the fingerprint authentication in onStop event of the corresponding activity instead of the
onPause event, we name this implementation pattern as pause-failure throughout this paper.

e In the Android system, when an activity with translucent property covers the original activity, only the onPause
event of the underneath activity is triggered.

With these observations, we propose an attack that uses the translucent Activity to cover the fingerprint Activity, which
can avoid interrupting the fingerprint authentication. We name this attack as translucent-attack. The t ranslucent property
of an Activity can be declared with the <item name="android:windowIsTranslucent">true</item> in the theme
definition without any permission. Fig.3 illustrates this attack with comparison to the trivial-attack.

4.3. Bypass the Patch Introduced in Android 9

The translucent-attack as well as the trivial-attack only work on or before Android Orea (8 & 8.1). We found that a
patch [7] was added to the FingerprintManager API since Android 9 to mitigate the fingerprint hijacking risk caused
by pause-failure from OS level. The logic of the patch is to perform a consistency check between foreground Activity and
the fingerprint Activity whenever the Activity stack is changed (e.g., when an Activity is put above another).

However, we soon realized that the patch itself contains flaws. Basically, the seemingly invincible mitigation overlooked
some corner cases: if Activity stack change never happened, the underneath Activity can continue listening on the fingerprint
scanner even if it is not in the foreground. With this in mind, the challenge becomes: how can we cover an Activity without
changing the Activity stack.

4.3.1. wakeup-bypass. One corner case the mitigation overlooked is when the device wakeups. The attacker can cover
the fingerprint activity with malicious activity before the device sleeps. After wakeup, both activities are resumed and the
underneath one is then paused. If a fingerprint Activity automatically starts listening in the onResume event (we call this
auto-resume pattern) and has the pause-failure flaw, the fingerprint can work in the background, avoiding any stack change
and thus invalidate the checking. This process is illustrated in Fig.4.

In practice, waiting for the device to sleep after setting up the fingerprint and covering Activities is less practical, as
the user may switch to other Activities during this period. A better approach is to monitor the ON_SCREEN_OFF event in
the background and launch the attack right before the device sleeps. When the victim subsequently wakes up the device,
fingerprint-jacking happens.

To summarize, the wakeup-bypass can work in all Android versions, but with the following assumptions:

o The attacker can set up the desired Activity stack before the device sleeps, and wait for the victim to wakeup the
device.
e The app’s implementation must have both the auto-resume and the no-pause patterns.

Note that the auto-resume assumption can be eliminated by combining the touchjacking attack, as we discuss later in
Section 4.5.2.

4.3.2. splitscreen-bypass. This can be regarded as a variant of the wakeup-bypass. In Android 9, the multi-window mode
allows apps to run in a split-screen. Note that although multiple Activities are visible to the user in the multi-window mode,
only one window will be active at a time and only the top Activity in that window will be in the resumed state. We find
that there are two scenarios that the active window will be switched from one to another.

o When the user taps in the inactive window, it will become active and the top Activity in it will be resumed.

J—
icious App
) Target A ic Activity
N @ areetAee. Fingerprint
Malicious App Fingerprint Activity
Disguised Activity | [rgsrprint interrupted cancelled

ez?
No stack
I change
usApp Awake/Unlock
Target App cent Activity
Malicious App = Fingerprint Activity onPause
Disguised Activity - mm

Flngerprmt

resumed
Figure 3. Tlustration of translucent-attack, with comparison to trivial-attack. | Figure 4. Illustration of the wakeup-bypass in Android 9 and later. After the
If the app cancels the fingerprint in the onStop method, frivial-attack in @ | device wakeup, there is no stack change, so there is no checking when the
will not work, but our new translucent-attackas shown in @ will work. background Activity starts fingerprint listening.

Inactive
Fingerprint Activity
Active
Fingerprint
Activity

Malicous app in the
larger split-window

Figure 5. Illustration of splitscreen-bypass. When the user resizes the upper window from 1/3 to 2/3 of height, the placed Activity in the upper window
receives onResume event and then fingerprint-jacking happens.

e When the user resizes the window, the window with size more than a half will become active regardless of which
window the user previously was interacting with.

When these two cases happen, there will be no change in Activity stack, while it changes the Activity status and triggers
events. Thus, we can create an attack similar to the wakeup-bypass with the scenario of two-split windows. One is the active
window with the malicious app running (malicious-window), another is the adjacent window where the victim fingerprint
app will be put into (victim-window).

1) The malicious app in malicious-window sets up the desired Activity stack into the victim-window. This can be done
by starting Activities with the FLAG_ACTIVITY_LAUNCH_ADJACENT flag.

2) Wait for the user to interact with the victim-window or resize the window so the victim-window gets larger than
half-screen.

This attack not only can bypass the countermeasure in Android 9 but also works in all other versions with multi-window
support (Android 7+).

4.3.3. crash-bypass. The wakeup-bypass and split-bypass are both found by analyzing the mitigation mechanism in the
original Android 9. Meanwhile, by conducting black-box testings on a few vendor-modified firmware (ROM), we also
find a bypass that only works in a specific ROM, namely MIUI 11 [8], a ROM made by Xiaomi based on Android 9. We
noticed that the same foreground-checking countermeasure is included. However, with the following steps, we can magically
resurrect the fingerprint-jacking attack.

1) From the malicious app, invoke the fingerprint Activity in the target app.

2) The malicious app then starts a chosen Activity in some other installed app with malformed data to cause an
immediate crash of that Activity.

3) After a few seconds, launch a translucent covering Activity.

TABLE 1. IMPLEMENTATION AND ENVIRONMENT ASSUMPTIONS ON DIFFERENT FINGERPRINT-JACKING ATTACKS

Implementation flaw System Implementation pattern Attacker capability
Attacks dependency requirement dependency requirement
Rely on Rely on Require Require Require Require a Malicious app’s
never-cancel | pause-failure Android<9 auto-resume | no-button' | malicious app permission
Known |__{rivial-attack’[s] v v v X X X None
attacks Sfloat-attack [6] X X /3 X X v SYSTEM_ALERT_WINDOW?
dimming-attack [6) X X X X v v WRITE_SETTINGS®
translucent-attack X v 4 X X X None
New wakeup-bypass X v X 4 v v None
attacks splitscreen-bypass X v X v v v None
crash-bypass X v x? v v X None
race-attack X X X X X v None

! no-button means no additional interactions like button-tap before fingerprint. X indicates that the attack can still work by combining touchjacking.
2 crash-bypass requires MIUI, a vendor customized ROM, and it doesn’t work in the native Android.
4 As details of the attack demonstrated in [5] were not given, some conditions here for trivial-attack are based on our own testing.

Having no access to the source code of the ROM, we are not able to find the exact reason that makes the bypass work
at the current stage. Based on collecting clues in the haystack of logs, we suspect the cause being some proprietary game
boosting service in the ROM interferes with the Activity lifecycle.

4.4. The most powerful attack: race-attack

All the attacks mentioned up to now rely on the assumption that the app fails to cancel the fingerprint properly. While
this flawed implementation pattern is considerably common, it seems that once developers do things right, the whole
fingerprint-jacking thing is no longer a concern. Unfortunately, with the race-attack we discovered, this is not true.

Failed to trigger race condition:

1

2

3 20:38:55.065 fjLog: Activity.onCreate: <VictimActivity>

4 20:38:55.085 fjLog: Activity.onStart: <VictimActivity>

5 20:38:55.085 fjLog: Activity.onResume: <VictimActivity>

6 20:38:55.155 fjLog: Activity.onPause: <VictimActivity >

7 20:38:55.189 fjLog: Activity.onStart: <MaliciousActivity>

8 20:38:55.190 fjLog: Activity.onResume: <MaliciousActivity>
9

10 # Race condition triggered:

12 20:39:25.314 fjLog: Activity.onCreate: <VictimActivity>

13 20:39:25.378 fjLog: Activity.onStart: <VictimActivity>

14 20:39:25.379 fjLog: Activity.onResume: < VictimActivity>

15 20:39:25.454 fjLog: Activity.onCreate: <MaliciousActivity>
16 20:39:25.477 fjLog: Activity.onStart: <MaliciousActivity >

17 20:39:25.480 fjLog: Activity.onResume: <MaliciousActivity >

Listing 1. Activity events log when race-attack failed and succeeded.

We found that if two Activities are started with a very short delay (can be Oms) in between, the Activity lifecycle can
go into some limbo state. Listing.1 shows the detailed event log when trying to trigger the race condition bug. When it
failed to trigger, the underneath VictimActivity receives the onPause event as expected (line 6). When it succeeded, the
underneath VictimActivity stays in the resumed state. Regardless of the design in Android that only one Activity can be in
the resumed state at a time, we notice that two Activities appear both in the resumed state when the race condition happens.
With more experiments, it only requires the following to stably reproduce this limbo state:

e Use StartActivities (Intent[]) API to launch the two Activities together.
o The second (upper layer) Activity is translucent.

This race-condition bug not only creates an Activity lifecycle limbo so that the attack does not rely on the app’s
implementation, but it also invalidates the foreground-checking mitigation of fingerprint API. It kills two birds with one
stone! With this race-attack, basically, any apps on all Android versions that use the FingerprintManager API are
susceptible to the fingerprint-jacking attack.

4.5. Combination Attack for Better Practicability

In practice, the attacker needs to adjust the attack process by considering the target app and the environment. To increase
the chance, several aforementioned attack techniques can be combined, e.g., while actively launching the race-attack, the

attacker can in the meantime passively wait for the device to sleep and set up the wakeup-bypass. Table.1 summarizes and
compares all mentioned attacks with their conditions on app implementation, Android version, and required permissions.

4.5.1. Launching fingerprint-jacking from a web page. Under some settings, the fingerprint-jacking attack can be launched
solely from a malicious web page. To perform this attack, the attacker first needs to find a way to initiate the fingerprint
authentication process from a web page. On the Android system, this can be done by using the remote app linking mechanism
[9], e.g., deep links (payapp://dopayment ?mode=fingerprint), which links to the Activity that associates with
the fingerprint authentication process.

The more challenging part is to perform the malicious UI covering from a web page. This requires the attacker to find
an activity satisfies 1) being translucent, 2) can be launched using deep-link or other remote linking mechanisms from the
browser, 3) its content is (partially) controllable. We call this kind of Activities as covering-gadget. The attacker can find
covering-gadget in the target app itself or in some other benign apps that already installed on the victim’s device. It often
appears in apps that load external websites in WebView.

<html>
CLICK ME

1
2
3
4+
5
6

7 <script>

s function intent(e){setTimeout(

9 function(){

10 document.getElementByld(al”).click();

11 document.getElementBylId(a2”).click();

12 document.getElementByld(’a3”).click();
13 1, 0);

4}

15 </script>

16 </html>

Listing 2. Simplified web page code for the fingerprint-jacking attack

In Listing.2, we show the simplified source code of the malicious web page for launching this attack. There are two
sets of deep links on this web page, corresponding to the two steps in the attack: 1) Invoke the fingerprint app: the CLICK
ME link on line 2 points to a deep link that can initiate the fingerprint authorization process in the target app. 2) Launch
covering-gadget: another three links follow (line 4-6) are deep links that point to potential covering-gadgets in different
benign apps. We use JavaScript to try each of them until getting a hit (line 8-14).

When a victim visits this page, the web page will launch the fingerprint authentication activity and the covering activity
subsequently. In practice, the attacker is likely to be unsure about whether one particular covering-gadget can be used,
since that particular app may not be installed on the victim’s device. However, the attacker can include as many potential
covering gadgets as he wants to increase the success rate of the attack.

4.5.2. Combining with touchjacking. The first step of launching the fingerprint-jacking attack is invoking the fingerprint
authentication process in the target app externally from the malicious app. In some apps, this is not possible and screen
interactions (e.g. button clicks) are required to trigger fingerprint authentication. As a workaround, we can conduct the
touchjacking attack [10] with the translucent Activity to lure for button taps. In addition, for apps without the auto-resume
feature (as defined in Section.4.3.1), touchjacking can make wakeup-bypass and splitscreen-bypass work again.

5. Static Analyzer and Evaluation Results

To facilitate checking fingerprint-jacking vulnerability in a large set of apps, especially for those with implementation
flaws, we build an automatic static analyzer for Android apps. Briefly, the static analyzer is designed based on the logic:
From the located authentication () call in the code, it extracts the call chain backward to find the Activity that initially
invokes it. Then it analyzes the onPause method of the Activity and checks if any fingerprint cancellation logic exists.

To evaluate the impact of the fingerprint-jacking, we collected 2024 APKs that declared USE_FINGERPRINT permission
and ran 8 analyzers instances in parallel on a machine with 20 cores (2.4GHz) and 64GB memory. The average testing
time for each app is 77 seconds and average memory consumption is 1201 MB.

The detailed results of the test are shown in Table.2. Out of 2024 apps, the analyzer cannot locate the authenticate
call in 394 (19.5%) apps. Some apps may declare permission without actual implementation. A few false-negative cases
also contribute to it, e.g., apps that invoke fingerprint API with native code instead of JAVA and apps are protected with
packing. We exclude these apps for further analysis. In the remaining 1630 apps, we failed to associate the fingerprint

TABLE 2. EVALUATION RESULT WITH THE STATIC ANALYZER ON 2024 APPS

of analyzed apps L . . Found implementation flaw
of collected apps (API call found) No API-Activity links No implementation flaw = T < e
2024 1630 920 363
Average analysis time | Max analysis time | Average memory consumption | Max memory consumption = 68 (19.6% ;":_7 279 (80.4%)
76.8 seconds T1.1 hours 1.2 GB 7.7 GB - o o

authentication call with any Activity in 920 (56.4%) of them. Apart from the limitation of the analyzer, there are also cases
that apps include many third-party libraries, some of which may contain fingerprint related codes, but are never actually
used. Eventually, there are 710 apps found initiating fingerprint authentication from some activities. Among them, only 363
(51.1%) apps implement the cancellation properly, all remaining 347 (48.9%) apps contain implementation flaws that can
lead to fingerprint-jacking, and within the vulnerable apps, 279 (80.4%) belong to the pause-failure case. This indicates
that a significant portion of developers cannot implement the cancellation of fingerprint authentication correctly, especially
when it involves the pause event in the Android lifecycle.

During manual verification of some vulnerable apps, we found some interesting and impactful cases. One of them is a
popular mobile payment app with 100,000,000+ installs, in which the payment process can be invoked externally from an
app or even a web page. This app contains the pause-failure flaw, making it vulnerable to most fingerprint-jacking attacks
we discussed. Money stealing can be conducted by initiating a payment request to the attacker owned account and lure
the victim to authorize using fingerprint. The whole attack process can be very smooth and is unlikely to be noticed by
the victim. Another is Magisk Manager, the most popular open-source root manager app in Android with 50,000,000+
downloads [11]. For every app that requests the root privilege, Magisk will ask for the user’s authorization, which can
be done by scanning the fingerprint. We found its implementation contains the never-cancel flaw, which means in older
Android versions, the fingerprint authorization works even when the app is switched to the background. A malicious app
can easily request the root privilege and then launch the fingerprint-jacking attack to lure the victim’s authorization. Note
that at the time of writing, new Magisk versions have migrated to the new BiometricPropmt API and is no longer
vulnerable to the attacks we discussed.

6. Securing Fingerprint API and App Implementations

We have reported the race-condition and mitigation bypass issue we discovered to Android in June 2020. During the
triaging process, we confirmed that the issue could be reproduced even on Android 11. In November 2020, Google confirmed
to release a patch for this issue in January 2021 Android Security Bulletin and assigned CVE-2020-27059 to it.

Before the official patch is released, it is more important for app developers to protect their apps from the fingerprint-
jacking attack. We strongly recommend Android app developers to do the following:

e Migrate to the new BiometricPropmt API and deprecate the classic FingerprintManager APIL The new
API comes with a secure Ul that we believe is immune to the fingerprint-jacking attack.

e If backward incompatibility is the concern, use Google’s support library androidx.biometric [12]. It handles
the compatibility problem and provides a unified UL It survived our preliminary testing on all Android versions.

o Use a third-party fingerprint library carefully. We also tested several unofficial fingerprint libraries and found a
number of them are vulnerable by default to the fingerprint-jacking attack.

o If developers have determined to use the FingerprintManager API and implement their own UI, they MUST
explicitly cancel the fingerprint authentication process in the onPause event of corresponding Activity. Besides, they
SHOULD put a confirmation button or require other additional user interactions before starting fingerprint scanning.

7. Related Work

UI attack is a widely explored topic in computer software security. Since emerging of smartphones and the Android
system, the Ul attack was again put under spotlights, but on a new platform. The unique model and mechanism of the
Android UI system created some novel Ul attacks in recent years. [13] studied the Android task state transition model and
discovered several task hijacking attacks. In our fingerprint-jacking attack, the action of creating a malicious activity to
cover the benign fingerprint app is also under this task hijacking category. Interestingly, the method we used to conduct the
task hijacking is not in the list of their discoveries and might be new. Both [14] and [15] proposed Android UI attacks with
malicious overlay, one with translucent Activity and another with floating windows. They managed to escalate the power of
UI redressing attacks and demonstrate complex attacks like keyboard logging. Our attacks, unlike all traditional UT attacks
that targeting things on the screen, aim at the fingerprint scanner, resulting in different threat models. [16] performed a
comprehensive study on the possibility of launching Android UI attacks from web pages. Our idea of launching fingerprint-
jacking from web pages and utilizing existing apps was largely inspired by this paper.

The fingerprint support in Android devices became prevalent more recently and it is reflected in the scarce of related
security research. Yet, we find that two works mentioned UI attacks when studying fingerprint security. As far as we
know, [5] is the first to propose the Ul confusion attack against the fingerprint scanner with a working demonstration. At
that time, Android just released its official fingerprint API and was not included in their research, not to mention those
countermeasures added recently. The most recent related study was performed by [6] on Android 7. The authors proposed
a workaround to bypass the countermeasure against the fingerprint Ul attack with a floating window or screen dimming,
either of which requires some special permissions. While [15] showed that the permission for the floating window was
automatically granted to apps in Google Play, this seems no longer true since Google adjusted its policy [17]. Our work not
only introduces five new attack techniques (except trivial-attack) but also shows the possibility to launch the attack with a
zero-permission malicious app or even a web page, demonstrating the practicability of the fingerprint-jacking attack.

8. Conclusion

In this paper, we proposed the fingerprint-jacking attack with five newly introduced practical attack techniques, including
attacks that exploit common implementation flaws in Android apps, attacks that can bypass the latest mitigations added since
Android 9, and a powerful race-condition attack that applies to most scenarios. With the automatic analyzer and manual
testing, we demonstrate the prevalence of the fingerprint-jacking attack as well as its critical security impacts.

References

[1] “FingerprintManager: Android Developers,” Dec. 2019. [Online]. Available: https://developer.android.com/reference/android/hardware/fingerprint/
FingerprintManager

[2] “BiometricPrompt: Android Developers,” Mar. 2020. [Online]. Available: https://developer.android.com/reference/android/hardware/biometrics/
BiometricPrompt

[3] “Android Distribution Dashboard,” Mar. 2020. [Online]. Available: https://developer.android.com/about/dashboards
[4] J. Alcérreca. (2019, Jan.) The Android Lifecycle cheat sheet. [Online]. Available: https://github.com/JoseAlcerreca/android-lifecycles
[S] H. a. Yulong’Zhang, ’Zhaofeng’Chen, “Fingerprints On Mobile Devices: Abusing and Leaking,” in Black Hat USA, 2015.

[6] A. Bianchi, Y. Fratantonio, A. Machiry, C. Kruegel, G. Vigna, S. P. H. Chung, and W. Lee, “Broken Fingers: On the Usage of the Fingerprint API
in Android,” in Proceedings 2018 Network and Distributed System Security Symposium, no. February. Reston, VA: Internet Society, 2018.

[71 K. Chyn. Fingerprint should check current client when task stack changes.
[8] “MIUL” Dec. 2019. [Online]. Available: https://en.miui.com/
[9] “Android Intents with Chrome,” Jan. 2019. [Online]. Available: https://developer.chrome.com/multidevice/android/intents

[10] T. Luo, X. Jin, A. Ananthanarayanan, and W. Du, “Touchjacking attacks on web in android, ios, and windows phone,” in International Symposium
on Foundations and Practice of Security. Springer, 2012, pp. 227-243.

[11] “Magisk Manager,” Dec. 2019. [Online]. Available: https://magiskmanager.com/
[12] “Biometric: Android Developers,” Dec. 2019. [Online]. Available: https://developer.android.com/jetpack/androidx/releases/biometric

[13] C. P. U. Ren, Y. E. Zhang, H. F. Xue, T. F. Wei, and P. P. U. Liu, “Towards Discovering and Understanding Task Hijacking in Android This paper
is included in the Proceedings of the,” Usenix, 2015.

[14] E. Alepis and C. Patsakis, “Trapped by the ui: The android case,” in International Symposium on Research in Attacks, Intrusions, and Defenses.
Springer, 2017, pp. 334-354.

[15] Y. Fratantonio, C. Qian, S. P. Chung, and W. Lee, “Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback Loop,”
Proceedings - IEEE Symposium on Security and Privacy, pp. 1041-1057, 2017.

[16] T. Li, X. Wang, M. Zha, K. Chen, X. Wang, L. Xing, X. Bai, N. Zhang, and X. Han, “Unleashing the Walking Dead: Understanding Cross-App
Remote Infections on Mobile WebViews,” Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security - CCS
’17, pp. 829-844, 2017.

[17] mxttie. (2019, Apr.) Answer: Draw Overlay permission for apps installed from Play Store. [Online]. Available: https://stackoverflow.com/a/55481376

