UNLEASHING THE POWER

OF MY 20 YEARS OLD CAR

Stanislas Lejay (WhiteMotion)

Black Hat Europe 2019

Who's that brat?

- * Stanislas Lejay, french computer security engineer
- * Love cars, and to fiddle with things
- * Automotive vulnerability researcher at WhiteMotion (Tokyo, JP)

WHITEMOTION

– Automotive Cyber Security –

The test subject

- * 1997 [MANUFACTURER] [MODEL]
- * ~300hp from factory, mosty stock but for suspensions
- * Nicknamed `Little Beast`
- * 50 000km driven since I bought it, still rips

Playing around

- * I was developping my own IVI
- * It has data logging options, alarms, music, etc
- * Powerful tool when it can communicate with the ECU

Reconnaissance

- * How to communicate with the car ?
- * Features an OBD-II like port, but no CAN
- * xSM is a proprietary protocol from [THAT MANUFACTURER]
- * Documented on `alcyone.org.uk`
- * No K-Line connected, xSM1 it is

xSM1

- * Simple serial protocol running at 1953 bauds at 5V TTL.
- * Teensy + level converter is all I need

Reading from the ECU

```
byte simple read data from address(short addr) {
  // 78 msb lsb 00
  byte read cmd[4] = \{0x78, byte(addr >> 8), byte(addr & 0xff), 0x00]
 byte answer[3] = \{0\};
  HWSerial.clear();
  for (int i = 0; i < 4; ++i) {
          HWSerial.write(read cmd[i]);
  }
  HWSerial.flush();
  HWSerial.readBytes(answer, 3);
  stop read();
 return answer[2];
```

Dumping the ECU

- * About 5 queries per second
- * Plug the car's battery to a charger
- * for loop from 0 to 0xffff, with a few checks
- * Dump the whole address space in 9ish hours

Finding the ECU

- * What architecture is it ? What ISA ?
- * Need to check the CPU to determine that
- * Take the ECU from under the passenger carpet (!!)

ECU and Processor

- 1- Immobiliser Chip (none)
- 2- Main CPU + FW
- 3- Ignition circuitry
- 4- Low power transistors
- 5- High power transistors
- 6- Power management
- 7- Diode
- 8- Secondary custom IC
- 9- Contact strip
- * IC based on the Mitsubishi M37791 CPU (7700 family)
- * `M flag` changes the instruction decoding at runtime
- * At least IDA handles it

Reverse engineering

- * 64kb blob, where to start ?
- * Turn everything into code.
- * Look for maps, find the Xrefs to those maps, and go from here
- * Struggle until you have something ok-ish (normal RE)

And my IVI works

History: JDM speed limiters

- * Cars sold in Japan used to have a ringing sound when going over 100km/h
- * Nowadays, this became an ECU controlled speed limiter at around 180km/h
- * Some cars have options for circuits

My car is no exception

- * Fuel cut is pretty brutal
- * Can I get rid of it ?
- * Need to understand how it works

Speed limiter: Activation

Speed limiter: Deactivation

The different options

Bypassing the limiter: Aftermarket ECU

- * Easiest and most customizable solution but
 - Not cheap
 - Needs a retune
 - I'm losing all the work done so far

Bypassing the limiter: Daughterboard

- * Piggybacks on the stock ECU but
 - Not cheap
 - Needs a retune

Bypassing the limiter: Cut VSS

- * Easiest, cheapest, easiest to understand solution but...
- * Transition Maps
- * Verification in code leading to limp mode

Bypassing the limiter: Faking the VSS signal

- * HKS sells the "Speed Limit Defencer" (SLD)
- * Not cheap (100-200 euros)

Faking the VSS signal for cheap*

- * SLD's principle is fairly easy
- * Intercept the signal and send a dummy one if needed
- * The ECU still receives a high speed signal, but not too high

GIF SOURCE: HTTPS://SENSORSO.COM/GEAR-DETECTION-SENSORS.HTML

Teensy for the win

```
// Initial version of the of the limiter bypass
while (speed >= 180) {
    if (previous_signal_value) {
        signal_value = 0;
    } else {
        signal_value = 1023;
    }
    analogWrite(VSS_TX, signal_value);

    // Remove the delay to get 354km/h and stall the engine delay(5); // Speed recorded is around 140km/h

    previous_signal_value = signal_value;
}
```

and then...

Black Hat Sound Bytes

- * Most aftermarket tools are not witchcraft
- * ECUs are getting complicated, but the basics stay the same
- * Go simple, but go safer

Thank you!

Twitter: 0xP1kachu