UNLEASHING THE POWER

OF MY 20 YEARS OLD CAR

WHITEMOTION

Stanislas Lejay (WhiteMotion)

Black Hat Europe 2019

Who's that brat?

* Stanislas Lejay, french computer security engineer
* Love cars, and to fiddle with things
* Automotive vulnerability researcher at WhiteMotion (Tokyo, JP)

WHITEMOTION

Automotive Cyber Security

=
DISCLAIMER

i Th|s work has been done in order to learn about | f,‘f

_éethe é full power of my car on racetracks and closed road&
- | only. -

A

i

While thiscan be applied to any car from thiseraandisa (> =
common practice amongst enthusiasts who don’t want to go._ 4
aftermarket, | was asked to remove the car’s precise
information from this presentation.

The test subject

1997 [MANUFACTURER] [MODEL]
~300hp from factory, mosty stock but for suspensions

* Nicknamed "Little Beast™
50 000km driven since I bought it, still rips

Playing around

* I was developping my own IVI
* It has data logging options, alarms, music, etc
* Powerful tool when it can communicate with the ECU

Reconnaissance

How to communicate with the car ?
Features an OBD-II like port, but no CAN
XSM is a proprietary protocol from [THAT MANUFACTURER]
Documented on "“alcyone.org.uk"
* No K-Line connected, xSM1l it is

* Simple serial protocol running at 1953 bauds at 5V TTL.
* Teensy + level converter is all I need

Reading from the ECU

byte simple read data from address(short addr) {

byte read cmd[4]
byte answer[3] =

0x78, byte(addr >> 8), byte(addr & Oxff), 0x00]

°
4

{
}

{0

HWSerial.clear();
f (int 1 = 0; i < 4; ++i) {
HWSerial.write(read cmd[i]);

}

HWSerial.flush();
HWSerial.readBytes(answer, 3);
stop read();

return answer[2];

Dumping the ECU

About 5 queries per second
Plug the car's battery to a charger

for loop from 0 to Oxffff, with a few checks
Dump the whole address space in 9ish hours

Finding the

* What architecture is it ? What ISA ?
* Need to check the CPU to determine that
* Take the ECU from under the passenger carpet (!!)

ECU and Processor

__ 1- Immobiliser Chip
m (none)

‘a-ﬂ" 2- Main CPU + FW

N 3- Ignition circuitry

P r—~mw-—(1 S-S
in ".: "-‘""‘;1\ .

4- Low power transistors

5- High power transistors

N

»
=

-
e
e 3
v
19
o
‘,,

5
|

6- Power management

:"Iiillll

["'
ol

5 7- Diode

A']9 001 DC2 m||||||muuunmmnmu) : : 3 —: :{ 8' Secondary custom IC

9- Contact strip

* IC based on the Mitsubishi M37791 CPU (7700 family)
* "M flag changes the instruction decoding at runtime
* At least IDA handles it

Reverse engineering

64kb blob, where to start ?

Turn everything into code.

Look for maps, find the Xrefs to those maps, and go from here
Struggle until you have something ok-ish (normal RE)

10 dd@d -2 X »00 v| %
Il e . .
oeplored [l Instruction

RAM: 1120 map2:

‘ i : - "
0000601 C A 3 advance_map Py
0000616 1 o
065C 1224 -8 o
: A8 3
A0
FF
. 88
FF
000076A
000076DC C 1 ::
FF
o
M
FF
SE
88
o
FF - o
e CEEEEEECEE0EEECe
FF .. .o
18
FF
50
83
28
FF
FF
600000 FE
D N1 37

And my IVI works

History: JDM speed limiters

- Cars sold in Japan used to have a ringing sound when going over 100km/h
* Nowadays, this became an ECU controlled speed limiter at around 180km/h
© Some cars have options for circuits

My car is no exception

* Fuel cut is pretty brutal
* Can I get rid of it ?
* Need to understand how it works

Speed limiter: Activation

speed_over_or_equal_186: ; Over 186km/h, check if speed limiter already activated
bbs #2, nsl_bitvector_1, speed_previously over_188

A, fixed_value_0x5e ; Speed limiter not activated, compare speed with 188 /7 2
speed_under_188

#2, nsl_bitvector_1 ; Speed over or equal to 188km/h, trigger speed limiter -> Fuel cutoff
speed_over_or_equal_188

speed_previously over_188: ; speed limiter already activated, check if
cmp A, fixed value_0x5d ; need to maintain it
beq speed_under_188

speed_under_188: ; No need to trigger speed limiter
clb #2, nsl_bitvector_1

speed_over_or_equal_188: ; Maintain speed limiter
1dx word_0008008DE
bbs #10h, nsl_bitvector_2, loc_00808252

Speed limiter: Deactivation

speed_limiter: ; Load speed computed from sensor signal
1lda A, speed_divided by two
bbs #1, nsl_bitvector_1, speed_previously over_186 ; Check if previously over or at 186km/h

A, fixed value 0x5d ; Compare to 186 / 2
speed_under_186_or_184

#1, nsl_bitvector_1 ; Over or equal, don't reactivate fuel injection
speed_over_or_equal_186

speed_previously over_186: ; Compare to 184 / 2
cmp A, fixed_value_Bx5c
beq speed_under_186_or_184

speed_under_186_or_184: ; Under 186, reactivate fuel injection
clb #1, nsl_bitvector_1

The different options

Bypassing the limiter: Aftermarket ECU

AL KORM
Ortme 11mm =@

B

50,000 ®t0m)
ZH ZiE&E EERHEOFE

AfLT3

HEEER

zztmiagh | 70—

wamE: 442 guwirE 99.8%
HREBEODFDMDA—I 3 V%ERS
iRt =R

QL MB/HRAOSASLEHR

weE g | OEFS

1 &

Easiest and most customizable solution but
- Not cheap

- Needs a retune

- I'm losing all the work done so far

Bypassing the limiter: Daughterboard

RS [+73 [2) RS
o i) Ow(Ofintio Out] Ogla
A3 o

* Piggybacks on the stock ECU but
- Not cheap
- Needs a retune

Bypassing the limiter: Cut VSS

.FUNC sub_7AFS

bbc #1, x658_bitvector, loc_7B27 ; alc_NoThrottle

ldx #unk_13C@ ; some mapl

lda A, speed_divided_by_two

cmp A, speed_div_2_ compare_xa ; 20 km/h
bcc loc_7B@8

ldx #unk_1770 ; some map2

loc_7B08:
lda A, alc_coolant_temp_proportion
jsr x5683_2d_graph_lookup
sta A, word_60A

* Easiest, cheapest, easiest to understand solution but...

* Transition Maps
* Verification in code leading to limp mode

Bypassing the limiter: Faking the VSS

* HKS sells the "Speed Limit Defencer" (SLD)
* Not cheap (100-200 euros)

Faking the VSS signal for cheap*

* SLD's principle is fairly easy
* Intercept the signal and send a dummy one if needed
* The ECU still receives a high speed signal, but not too high

GIF SOURCE: HTTPS://SENSORSO.COM/GEAR-DETECTION-SENSORS.HTML

Teensy for the win

(speed >= 180) {
Lf (previous_signal_ value) {
signal value = 0;
} else {
signal value = 1023;

}
analogWrite(VSS TX, signal value);

delay(5);

previous signal value = signal value;

and then...

Black Hat Sound Bytes

* Most aftermarket tools are not witchcraft
* ECUs are getting complicated, but the basics stay the same
* Go simple, but go safer

Thank you!

Twitter: OxPlkachu

