
Chain of Fools: An Exploration of
Certificate Chain Validation Mishaps
Introduction
Typically, when software needs to leverage cryptography, developers use libraries or APIs that
abstract many details away from them. They don’t need to fully understand how TLS
handshakes work to create a TLS socket, nor do they need to understand the cryptographic
primitives used to encrypt SSH traffic when making SSH connections. However, some
abstractions are leaky, and a better understanding is required to get things right. One example
is validation of certificate chains, which is required when using APIs like ​Android SafetyNet​ or
Android Protected Confirmation​, validating remote attestations (like those provided by FIDO2
authenticators), or processing JSON Web Tokens that include signatures with associated X509
chains.

Applied cryptography can be hard even when using cryptographic libraries. For example, many
cryptographic libraries make it difficult or non-obvious to properly validate certificate chains.
Generally speaking, it’s not because of defects in the implementation of primitives, but rather
the difficulty of designing usable cryptographic APIs and providing clear, unambiguous
documentation. The Internet is full of bad guidance regarding the implementation of common
cryptographic workflows. Advice on validating certificate chains is no exception. Oftentimes, this
advice instructs the developer to (unknowingly) add untrusted intermediates as trusted roots
when building certificate chains, which breaks the chain of trust. This allows an attacker to
provide an otherwise valid certificate chain that chains up to a “fake” root, which will cause
certificate chain validation to succeed when it shouldn’t.

An Observation: The Genesis of this Research
While we were working on a prototype that made use of the ​Android Protected Confirmation
API, which includes a necessary step of validating an attestation certificate chain, we noticed
that there wasn’t an obvious way of safely validating such a certificate chain that includes
untrusted intermediates with the ​pyOpenSSL Python module​. We also recalled having a
conversation with one of our colleagues, ​Adam Goodman​, about this being a problem he ran
into with the same module. In particular, when creating an ​X509StoreContext ​ object with a
depth greater than 1, (e.g., one which includes untrusted intermediates), the default behavior is
to treat all certificates added to the ​X509Store ​ object as trusted. As such, if a developer
intends to build up a chain of trust by iteratively adding certificates to this store, starting with the
root and ​n ​ number of intermediates, and ultimately terminating in the leaf certificate, if any of the
intermediates added to the ​X509Store ​ object signed the leaf certificate, the validation will
appear to have been successful. This is particularly troubling in the case when a developer is

https://developer.android.com/training/safetynet/attestation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://developer.android.com/training/articles/security-android-protected-confirmation
https://www.pyopenssl.org/en/stable/
https://twitter.com/akgood

given ​n ​ number of untrusted intermediates that could be controlled by an adversary, since they
could artificially create a “fake” signing certificate that signs an untrustworthy leaf certificate.
Even if the developer has made a policy decision ahead of time about which attestation roots
are trusted, and they add those to the trust store, the chain of trust is broken and the certificate
validation will succeed if an attacker manages to get a “fake” root in the list of untrusted
intermediates which are added to the store.

from OpenSSL.crypto import load_certificate, load_privatekey

from OpenSSL.crypto import X509Store, X509StoreContext

from six import u, b, binary_type, PY3

root_cert_pem = b("""<snip>""")

intermediate_cert_pem = b("""<snip>""")

leaf_cert_pem = b("""<snip>""")

root_cert = load_certificate(FILETYPE_PEM, root_cert_pem)

intermediate_cert = load_certificate(FILETYPE_PEM,

intermediate_cert_pem)

leaf_cert = load_certificate(FILETYPE_PEM, leaf_cert_pem)

store = X509Store()

store.add_cert(root_cert)

store.add_cert(intermediate_cert)

store_ctx = X509StoreContext(store, leaf_cert)

Will succeed if the intermediate signed the leaf, even if

the root didn’t sign the intermediate.

print(store_ctx.verify_certificate())

Recognizing that this was an issue, and still needing a way to properly validate a certificate
chain containing untrusted intermediates, Adam made a change to the pyOpenSSL module to
add support for including a list of untrusted intermediates when constructing an
X509StoreContext ​ object, and ​submitted a pull request to the pyOpenSSL repository​ on
GitHub. This was in June 2016, and as of this writing the PR has not been merged. It’s worth
noting that this is not due to oversight or lack of caring by the maintainers of pyOpenSSL, but
because the change is a sensitive one—and in a cryptographic library at that—they’ve been
hesitant to merge the PR without first getting the right reviewers in front of it. This is a good
reason.

Doing Things the “Right” Way With a Non-Obvious API
Although it’s not immediately obvious, (or at least it wasn’t to us and our colleague Adam), there
is a way to correctly validate a certificate chain using the API mentioned above. The solution is

https://github.com/pyca/pyopenssl/pull/473

simple, but the API doesn’t really spell this out for us. Consider the following ​example​ from a
test in the ​letsencrypt/boulder​ repository on GitHub:

def test_issuer():

 """

 Issue a certificate, fetch its chain, and verify the chain and

 certificate against test/test-root.pem. Note: This test only

handles chains

 of length exactly 1.

 """

 certr, authzs = auth_and_issue([random_domain()])

 cert = urllib2.urlopen(certr.uri).read()

 # In the future the chain URI will use HTTPS so include the root

certificate

 # for the WFE's PKI. Note: We use the requests library here so we

honor the

 # REQUESTS_CA_BUNDLE passed by test.sh.

 chain = requests.get(certr.cert_chain_uri).content

 parsed_chain =

OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_ASN1, chain)

 parsed_cert =

OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_ASN1, cert)

 parsed_root =

OpenSSL.crypto.load_certificate(OpenSSL.crypto.FILETYPE_PEM,

 open("test/test-root.pem").read())

 store = OpenSSL.crypto.X509Store()

 store.add_cert(parsed_root)

 # Check the chain certificate before adding it to the store.

 store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_chain)

 store_ctx.verify_certificate()

 store.add_cert(parsed_chain)

 # Now check the end-entity certificate.

 store_ctx = OpenSSL.crypto.X509StoreContext(store, parsed_cert)

 store_ctx.verify_certificate()

In the above example, the intermediate certificate is validated with the root before being added
to the ​X509Store​ object. If the intermediate validation passes, only then will it be added to the
trust store and used to validate the end-entity certificate. Even though this works, as it does
correctly validate the certificate chain, it only supports chains of length 1. Although it would be
possible to update this function to support chains of greater depth, the code could get messy

https://github.com/letsencrypt/boulder/blob/0c9ca050ab9673cd555b6d3361500c6442cf3202/test/v1_integration.py#L352
https://github.com/letsencrypt/boulder

quickly, and the opportunity for mistakes to arise would only increase. One of the biggest
problems here is that the pyOpenSSL API simply refers to the operation of adding a cert to the
X509Store ​ object as ​add_cert ​. This is problematic because that API makes sense if the
developer makes the correct assumption about how it works, but it can be hugely problematic if
they make the wrong assumption, as we did. For example, if the method were renamed to
add_trusted_cert ​ or similar, this would be incorrect if the developer uses the API
“correctly.” Perhaps one way of combating this would be to only allow the developer to add one
cert at a time to the ​X509Store ​, but this has other usability limitations, and sometimes could
be undesirable, (for example in unit tests).

Bad Advice on the Internet
Google’s SafetyNet documentation gives developers the following steps they must follow to
verify the origin of a signed SafetyNet attestation:

> To verify the origin of the JWS message, complete the following steps:

> 1. Extract the SSL certificate chain from the JWS message.
> ​2. Validate the SSL certificate chain and use SSL hostname matching to verify that the
leaf certificate was issued to the hostname attest.android.com.
> 3. Use the certificate to verify the signature of the JWS message.
> 4. Check the data of the JWS message to make sure it matches the data within your original
request. In particular, make sure that the timestamp has been validated and that the nonce,
package name, and hashes of the app's signing certificate(s) match the expected values.

The example code in the ​SafetyNet server example Java project​ uses
javax.net.ssl.TrustManager ​ under the hood to validate the certificate chain by means of
using Google’s ​JsonWebSignature ​ library. The default trust manager chains up to the system
roots of trust, and the example code validates that a path can be built between the leaf
certificate provided by SafetyNet up to a system root of trust, likely through intermediate
certificates that are also provided in the SafetyNet attestation response. The example code
does things right, but there are many steps performed during the validation process that are not
explicitly stated by the documentation.

https://github.com/googlesamples/android-play-safetynet/tree/master/server/java

Image Source: ​Wikipedia

Looking at results for “validate SSL certificate chain” on sites like StackOverflow and GitHub, we
see a worrying pattern. Let’s look at several of these examples.

The first example we’ll look at is one of the first results for “Golang verify certificate chain” on
Google, which you can find ​here​. In particular, the following lines are used to import the
intermediate certificates, which are then used as trusted roots:

rootPEM, err := ioutil.ReadFile(os.Args[3]) // cert-chain PEM
if err != nil {

log.Fatal(err)
}

roots := x509.NewCertPool()
ok := roots.AppendCertsFromPEM([]byte(rootPEM))
if !ok {

panic("failed to parse root certificate")
}

This method of validating a certificate chain implicitly trusts all the intermediates in the chain. If
there exists a self-signed certificate in the chain, it will be treated as a trusted root, regardless of

https://en.wikipedia.org/w/index.php?title=File:Chain_of_trust.svg&lang=en
https://gist.github.com/devtdeng/4f6adcb5a306f2ae035a2e7d9f724d17

system trust settings. As a result, an intermediary could modify payload contents, re-sign the
payload with a new key, and then attach the new leaf certificate and issuing CA to the request.

Searching for a method to validate certificate chains using Python might lead you to ​this
StackOverflow question​. The first response, published in 2015, advises the question’s author to
use pyOpenSSL’s ​X509StoreContext ​ to validate the chain, which falls victim to the issues
described earlier. This is in part due to incomplete documentation and bad advice on the
internet, and in part due to unit tests for pyOpenSSL that perform the likely-undesirable
validation of a certificate with intermediates as trusted roots.

This StackOverflow question​ submission asks how to verify a certificate chain using the
openssl verify​ command. In this case, there is a correct response (instructing the poster to
use the ​-untrusted​ option), but there is also another high-rated answer that suggests using
cat​ to combine the roots and intermediates into a single list of certificates, all of which will be
considered trusted roots. A question attached to this answer asks “Will this actually verify the
intermediate cert against the root cert?” to which someone replies “It does. I just re-ran the
commands with a chain that I know is correct.”

Joel Sandin brought this same issue up ​on the cryptography-dev mailing list​ in August of 2016.
He says: “It's clear from what I've found online that developers are confused and may have
introduced vulnerabilities into their code.” It is fair to assume this is the case—it seems relatively
unlikely that users who follow the misleading advice would check back in once updated answers
were posted calling out the dangers of the incorrect methods of certificate chain validation. The
failure mode is insidious: there are no false negatives introduced by accidentally treating
intermediate certificates as trusted roots, so unless validation methods are explicitly tested with
input that includes a self-signed CA in the list of intermediates, this issue can go undetected.

This raises an important point. Software developers typically have deadlines. Oftentimes,
they’re incentivized to get their code working, not necessarily to get it right. When you hit a wall
when trying to solve a tough problem, and you finally get it working, how often do you ask
yourself if you solved the problem the right way? This reminds me of the following sentiment
about losing your keys:

“It’s frustrating to feel like your lost keys are always in the last place you look, but the alternative
is to keep looking for them after you’ve found them.”

- u/droidpat​ on ​r/Showerthoughts​, Reddit

That’s the thing. When doing anything with cryptography in software, you’ve got to keep looking
for your keys even after you’ve found them.

https://stackoverflow.com/questions/30700348/how-to-validate-verify-an-x509-certificate-chain-of-trust-in-python
https://stackoverflow.com/questions/30700348/how-to-validate-verify-an-x509-certificate-chain-of-trust-in-python
https://stackoverflow.com/questions/25482199/verify-a-certificate-chain-using-openssl-verify
https://mail.python.org/pipermail/cryptography-dev/2016-August/000676.html
https://www.reddit.com/user/droidpat/
https://www.reddit.com/r/Showerthoughts/

Misuse-resistant APIs
Security practitioners have historically tended to blame the user: every single security issue,
after all, is due to some sort of “human error.” It’s a tidy excuse that allows the conversation to
end there, but a new, more holistic model of security is growing. This new model considers how
easy it is for a developer to misuse a primitive. This is particularly important in the field of
cryptography, where seemingly small mistakes can have massive consequences (ex: nonce
reuse).

Misuse resistance is relevant at all levels, from design of primitives up to the high-level APIs.
AES-GCM-SIV​, for example, is designed to minimize the impact of nonce misuse. ​EdDSA
signatures are deterministic, protecting against the kinds of mistakes that caused the leak of the
PS3 content signing key via a reuse of ​k​ values in the ECDSA scheme.

Miscreant​ is a library developed by ​Tony Arcieri​ with the explicit goal of providing
misuse-resistant APIs for common cryptographic tasks. Miscreant consists of libraries in five
different languages implementing misuse-resistant primitives. Other libraries (such as
libsodium​) may be built on primitives that are not misuse resistant, but expose APIs such that
misusing the primitives is hard or impossible.

Many older cryptographic primitives are still used purely due to inertia. Trail of Bits points this
out well in their ​Seriously, stop using RSA​ post: there are myriad ways to misuse RSA, many of
which are due to subtle implementation concerns that developers would not know about without
stronger cryptography knowledge. But rather than lamenting that developers are not sufficiently
knowledgeable about padding oracles, the path forward involves building tooling that does not
require domain-specific knowledge to use.

Misuse Resistance and Legacy Cryptography
X509 parsing is a minefield, and the tooling built around it (much of it bindings to OpenSSL) has
far too many knobs for the average developer to build safe applications. If you are expecting
developers to implement certificate chain validation, providing explicit instructions is a minimum
requirement, and providing tooling to do so is preferable. This is a rule of thumb that extends to
any situation in which you are asking developers to perform some cryptographic step: we must
ask “what knowledge is needed to do this correctly?”, “what is the impact of misuse or improper
implementation?”, and “how can we reduce or eliminate the risk caused by lack of developer
cryptographic knowledge?”.

Ideally, there should be no requirement that developers manually implement these steps: a
service provider should maintain client libraries that implement all the necessary cryptographic
checks without exposing intricacies to the developer when it’s not necessary. Google does a

https://tools.ietf.org/html/rfc8452
https://tools.ietf.org/html/rfc8032
https://tonyarcieri.com/introducing-miscreant-a-multi-language-misuse-resistant-encryption-library
https://twitter.com/bascule?ref_src=twsrc%5Egoogle%7Ctwcamp%5Eserp%7Ctwgr%5Eauthor
https://blog.trailofbits.com/2019/07/08/fuck-rsa/

version of this by providing an online validation API for SafetyNet tokens, but it exists only for
development purposes, and is heavily rate limited.

Quantifying the Use of SafetyNet
Knowing that certificate chain validation is hard to get right, and that it’s a necessary step of
validating SafetyNet attestations, we set out to understand how widely used this API is among
among popular Android applications, and among applications in different categories. The
reasons for this are twofold. For one, knowing how widely used this API is useful in its own right,
and two, because of the necessary certificate chain validation step, knowing how popular this
API is will give us an idea of how many implementations could potentially be vulnerable to
incorrect certificate chain validation logic. At a high level, answering these questions required
the following steps: 1) acquiring a list of popular Android applications by number of installs and
a ranking of applications, 2) downloading the Android Packages (APKs) associated with these
applications en masse, and 3) analyzing the corpus of APKs to determine the use of the
Safetynet Attestation API.

In the following sections, we describe the methods we used to accomplish the three
aforementioned steps.

Acquiring a List of Top Android Apps
In order to find out which of the top Android apps are using the SafetyNet Attestation API, we
first needed to acquire a source that outlined what those top apps were. In our search for a
reliable source, we found that there were some smaller lists that detailed dozens of apps, and
there were paid app store analytics services that also provided these sorts of lists. However, we
wanted our work to be reproducible by other researchers; so, we opted to use ​Android Rank​,
which has been collecting application metrics since 2011 and has been used by others for
similarly large analyses. Using data from their site, we were able to obtain a list of the most
installed Android applications and assemble a list of the top Android applications for 32 general
application categories (e.g., Communication, Finance, Social, etc.) and 17 categories of games
(e.g., Action, Puzzles, Sports, etc.). In total, this resulted in a list of over 24,296 apps.

Building a Corpus of Applications
After compiling a list of Android applications, the next thing that we had to do was to acquire as
many of the 24,000 APKs as possible. Currently, Google does not allow for automated
downloading of APKs from the Google Play Store; moreover, you are restricted to downloading
apps for your particular region. As a result, we decided to build our corpus of applications from
APK downloading services such as ​APKPure​ and ​apkmonk​. These sites allow users to
download APKs for both current and older versions of apps, apps from different regions, etc., so
that they can be sideloaded, or in our case, analyzed. Because downloading such a large
number of applications by hand was intractable, we opted to automate this process. We did so

https://www.androidrank.org/
https://apkpure.com/
https://www.apkmonk.com/

by building off the work done by the ​Open GApps Project​, which downloads Google Apps
packages from APK downloading services like the two we mentioned above. Using the scripts
that we created, we were able to download 98% (23768/24296) of these applications. We were
unable to download all of these applications because of two reasons: 1) we did not limit our list
to free apps and 2) AndroidRank’s list of the most popular applications includes apps that are no
longer available in general, or on the two sites that we used.

Analyzing APKs
In order to determine the use of SafetyNet by a particular application, we performed a series of
checks of the applications that is progressively more intensive. Before getting started, it’s helpful
to describe what an APK is and what it looks like under-the-hood. APKs can be thought of as zip
files that contain the code for the application, the resources, assets and other files as shown in
the diagram below.

Modified version of diagram by ​Ryantzj

At this top level and after the APK is unzipped, is where our first set of checks for the use of the
SafetyNet happen. We start by checking for the existence of a SafetyNet properties file.
Properties files are often used to store configuration information for applications. As it relates to
this work, there will sometimes be a file named ​play-services-safetynet.properties​.
This file will contain information relating to the version of SafetyNet that is being used by the
application. It is important to note that the existence of this file only means that one of the four
SafetyNet APIs is being used, but it doesn’t tell us if the one being used is the Attestation API.
In addition to the ​SafetyNet Attestation API​, there are SafetyNet APIs for ​Safe Browsing​,
reCAPTCHA​, and for ​verifying apps​. Nevertheless, in our process, we store this information so
that we can catalog which versions of SafetyNet are being used.

https://github.com/opengapps/apkcrawler
http://www.ryantzj.com/android-applicationpackage-apk-structure-part-1.html
https://developer.android.com/training/safetynet/attestation.html
https://developer.android.com/training/safetynet/safebrowsing.html
https://developer.android.com/training/safetynet/recaptcha.html
https://developer.android.com/training/safetynet/verify-apps.html

After checking for the existence of a SafetyNet properties file, we analyze the contents of the
Android Manifest. The Android Manifest is an XML file that contains information such as the
app’s package name, the activities and services used by the app, the permissions that app
needs to operate, etc. In the Android Manifest, we are specifically looking for the key
com.google.android.safetynet.ATTEST_API_KEY.

Last, if we are unable to ascertain the use of the SafetyNet Attestation API, we analyze the
classes.dex ​file, searching specifically for the presence of ​“AttestationResponse”​ or an
attestation API Key.

Initial Results
Prior to our work, it was found that ​less than one percent of Android applications were using one
of the safetynet APIs​ among a sample of 3000 applications. This study took place back in 2017,
which was just two years after SafetyNet was first introduced in ​2015​. Our study showed that
the use of SafetyNet has increased since then to approximately 5.26% of the approximately 24
thousand apps that we were able to successfully analyze. The category that showed the largest
use of SafetyNet was Finance at 18.52% while the lowest group was Tools (e.g., flashlight
apps) at 1.62%. Among the most installed applications according to Android Ranks, the use of
SafetyNet proved to be higher than average at 10.82%

Application Category Percent using SafetyNet

Finance 18.52

Comics 12.63

Dating 11.00

Shopping 9.85

Gaming 5.23

Top 5 categories by SafetyNet usage

Application Category Percent using SafetyNet

Books and Reference 2.61

Tools 2.42

House and Home 2.42

Personalization 2.22

https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/
https://www.nowsecure.com/blog/2017/08/03/android-apps-google-safetynet-attestation-api/
https://android-developers.googleblog.com/2017/11/10-things-you-might-be-doing-wrong-when.html

Weather 2.09

Bottom 5 categories by SafetyNet usage

In addition, we found that only 23% of the apps that we found to be using SafetyNet were using
the latest version of the SafetyNet API, ​17.0.0​. The vast majority (62%) were using the
previous version of the API: ​16.0.0​. Since the latest version was released on ​June 17th​, we
expect the percentage of applications using version ​17.0.0​ to increase.

Using More Advanced Approaches

Initially, when we began this research, we focused on trying to detect the use of the SafetyNet
APIs by file existence and pattern matching as mentioned above. This approach has its
drawbacks, with one of the largest being that the method calls that we were looking for could be
obfuscated, thus thwarting any direct or fuzzy string matching. In addition, by relying on the
presence of the properties file to determine which versions of safetynet are being used, our
figures would be biased in respect to the applications that use properties files as a configuration
mechanism. Because of these limitations, we turned to other library detection mechanisms.

Specifically, we decided to use ​LibScout​. LibScout works by first extracting profiles from original
versions of a library. In our case, this would be the ​.jar​s for the different version of
com.google.android.gms.play-services-safetynet​. Using the profiles, LibScout
statically detects the use of libraries in Android apps by building application profiles and then
applying a pattern matching algorithm to check for the presence of a given library. If a given
library is deemed to be present, LibScout outputs a similarity score between 0 and 1 where 1
means that a given library version was matched exactly.

Using LibScout, we analyzed a sample of 7,832 applications to see how the results compared to
purely searching for strings within the APK file. We found that a higher percentage of
applications were using the SafetyNet library at 7.2%. Similar to our analysis of the versions of
the SafetyNet library that relied on the properties file, we found that most (86%) of the
applications that we analyzed were not using the latest version. Last, we found that the most
popular app category that was using SafetyNet was Gaming at 11.2%.

Limitations
It is important to note that while our corpus of apps is larger than the study run in 2017, it is
small compared to the entire population. Moreover, the sample that we collected contains more
apps that can be categorized as games than any other category. Therefore, these results can’t
be generalized to the entire Android ecosystem.

https://developers.google.com/android/guides/releases#june_17_2019
https://github.com/reddr/LibScout

Research Methodology
When setting out to perform this research, we decided to approach the problem from a number
of different angles simultaneously. In addition to determining how widely used the SafetyNet
Attestation API is in certain verticals, we also wanted to explore what it would take to forge
SafetyNet attestations. While some of us were looking into the possibility of modifying the
SafetyNet attestation from the stance of a network MITM, our colleague ​Mikhail Davidov​ was
looking into doing so through in-process hooking with the ​Frida instrumentation framework​.
Ultimately, we focused primarily on forging attestations through a ​mitmproxy Addon​, but did
confirm that this should also be possible through in-process hooking with Frida. In the spirit of
sharing as much of our research process as possible, so as to enable further investigation by
other researchers, we’re including the following snippet below.

Java.perform(function() {
 var attResp =
Java.use('com.google.android.gms.safetynet.SafetyNetApi$AttestationRes
ponse');
attResp.getJwsResult.implementation = function() {
 var jwsToken = this.getJwsResult()
 console.log(jwsToken);
 // Change the token here.
 return jwsToken;
 }
},0);

Proof of Concept
To demonstrate this issue in action, we wrote several utilities:

● An Android app that requests a SafetyNet attestation
● A ​Flask​ web app that receives and incorrectly validates attestations
● A tool to modify and re-sign the attestation, including a mitmproxy Addon

You can access these three utilities ​on GitHub​. Our Flask application makes use of the
X509Context​ pattern that led to the investigation into these issues in the first place.
jwsmodify​ contains a method ​modify_jws_and_forge_signature​, which takes a JWS
payload in raw bytes as input and performs a transformation. The transform function is used to
modify the payload (to, for example, set passing SafetyNet values by setting
ctsProfileMatch​ and ​basicIntegrity​ to ​true​). Finally, the payload is re-signed by a
newly-generated self-signed CA that is encoded back into the JWS. This allows us to forge
SafetyNet assertions.

https://twitter.com/sirus
https://www.frida.re/
https://docs.mitmproxy.org/stable/addons-overview/
https://www.fullstackpython.com/flask.html
http://github.com/duo-labs/chain-of-fools

We include a mitmproxy Addon with the JWS modification tools. By default, the Addon looks for
SafetyNet attestations and sets them to passing. Our Flask application will validate both
unmodified attestations and attestations modified by our tools.

While our proof of concept tooling focuses on SafetyNet attestations in particular, the same
tools should be applicable to the modification of any JWS payload that uses the ​x5c​ parameter
to bundle certificate chains with the signature.

How We Can Make Things Better

There are a number of steps that developers can take to prevent improper certificate chain
validation or other cryptography pitfalls.

● Use high-level libraries and abstractions wherever possible. Ideally, these libraries will
shield you from having to deal with anything cryptographic. For example, the
NSURLSession​ API for iOS and macOS allows developers to download data from or
upload data to HTTPS URLs, but doesn’t require knowledge of the lower level
cryptographic primitives that it builds upon.

● If you need to interact directly with cryptographic libraries or APIs, choose misuse
resistant ones where possible, such as ​Miscreant​ and ​libsodium​.

● When doing anything with cryptography, don’t assume because something works that it’s
correct. In other words, keep looking for your keys even after you’ve found them. ;)

● Ask for help! This can come in the form of requesting additional documentation or
clarification from vendors, or by bringing up questions in online communities.

● Be skeptical. The stakes can be pretty high when getting things wrong with
cryptography, and the failure modes are often subtle.

Also, vendors should take great care when requiring low-level cryptographic steps of any kind
from developers integrating with their APIs. Ideally, they should provide client libraries that
abstract as many of these details away from the user, and failing that should provide detailed
documentation.

We can also work to prevent these kinds of mishaps as a security community, by educating
developers and providing help when we see it’s needed, (hat tip to ​Scott Arciszewski​ of Paragon
Initiative for ​his contributions to the Stack Overflow community​, among other things). Making
suggestions without assigning blame not only helps individuals, but it also improves the
perception of security practitioners in the public eye, hopefully making people less shy about
asking questions in the future.

https://developer.apple.com/documentation/foundation/nsurlsession
https://tonyarcieri.com/introducing-miscreant-a-multi-language-misuse-resistant-encryption-library
https://libsodium.gitbook.io/doc/
https://twitter.com/ciphpercoder?lang=en
https://stackoverflow.com/story/scott.arciszewski

Next Steps for Research
In addition to testing incorrect certificate chain validation implementations with the Android
SafetyNet API, this research should also apply anywhere where untrusted intermediate
certificates are provided through an untrusted channel and used to build a chain of trust, then
validated against a root of trust. Other examples that come to mind are when verifying a signed
message from the ​Android Protected Confirmation API​, or when validating a WebAuthn
attestation statement​. Additionally, it may be possible to use the steps outlined in this research
to test incorrect certificate chain validation implementations at scale by modifying JWS, (or other
payloads containing untrusted intermediate certificates), en masse. Finally, scanning public
source code repositories for faulty certificate chain validation logic could surface interesting
results.

Conclusion
It’s no secret that it’s easy to get things wrong when leveraging cryptography in software, but
there are concrete steps that can be taken by developers, vendors, cryptographic library
authors, and security practitioners to prevent mistakes from happening. In this research, we’ve
demonstrated how things like certificate chain validation can go awry, and what that means in
practice when developers are tasked with using or writing cryptographic code with insufficient
information or expertise. Forging Android SafetyNet attestations by taking advantage of
incorrect certificate chain validation implementations is just one example of how things can go
wrong when incorrect assumptions are made in cryptographic systems. Like many things in
security, humans are core to the experience. By working together as a community and not
assigning blame when things go wrong, we can work toward a more secure future.

https://developer.android.com/training/articles/security-android-protected-confirmation
https://www.w3.org/TR/webauthn/#attestation-statement

