
Attacking the XNU Kernel in El Capitan

Luca Todesco (@qwertyoruiop)

<me@qwertyoruiop.com>

BlackHat EU 2015

About Me

• Independent vulnerability researcher from Venice, Italy

• Focusing on Apple’s products, particularly attracted by
jailbreaking techniques

• Author of several XNU Kernel-related CVEs and exploits

‣ “vpwn” (< 10.10.2 LPE) - CVE-2015-1140 / CVE-2015-5865

‣ “tpwn” (< 10.11 LPE) - CVE-2015-5932 / CVE-2015-5847 /
CVE-2015-5864

‣ “npwn” (10.11 SIP bypass) - CVE-2015-6974

Why attack XNU?

• XNU has been a target primarily for iOS jailbreaking

• Yosemite enforces KEXT signatures

• El Capitan introduces “System Integrity Protection”

• System-wide, kernel-enforced sandbox profile that
prevents access to system resources

• Attacking the kernel is a viable way to bypass rootless
and sandbox

A quick overview
the xnu heap

The XNU Heap: Zone Allocator (zalloc)

• zinit(…) / zalloc(zone) / zfree(zone, ptr)

• Each zone has a LIFO linked list containing free chunks

• Allocations in a zone are same-sized

• When allocating from a zone without free chunks, a new
page is mapped in, page is split in chunks and each
chunk is added to the free list

• Discussed in detail in countless talks by Stefan Esser

The XNU Heap: Zone Allocator (zalloc)

• No inline metadata for allocated chunks, free list metadata
on free chunks

• Free list metadata is not an interesting target due to
hardening

• Application metadata is the only target

• Different zones use different areas of memory, so cross-
zone attacks aren’t feasible

• This does not apply to large allocations

The XNU Heap: Zone Allocator (kalloc)

• kalloc(size), kfree(ptr, size)

• Wrapper around zalloc

• Registers several generic zones with various sizes

• Essentially provides a malloc-like interface, but lack of
metadata in allocated chunks requires passing “size” to
kfree

The XNU Heap: Zone Allocator (kalloc)

kalloc zones on 10.11
(output of “zprint kalloc” as root)

(for some reason “zprint kalloc” segfaults in 10.11, but “zprint | grep kalloc” works)

A quick overview of 10.10 techniques
vm_map_copy corruption

The XNU Heap: vm_map_copy in 10.10

• Introduced as an easy way to do data-only memory leaks
by Tarjei Mandt and Mark Dowd’s HITB2012KUL “iOS 6
Security” presentation

• vm_map_copy is a structure used to hold a copy of
some data

• For small amounts of data the kernel heap is used

• Targeted by an endless amount of kernel exploits

The XNU Heap: vm_map_copy in 10.10

• Allocated with kalloc(sizeof(struct vm_map_copy) +
data_size)

• Controlled size!

• Can be created and accessed easily via OOL mach_msg
data

• Completely unaffected by sandboxing

The XNU Heap: vm_map_copy in 10.10

Usual info-leak targets

x86_64 sizeof(struct vm_map_copy) = 0x58

tpwn: a 10.10 kernel exploit

tpwn: a 10.10 kernel exploit

• Released in Aug 2015

• 0-day at the time

‣ CVE-2015-5932 / CVE-2015-5847 / CVE-2015-5864

• Core issue is a type confusion in handling mach ports in
io_service_open_extended

• Ports passed as “task” with a non-IKOT_TASK type
would cause NULL to be passed as pointer to task struct
to IOUserClients (CVE-2015-5932)

tpwn: __PAGEZERO strikes again

• The Mach-O format defines __PAGEZERO as a guard area

• 32-bit: 4K, used to trap NULL pointer dereferences

• Apple enforces “hard page zero” to prevent mapping NULL

• But

Page zero is left wide open in 32-bit binaries!

..

Io_service_open_extended()

io_service_open_extended is one of several
undocumented MIG functions to communicate with
IOKit drivers from user mode

(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

User mode

Kernel Mode

<IOKit/iokitmig.h>

tpwn: a 10.10 kernel exploit

tpwn: a 10.10 kernel exploit

..

Io_service_open_extended()

Io_service_open_extended()

Note NO CHECK ON owningTask!

(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

...

User mode

Kernel Mode

<IOKit/iokitmig.h>

Iokit/Kernel/IOUserClient.cpp

tpwn: a 10.10 kernel exploit

..(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

owningTask then gets passed to User Clients

Io_service_open_extended()
<IOKit/iokitmig.h>

Io_service_open_extended()
Iokit/Kernel/IOUserClient.cpp

User mode

Kernel Mode

tpwn: a 10.10 kernel exploit

..(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

Io_service_open_extended()
<IOKit/iokitmig.h>

IOHDIXControllerUserClient::initWithTask()

Io_service_open_extended()

User mode

Kernel Mode

IOHDIX’s user client initializer blindly trusts task argument
Iokit/Kernel/IOUserClient.cpp

tpwn: a 10.10 kernel exploit

..(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

Io_service_open_extended()
<IOKit/iokitmig.h>

IOHDIXControllerUserClient::initWithTask()

Io_service_open_extended()

bsd/kern/kern_proc.c

.. And passes to bsd_set_dependency_capable...

.. which OR’s 0x10

Iokit/Kernel/IOUserClient.cpp

To attacker controlled
Memory in PAGEZERO!

to an attacker
controlled pointer read

from the page zero!

..(service, owningTask, connect_type, ndr, properties, propertiesCnt, *result, *connection)

Io_service_open_extended()
<IOKit/iokitmig.h>

IOHDIXControllerUserClient::initWithTask()

Io_service_open_extended()

User mode

Kernel Mode

IOHDIX’s user client initializer blindly trusts task argument
Iokit/Kernel/IOUserClient.cpp

• Using an heap info leak (CVE-2015-5864) we can locate a
C++ object in kalloc.1024

• We need to locate a vm_map_copy and make sure it’s
adjacent to a C++ object

• Corrupt the size of the vm_map_copy to read the C++
object’s memory

• Derive kASLR slide from there

• Gain instruction pointer control, pivot the stack

tpwn: a 10.10 kernel exploit

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024 (FRAGMENTED HEAP)1

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

1

2

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

1

2

3

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

1

2

3

4

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

1

2

3

4

5

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

1

2

3

4

5

6

tpwn: controlling the heap layout

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

KALLOC.1024

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

NOT ADJACENT.
FREE, ALLOCATE PLACEHOLDER

ALLOCATE AND LEAK

ADJACENT.
FREE FIRST OBJECT,

ALLOCATE VM_MAP_COPY

1

2

3

4

5

6

7

3
(ty

pe
)

0
(o

ffs
et

)

0x
3A

8
(si

ze
)

vm
_m

ap
_c

op
y

(k
da

ta
, k

fre
e_

siz
e,

 e
tc

)

IO
Au

di
oE

ng
ine

Us
er

Cl
ien

t

vt
ab

le
po

int
er

tpwn: 10.10 kASLR leaking strategy

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

HEAP LAYOUT

+0x0 +0x400

known
addresses

3
(ty

pe
)

0
(o

ffs
et

)

0x
3B

8
(si

ze
)

vm
_m

ap
_c

op
y

(k
da

ta
, k

fre
e_

siz
e,

 e
tc

)

IO
Au

di
oE

ng
ine

Us
er

Cl
ien

t

vt
ab

le
po

int
er

tpwn: 10.10 kASLR leaking strategy

ALLOCATED FREE HOLE IOAudioEngineUserClient vm_map_copy

HEAP LAYOUT

+0x0 +0x400

known
addresses

OR 0x10
leaked first
0x10 bytes

• Result:

https://github.com/kpwn/tpwn

tpwn: a 10.10 kernel exploit

(fairly straightforward code)

10.11 Info Leaking Strategies
vm_map_copy corruption

The XNU Heap: vm_map_copy in 10.11

• Structure has been changed in 10.11

• On x86_64 sizeof(vm_map_copy) is 0x18 now

The XNU Heap: vm_map_copy in 10.11

• Size to kfree and data size have been unified

• Cannot read adjacent memory without corrupting it, since increasing
data size past heap allocation boundaries will free into the wrong
zone

• Pointer to data has been removed

• Can’t read data pointer off adjacent vm_map_copy

• Can’t swap data pointer to leak arbitrary memory

• New techniques are needed

vm_map_copy: Leaking adjacent data in 10.11

• Leaking adjacent bytes can now be done only by first
reading and corrupting, then writing back the read data

• Not as reliable as corrupting data size since it involves
a re-allocation

Leaking heap pointers in 10.11

• You can’t read the data pointer off a vm_map_copy to
leak heap pointers since it has been removed from the
structure

• Heap address leaks are useful since they allow you to
locate controlled data in the kernel heap

• Just use another structure containing heap pointers

• The free list is an easy target

Leaking heap pointers in 10.11

• Allocate two adjacent vm_map_copy structures

• Free the second

• Corrupt the first to increase size

• Read the first (leaking adjacent memory)

• Allocate a new vm_map_copy with the leaked data

• Allocate two vm_map_copy structures in the same zone,
second you allocate will be located at the pointer you’ve
leaked off the free list

Leaking arbitrary memory in 10.11

• You can’t swap the data pointer off a vm_map_copy to
get arbitrary memory leaks since it has been removed
from the structure

• OSData is a kernel C++ object used to represent generic
data. On x86_64 it lives in kalloc.48

• Use io_service_open_extended’s OSUnserializeXML to
create OSData objects

• Although dated, the “iOS Kernel Heap Armageddon” talk by Esser
explains more about OSUnserializeXML and libkern objects

Leaking arbitrary memory in 10.11

• Allocate two adjacent vm_map_copy structures

• Corrupt the first one’s size

• Read out the data, change the second structure’s size to
24, write it back

• Read the second vm_map_copy out, causing a wrong
free to the kalloc.48 zone

• Allocate OSData

Leaking arbitrary memory in 10.11

• OSData object now overlaps vm_map_copy’s data

• Can read/write to it in userland

• vtable pointer leaks kASLR slide

• Data pointer leaks a pointer to arbitrary user-controlled data

• Changing the data pointer and setting capacity to
0xFFFFFFFF allows arbitrary memory leaks on 10.11 ->
Just use IORegistryEntryCreateCFProperties to retrieve data

Leaking arbitrary memory in 10.11

overlapping heap chunk

vm_map_copy

3 (type)

0 (offset)

104 (size)

vm_map_copy

3 (type)

0 (offset)

104 (size)

+0x0

+0x80

(assuming kalloc.128)heap chunk

Leaking arbitrary memory in 10.11

overlapping heap chunk

vm_map_copy

3 (type)

0 (offset)

232 (size)

vm_map_copy

3 (type)

0 (offset)

104 (size)

+0x0

+0x80

(assuming kalloc.128)heap chunk

Heap corruption

Leaking arbitrary memory in 10.11

overlapping heap chunk

free chunk in kalloc.256

vm_map_copy

0 (type)

0 (offset)

0 (size)

+0x0

+0x80

(assuming kalloc.128)heap chunk

Read out
vm_map_copy
(freeing into the

wrong zone)

Leaking arbitrary memory in 10.11

overlapping heap chunk

vm_map_copy

3 (type)

0 (offset)

24 (size)

+0x0

+0x80

(assuming kalloc.128)heap chunk

vm_map_copy

3 (type)

0 (offset)

232 (size)

Allocate a
vm_map_copy in

the new zone

Attacker
controlled values

sizeof(OSData) - sizeof(vm_map_copy)

Leaking arbitrary memory in 10.11

overlapping heap chunk

free chunk in kalloc.48

+0x0

+0x80

(assuming kalloc.128)heap chunk

vm_map_copy

3 (type)

0 (offset)

232 (size)

Read out
vm_map_copy
(freeing into the

wrong zone)

Leaking arbitrary memory in 10.11

overlapping heap chunk

OSData object

+0x0

+0x80

(assuming kalloc.128)heap chunk

vm_map_copy

3 (type)

0 (offset)

232 (size)

Allocate OSDatavtable pointer

refcount

data pointer

length

(etc..)

R/W Access

zalloc() timing attack
A new technique to increase heap feng

shui reliability

zalloc() Timing Attack

• Most heap attacks require adjacent allocations of some sort

• You can get adjacent allocations fairly easily by emptying the
free list since the layout of allocations in newly mapped pages
is deterministic

• However you don’t get to know exactly when a particular free
list runs out unless uid=0 and PE_i_can_has_debugger()
returns 1

• You can try to guess by picking an “high enough” number of
allocations, but this yields to probabilistic exploits (which are
good enough for e.g. jailbreaking)

zalloc() Timing Attack

• You can get adjacent allocations fairly easily by emptying
the free list since the layout of allocations in newly
mapped pages is deterministic

• Mapping pages is expensive

• Expensive enough to detect it in userland?

zalloc() Timing Attack

• In kalloc.1024, using a heap info leak to verify adjacency

time of execution of a
 mach_msg call with OOL

data

(newly mapped page)
vm_map_copyin

zalloc() Timing Attack

• You can get adjacent allocations fairly easily by emptying
the free list since the layout of allocations in newly
mapped pages is deterministic

• Mapping pages is expensive

• Expensive enough to detect it in userland? Yes!

zalloc() Timing Attack

• A good target to time is vm_map_copyin

• Create a bunch of vm_map_copy structs via mach_msg

• Read them out

• Recreate them, timing and keeping an average

• You are guaranteed that the average doesn’t represent
newly mapped memory

• Keeping those allocated, allocate more, timing mach_msg

zalloc() Timing Attack

• Once you get a mach_msg taking more time than the
average * 1.5, a new page has just been mapped in

• Number of free list entries added = PAGE_SIZE/zone size

• Do more mach_msg timing

• A time spike is expected to happen after “number of free
list entries added” allocations

• If it does, for additional reliability, do it again for another
page

zalloc() Timing Attack

• Once you have pages filled with adjacent vm_map_copy
structures, you can easily craft the heap layout by poking
holes and reallocating the objects that most suit your
needs

• Limit the number of allocations to some reasonable
number to avoid running out of kernel memory

• On failure you can just fall back to a probabilistic
approach

zalloc() Timing Attack: A practical use case

• In some rare cases extremely precise heap layout control is
required to have any form of meaningful reliability

• An example is IOHIDFamily’s CVE-2015-6974

• Fixed in 10.11.1, found independently by multiple parties*

• Used by Pangu9 and npwn

• Required uid=0 on OS X, container sandbox escape on iOS.

• Terminating an IOHIDUserDevice after creating one drops the
reference count without setting pointers to it to NULL

*so far I’m aware of me, @panguteam and @cererdlong

CVE-2015-6974: A textbook Use-After-Free

Free

Use

Both of these functions are IOExternalMethods

controlled register

return value passed to userland

CVE-2015-6974: OS”notso”SafeRelease

what Apple really wanted to do

what Apple did

CVE-2015-6974

vcall on free’d object at vtable+0x948
The bug allows you to control the vtable pointer used for this call
1st argument: pointer to UaF’d allocation
2nd argument: controlled 64 bit value

By controlling the vtable pointer you can get code exec easily with these
constraints:

•on non-SMEP OS X you can point the vtable in userland and jump to user
memory

•on non-SMAP OS X you can point the vtable in userland and ROP with a
kASLR info leak

•on iOS and SMAP OS X you need to use an heap info leak as well as a
kASLR info leak

CVE-2015-6974
An alternate avenue for exploitation for SMAP / iOS requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

ADJACENT ALLOCATIONS

ALLOCATED FREE HOLE FREE LIST HEAD

UAF OBJECT

FREE LIST POINTER USER-CONTROLLED ALLOC

CVE-2015-6974
An alternate avenue for exploitation for SMAP / iOS requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

ADJACENT ALLOCATIONS

POKE HOLE

ALLOCATED FREE HOLE FREE LIST HEAD

UAF OBJECT

FREE LIST POINTER USER-CONTROLLED ALLOC

CVE-2015-6974
An alternate avenue for exploitation for SMAP / iOS requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

ADJACENT ALLOCATIONS

POKE HOLE

FREE UAF OBJECT

ALLOCATED FREE HOLE FREE LIST HEAD

UAF OBJECT

FREE LIST POINTER USER-CONTROLLED ALLOC

CVE-2015-6974
An alternate avenue for exploitation for SMAP / iOS requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

ADJACENT ALLOCATIONS

POKE HOLE

FREE UAF OBJECT

ALLOCATED FREE HOLE FREE LIST HEAD

UAF OBJECT

REALLOCATE AT +0x900

+0x100

+0x0

+0x200

+0x300

+0x900

+0x400

+0x500

+0x600

+0x700

+0x800

FREE LIST POINTER USER-CONTROLLED ALLOC

CVE-2015-6974
An alternate avenue for exploitation requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

Heap Layout
+0x100

+0x0

+0x200

+0x300

+0x900

+0x400

+0x500

+0x600

+0x700

+0x800

UAF OBJECT

ADJACENT KALLOC.256 ALLOCS

REF COUNT

VTABLE FREE LIST PTR 8 BYTES AT +0x0

OSObject Free chunk

CVE-2015-6974
An alternate avenue for exploitation requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

Heap Layout
+0x100

+0x0

+0x200

+0x300

+0x900

+0x400

+0x500

+0x600

+0x700

+0x800

UAF OBJECT

ADJACENT KALLOC.256 ALLOCS

REF COUNT

VTABLE FREE LIST PTR 8 BYTES AT +0x0

OSObject Free chunk

KERNEL DATA

what the vcall thinks it’s accessing

CVE-2015-6974
An alternate avenue for exploitation requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

Heap Layout
+0x100

+0x0

+0x200

+0x300

+0x900

+0x400

+0x500

+0x600

+0x700

+0x800

UAF OBJECT

ADJACENT KALLOC.256 ALLOCS

REF COUNT

VTABLE FREE LIST PTR 8 BYTES AT +0x0

OSObject Free chunk
what it’s actually accessing

CVE-2015-6974
An alternate avenue for exploitation requires a tightly controlled heap layout.
The vtable index for the vcall is 0x948 and the object lives in kalloc.256.

Heap Layout
+0x100

+0x0

+0x200

+0x300

+0x900

+0x400

+0x500

+0x600

+0x700

+0x800

UAF OBJECT

ADJACENT KALLOC.256 ALLOCS

REF COUNT

VTABLE FREE LIST PTR 8 BYTES AT +0x0

OSObject Free chunk

what it actually calls

*(vtable+0x948)

CVE-2015-6974

• We can now control the instruction pointer and the 2nd
argument

• First argument is a pointer to the UaF’d allocation

• kASLR slide not leaked yet

• In npwn I used “kas_info”, which could be considered
cheating but is still allowed on SIP-protected 10.11.1

• Alternative kASLR leaking strategy (used by Pangu9): abuse
the UaF like a type confusion

Disabling System Integrity Protection

• Pedro Vilaça (@osxreverser) discussed _csr_set_allow_all
for his “rootfool” kernel extension

• We can just redirect the vcall to _csr_set_allow_all

• As long as the first argument is non-NULL, it’ll disable
SIP for good

• ROP is not needed at all

Demo!

Black Hat Sound Bytes

• The rapid growth in use of sandboxing technology is
pushing many attackers to kernel attacks.

• Apple has been trying to harden the kernel heap for years
now but it’s still fairly easy to carry out attacks.

• The zalloc timing attack can prove useful in many
situations

Questions?

Twitter: @qwertyoruiop
Mail: me at qwertyoruiop dot com

Thanks to:

• windknown (@windknown) &
Pangu Team (@PanguTeam)

• Pangu9 was amazing stuff!

• Steven De Franco (@iH8sn0w)

• Filippo Bigarella (@FilippoBiga)

• Joshua Hill (@p0sixninja)

• Nicholas Allegra (@comex)

• Jonathan Levin
(@Technologeeks / http://
newosxbook.com/)

• Stefan Esser (@i0n1c)

• Make sure you’ve read his XNU
exploitation papers!

• Pedro Vilaça (@osxreverser)

• Mark Dowd (@mdowd)

• Tarjei Mandt (@kernelpool)

