Hybrid Defense: How To Protect Yourself From
Polymorphic 0-days

Svetlana Gaivoronski and Dennis Gamayunov

Information Systems Security lab, CS Dept. at Lomonosov Moscow State University
Russia, 119899 Moscow, Leninskie Gory 1, Moscow State University, second EDU
building, Computer Science Dept., room 603
{sadie,gamajun}@lvk.cs.msu.su

1 Introduction

The problem of shellcode detection still challenges researchers in industry, academia,
CTF white and gray teams, since it is a significant part of the more general
problem of targeted or blind automatic attack detection and filtering. The to-
tal amount of remotely exploitable vulnerabilities found in networking software
every year continues to grow despite of the significant effort in the software
industry to improve the code quality. From that point of view, it’s worth to
remember the latest vulnerabilities, for example, described at MS12-020 report,
and for latest 0-days, such as client-side 0-day in Java revealed in late August
2012. Also, memory corruption errors are often used as a part of CTF tasks,
and successul exploitation usually gives it all to the winner - flags, applications,
systems, position in the contest table, etc. Having a fast and accurate shellcode
detector would help not only to improve defense skills and level, but also to
gather new ideas from other teams, who try to crack your boxes all the game
long. And, in fact, any fast and accurace shellcode detector would help you im-
prove your opensource or commercial defensive software, or maybe spin off one
more of them.

But when we try to detect 0-day attacks or network worm propagation at net-
work level, we come across hardware processing power limitation. At this level
we observe an evolving gap between computational power of the modern pro-
cessors and the throughput of the network channel. Therefore, we should pay
special attention to the computational complexity of the algorithms used for
malware propagation detection. Also, false positives rate of the algoritms is very
important as it may render any tool unusable even if it has zero false negatives
rates.

So, we tried to bring a little science to this tiny problem, and construct a hybrid
shellcode classifier, which is actually an automatic builder of hybrid shellcode
classifiers, each of them may be optimal in terms of speed and FP rates in dif-
ferent cases. For example, in CTF setup we would expect lots of malicous traffic
going over the cable, and in some peaceful university campus on the contrary
we would see terabytes of ”benign” multimedia data. In these two situations
two different architectures may be optimal, and we’re presenting the tool which
helps to build them automatically.

2

Existing approaches and their limitations

According to the principles at work, shellcode detection methods can be

divided into the following classes:

static methods - methods of code analysis without executing it;

abstract execution - analysis of code modifications and accessibility of certain
blocks of the code without a real execution. The analysis uses assumptions on
the ranges of input data and variables that can affect the flow of execution;
dynamic methods - methods that analyze the code during it’s execution;
hybrid methods - methods that use a combination of static and dynamic
analysis and the method of abstract interpretation.

From a theoretical point of view, static analysis can completely cover the

entire code of the program and consider all possible objects S, generated from
the input stream. In addition, static analysis is usually faster than dynamic.
Nevertheless, it has several shortcomings:

A large number of tasks which rely on the program’s behavior and proper-
ties, can’t be solved by using static analysis in general:

- Problem of detecting metamorphic shellcode by static analysis is undecid-
able.

- The problem of detection of polymorphic shellcode is NP-complete in the
general case.

The attacker has the ability to create malicious code which is static analysis
resistant. In particular, one can use various techniques of code obfuscation,
indirect addressing, self-modifying code techniques, etc.

In contrast to static methods, dynamic methods are resistant to the code

obfuscation and to the various anti-static analysis techniques (including self-
modification). Nevertheless, the dynamic methods also have several shortcom-
ings:

they require much more overheads than static analysis methods. In partic-
ular, a sufficiently long chain of instructions can be required to conclude
whether the program has malicious behavior or not;

the coverage of the program is not complete: the dynamic methods consider
only a few possible variants of program execution. Moreover, many significant
variants of program execution can not be detected;

the environment emulation in which the program exhibits it’s malicious be-
havior is difficult;

there are detection techniques for program execution in a virtual environ-
ment. In this case, the program has the ability to change it’s behavior in
order not to exhibit the malicious properties.

During consideration of existing shellcode detection methods, we concludes,

that methods with low computational complexity almost always demonstrate

high false positives rates. These methods allow to process large volumes of data
in real time,but have too high false positives rates to be practical. Methods with
low false positives rate typically have high computational complexity, which
makes them useless for network traffic analysis.

3 Shellcode features and classes

. During our work, we identified shellcode features which are used to distin-
guish shellcodes from benign data. None of the features may be used as precise
shellcode marker, but their presense definitely increase probability for the given
sample of being real working shellcode.

Features can be generic or specific: generic features correspond to all ex-
isting shellcodes, and specific features correspond to certain shellcode family.
Moreover, features can be divided into static and dynamic: static features can
be detected by static analysis, and dynamic features only appear during code
execution.

Static features

— Correct disassembly into chain at least K instruction;

— Number of push-call patterns exceeds threshold;

— Overall shellcode size does not exceed threshold;

— Operands of self-modifying and indirect jmp are initialized;

— Cleared IFG contains chain with more than N instructions;

— Correct disassembly from each and every offset. This feature is specific fshell-
code which contain NOP-sled;

— The value of maximum execution length (number of instructions) exceeds
threshold. Feature is also specific for NOP-sled containing shellcodes;

— Conditional jumps to the lower address offset. Feature is specific for en-
crypted shellcodes;

— Return address lies within certain range of values. Feature is specific for
non-ASLR systems;

— Presence of GetPC. Specific for encrypted shellcodes;

— Last instruction in the chain ends with branch instruction with immediate
or absolute addressing targeting lib call or valid interruption. Specific for
non-ASLR systems;

Dynamic features

— Number of near reads within payload exceed threshold R;

— Number of unique writes to different memory location exceeds threshold W;

— Control at least once transferred from executed payload to previously written
address. Feature is specific for non-self-contained shellcode - shellcode which
doesn’t involve any kind of GetPC code and doesn’t read its own memory
address during decryption;

— Execution of wx-instruction (write-execute) exceeds threshold X. Feature is
specific for non-self-contained shellcodes;

Any modern shellcode is a combination of certain shellcode features and be-
nign code features. For example, long sequence of 0x90 instruction was often
used in proof-of-concept exploits, but it can be found in benign data and ex-
ecutables quite often. Using unique shellcode features and benign executables’
features, shellcode space may be divided into ”families” - a set of shellcode exam-
ples that based on similar features and similar execution patterns. In this paper
we propose a list of those ”families”, or shellcode classes. Shellcodes are divided
into classes depending on what part of shellcode they represent - Activator,
Decryptor, Payload, or Return address zone.

4 Proposed approach

Many of existing methods use the same basic steps in data analysis: disassembly
stage, reconstruction of CFG,IFG, etc. Thus,it seems promising and feasible
to develop the shellcode detection library in a form of simple set of elementary
classifiers - detectors of shellcode features. Using such set of elementary classifiers
we formulate the problem of automatic synthesis of hybrid shellcode detector
which would cover all shellcode classes and reduce the false positives rate while
reducing the computational complexity of the method compared with the simple
linear combination of classifiers. We consider the problem of algorithm synthesis
as construction of a directed graph G(V; E) with a specific topology, where {V'}
is the set of nodes which are classifiers themselves, {E'} is the set of arcs. Each
arc represents the route of data flow. We assume that if some classifier concludes
sample to be legitimate, the sample is not passed to other classifiers. If classifier
concludes sample to be malicious, the sample is redirected to the next level of
the graph. This redirection is a ”double-check” of previous classifier result, and
it helps reducing the total false positives rate.

The hybrid classifier should satisfies the following requirements:

— the upper level of graph should provide full coverage of those shellcode
classes, which can be detected by available elementary classifiers;

— the higher the level position, the more optimal in terms of time complexity
classifiers’ set.

This leads to the fact that legitimate flow will no pass the upper levels of the
graph. Thus, classifiers with higher computation complexity, which are located
at the lower levels will not be executed. Given the fact that malware percentage
compared with legitimate data flow in real channels is rather small, this leads
to significant decrease of computational complexity of the hybrid classifier.
Example of hybrid classifier is presented in figure 1.

5 Evaluation

A prototype of shellcode detection library and of the proposed method was im-
plemented and evaluated for different data sets (exploits generated by Metasploit

Data flow

Level 1
K= (K ..K.5)
M= (s . te} 1 (K3, Ko) 17 (Kz3) us(Ky) ue(Ks)
Tlevel2 - !
K = [, K, .. Ks) e (K3, K5)

M=t Nl e e - e
15 (Ky, Ks

Level 3

K= {K,Ks}
M= {us}

Total complexity of the methods

Decision-making module

Most probability shellcode

Fig. 1. Hybrid shellcode detection graph. u[;_s5) stands for elementary classifier, K|;_7
stands for shellcode classes.

- 1536 items, legitimate executables from /usr/bin/ and Windows binaries - 2000
items, random data - 100 Mb, multimedia - 100 Mb). The prototype implemen-
tation was tested in Virtual Machine (with Ubuntu 10.1) on machine with the
following characteristics: Intel Core 2 Duo CPU, 2.53 HGz, 4 GB RAM.

One of the important goals of our work is to minimize false positives rates
when detecting shellcode. The minimum value of false positives rate may be
achieved with a simple linear combination of existing classifiers. In such linear
topology data flow passes through all classifiers and after that decision-making
module analyzes their output.

In our experiments we compare the proposed hybrid approach with a linear
graph topology. The results for false positives rate, false negatives rate and for
average throughput for linear and hybrid topologies are shown in table 1.

Linear Hybrid
Data set fn, -100%|fp, -100% |v, Mb/sec|fn, -100%|fp, -100% |v, Mb/sec
exploits 0.2 n/a 0.069 0.2 n/a 0.11
leg. binaries n/a 0.0064 0.15 n/a 0.019 2.36
random data| n/a 0 0.11 n/a 0 3.7
multimedia n/a 0.005 0.08 n/a 0.04 3.62

Table 1. Comparison of testing results for linear and hybrid topology. fn stands for
false negatives rate, fp - for false positives rate, v - for average throughput.

Thus, hybrid data-flow classifier significantly boosts analysis throughput for
benign data - up to 45 times faster than linear combination of classifiers, and
almost 1.5 times faster for shellcode only datasets. The absolute throughput
value of the current implementation - about 4MB/s (32Mbit/s) - is still to low
for ”blind” traffic analysis, disregarding application protocols semantics. But
in combination with data sampling techniques, parallel processing and content-
aware input filtering the hybrid shellcode classifier may be useful for 0-day de-
tection and filtering even in 1Gbps environment.

Implementation of the hybrid classifier used for evaluation described in this
paper is available for research community for further development and experi-
mentation at https://gitorious.org/demorpheus.

6 About the authors

Svetlana Gaivoronski is a PhD student at Computer Systems Lab, Computer
Science Dept. of Moscow State University, Russia. Svetlana is a member of the
Bushwhackers CTF team which shows the following results in recent years: 2nd
place in Deutsche Post Security Cup 2010, 6th place in the final of ruCTF 2012
(8th at qualification), 12th place at ruCTF Europe 2011, 4th place in the final of
ruCTF 2011 (and 1st at qualification), etc. Svetlana works at Redsecure project
(experimental IDS/IPS) at Moscow State University. Her primary interests are
network worm propagation detection and filtering, shellcode detection, static
and runtime analysis of malware.

Dennis Gamayunov is a PhD, Senior Researcher, and Acting Head of the
Information Systems Security Lab, Computer Science Dept. of Moscow State
University, Russia. He is also the leader of the network security research group
in MSU, project lead of the experimental event-drive and natively multicore
Redsecure IDS/IPS. Dennis is the founder of Bushwhackers CTF team, with
primary research and practical interests in network level malcode detection, high-
speed traffic processing (including FPGA-based), and OS security with fine-
grained privilege separation, SELinux and beyond.

