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Abstract

Android applications are becoming more and more obfuscated to prevent reverse engineering. While ob-
fuscation can be applied on both the Dalvik bytecode and the native code, the former is more challenging
to analyze due to the structure of the bytecode as well as the API provided by Android Runtime.1

The purpose of this talk is to present dynamic binary instrumentation techniques that can help reverse
engineers to deal with obfuscated codes. These techniques aim to be obfuscator resilient so that it does
not rely on a special kind of obfuscation nor a specific obfuscator.
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Introduction
Android applications embed more and more critical assets that must be protected from reverse engineer-
ing. These assets mostly depend on the purpose of the application, and how they are used within the
application. We highlighted three different categories of assets that are prone to reverse engineering, and
thus, obfuscation:

• Protocol: message structures, endpoints, signature, . . .

• Secret keys: API Token, certificates, RSA keys, . . .

• Algorithms: anti-tampering, integrity checks, whiteboxes, anti-root, . . .

As an example, social media and messaging applications may use obfuscation to avoid third-party clients
that would not be under control of the application’s owners.

In the bank industry, security standards require the use of obfuscation as a mandatory step in the develop-
ment process. Thus, to assess the security of these applications, analysts usually have to deal with several
layers of protection.

Regarding video games, we encountered obfuscation to prevent cheat, bots as well as protections for the
in-app billing capabilities.

Finally, most of the DRM solutions are protected through obfuscation, even though the current trend is to
use a secure element such as TrustZone.

The next parts present Dynamic Binary Instrumentation techniques that aim to extract relevant informa-
tion from the noise introduced by the obfuscators. These techniques target different kinds of dynamic
information depending on the purpose of the obfuscated code. Among this information, we will describe
the process to extract:

• Call trace of internal and external functions (e.g those from libc.so or libart.so)

• Call trace of JNI functions (e.g. NewString, CallObjectMethod, RegisterNatives)

• Memory trace
1http://androidxref.com/8.1.0_r33/xref/art/runtime/instrumentation.h#61
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• Instruction trace

While dealing with obfuscated code is a challenge in itself, we faced another one in the enhancement of
QBDI to support the ARM and AArch64 instruction sets (which includes Thumb and Thumb2).

1. Dynamic Binary Instrumentation
Dynamic Binary Instrumentation (DBI) is an analysis technique that aims to observe program’s behavior
at different levels:

• Instructions: by providing callback before or after the instructions.

• Basic Block: by triggering an event when a basic block is executed or when a basic block is discovered
(e.g. code coverage)

• Memory instrumentation: by monitoring memory addresses and values used by the program

It can be seen as an enhanced debugger without breakpoints and with real-time performances.

In the case of obfuscated code, a DBI turns out to be quite efficient as explained in the publications and
different papers over the last 5 years[1], [2], [3], [4], [8].

2. Current state of DBI frameworks
There are several DBI frameworks, each one addressing the problem in a different way. Among these
frameworks, we can find:

Intel PIN which is reliable on the x86 and x86-64 architectures but it does not support ARM or AArch64.
It might also have some issues to run a program that can’t be linked with Intel PIN’s CRT.

Valgrind that can instrument code running on x86, x86-64, ARM and AArch64 but the project is not very
modular to be smoothly integrated with other frameworks. The API may also be tricky to use as well
as the compilation for Android.

DynamoRio which is mostly used on Windows but also supports ARM and AArch64. Nevertheless, the
support on ARM and AArch64 is limited2.

DynInst - Not tested

Frida that recently released an ARM and AArch64 version of its stalker which basically enables to trace
instructions. Its implementation uses the stack3 and the API is very user-friendly.

Depending on what we are looking for and the environment on which the target is executed, one of these
DBI frameworks may be more convenient than another.

In the case of Android applications running on ARM or AArch64, only Frida seems to be able to address
the reverse engineering problems.

3. QBDI: Introduction and Techniques to Handle Obfuscation
QBDI [9] is a cross-platform and cross-architecture DBI created by C. Hubain [4] and C. Tessier, two
reverse engineers with a strong background reverse-engineering and obfuscation.

It is based on LLVM and has been designed with a modular architecture so that it can be combined and
integrated with other tools like Frida. LLVM provides the two main components that make the instrumen-
tation process: a disassembler (llvm::MCDisa) and an assembler (llvm::MCCodeEmitter). In addition,
LLVM provides a handy abstraction (llvm::MCInst, llvm::MCInstrDesc) over the underlying assembly
instruction.

As a must-have feature for DBI frameworks, QBDI enables to setup callbacks before or after instructions
so that users can inspect the context — like CPU registers — in which the instruction is executed. The

2https://github.com/DynamoRIO/dynamorio/wiki/AArch64-Port#stolen-register
3Which can be used to detect or break the stalker
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instrumentation process is summarized in figure 1. The left-hand side represents the instructions to be
instrumented and the right-hand side, the logical view of the QBDI’s callbacks.

0x17505A LDR R0, [R5]
0x17505C MOV R8, R1
0x17505E LDR R4, [R1, R6]
0x175060 LDR R2, [R0, #0x18]
0x175062 MOV R0, R5
0x175064 MOV R1, R4
0x175066 BLX R2
0x175068 MOV R1, R0
0x175068 MOV R1, R7
0x17506A MOV R0, R7
0x17506C SVC #0
0x17506E MOV R1, R0
0x175070 AND.W R1, R0, R3
0x175074 EOR.W R0, R0, R3
0x175078 BLX sub 175094

QBDI
.text:0x17505A LDR R0, [R5]
QBDI
.text:0x17505C MOV R8, R1
QBDI
.text:0x17505E LDR R4, [R1, R6]
QBDI
.text:0x175060 LDR R2, [R0, #0x18]
QBDI
.text:0x175062 MOV R0, R5
QBDI
.text:0x175064 MOV R1, R4
QBDI
.text:0x175066 BLX R2
QBDI
.text:0x175068 MOV R1, R0
QBDI
.text:0x175068 MOV R1, R7
QBDI
.text:0x17506A MOV R0, R7
QBDI
.text:0x17506C SVC #0
QBDI
.text:0x17506E MOV R1, R0
QBDI
.text:0x175070 AND.W R1, R0, R3
QBDI
.text:0x175074 EOR.W R0, R0, R3
QBDI
.text:0x175078 BLX sub 175094
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Figure 1 – Callback instrumentation

Programmatically, it is achieved with the following API:

1 VMAction callback(VMInstanceRef vm,
2 GPRState *gprState, FPRState *fprState,
3 F* user data F/ void* ctx) {
4 FF.
5 return VMActionF:CONTINUE;
6 }
7
8 F/ ==================================================== F/
9

10 QBDIF:VM vm;
11
12 vm.addCodeCB(QBDIF:InstPositionF:PREINST, callback,
13 F* user data F/&ctx);
14
15 vm.call(FF., function, fnc_args);

This kind of instrumentation could be used to generate an instruction trace that can then be analyzed with
other tools such as Triton[11], Scared[12] or Daredevil[13].

Nevertheless, instrumenting all the instructions can add a significant overhead, and the output size can
be huge and time-consuming to process.

To address this issue, QBDI enables to create rules to select what kind of instructions aims to be instru-
mented. For instance, one can choose to only instrument syscalls or instructions that perform memory
accesses. More precisely, QBDI exposes a rules engine that can filter instructions depending on their
semantics. This rules engine relies on the llvm::MCInstrDesc interface to provide an unified filters re-
gardless of the underlying architecture.
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For instance, one can filter instructions based on the following properties:

• Mnemonics: bl, add, and, . . .

• Categories: syscall: SVC, system instructions: MSR, MRS, HVC, . . .

• Properties: memory access, read memory access, call (llvm::MCInstrDesc.isCall) . . .

As obfuscators tend to add noisy instructions that would not be relevant for analysts, we based our anal-
ysis on the following rules that match a good trade-off between the trace’s size and the relevance of the
information generated for the reverse-engineering:

• Syscalls

• Calls

• Memory Accesses

The figure 2 shows the instrumentation process based on these rules.

0x17505A LDR R0, [R5]
0x17505C MOV R8, R1
0x17505E LDR R4, [R1, R6]
0x175060 LDR R2, [R0, #0x18]
0x175062 MOV R0, R5
0x175064 MOV R1, R4
0x175066 BLX R2
0x175068 MOV R1, R0
0x175068 MOV R1, R7
0x17506A MOV R0, R7
0x17506C SVC #0
0x17506E MOV R1, R0
0x175070 AND.W R1, R0, R3
0x175074 EOR.W R0, R0, R3
0x175078 BLX sub 175094

QBDI
.text:0x17505A LDR R0, [R5]
.text:0x17505C MOV R8, R1
QBDI
.text:0x17505E LDR R4, [R1, R6]
QBDI
.text:0x175060 LDR R2, [R0, #0x18]
.text:0x175062 MOV R0, R5
.text:0x175064 MOV R1, R4
QBDI
.text:0x175066 BLX R2
.text:0x175068 MOV R1, R0
.text:0x175068 MOV R1, R7
.text:0x17506A MOV R0, R7
QBDI
.text:0x17506C SVC #0
.text:0x17506E MOV R1, R0
.text:0x175070 AND.W R1, R0, R3
.text:0x175074 EOR.W R0, R0, R3
QBDI
.text:0x175078 BLX sub 175094
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Memory Callback

Call Callback

Syscall Callback
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Figure 2 – Instrumentation based on rules

The following code is an example of the QBDI’s API to select a subset of instructions to instrument:

1 QBDI::VM vm;
2
3 F/ Callbacks before syscall instructions
4 vm.addSyscallCB(PRE_SYSCALL, syscall_cbk, &ctx);
5
6 F/ Callbacks before blx / bl instructions
7 vm.addCallCB(PRE_CALL, call_cbk, &ctx);
8
9 F/ Callbacks before memory load and store instructions

10 vm.addMemAccessCB(MEMORY_READ_WRITE, mem_cbk, &ctx);
11
12 vm.call(FF., function, fnc_args);

Call Resolution

In addition to instrumentation rules, QBDI enables to resolve the address of calls instruction (e.g blx, br,
bl) so that users can access to the effective address being called.
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1 VMAction call_cbk(VMInstanceRef vm, FF.) {
2
3 F/ Provide:
4 F/ BLX R2 F> Value of R2
5 F/ BLX PC F> PC + CPU Mode shift + Alignment
6 F/ BLX #42 F> PC + 42 + CPU Mode shift + Alignment
7 uintptr_t call_target = vmF>getInstCallAccess().back();
8
9 FF.

10 return VMActionF:CONTINUE;
11 }

This resolution is particularly useful in the case of indirect calls such as blx r3. Obfuscators are prone
inserting this kind of instruction, as they usually break static analysis.

Dynamically, the call target is straightforward to retrieve since we have access to the register values. The
figure 3 shows an example of the static and dynamic outputs.

Figure 3 – Dynamic vs static output

The advantage of the API provided by QBDI is that the user does not have to process the call instruction
to determine which register is used and which absolute address is called. In addition, the ARM Thum-
b/Thumb2 architecture performs implicit alignments that can be annoying to handle manually.

Given the absolute call address, we can post-process this value to improve its meaning. While call
0x7fbc2a33e0 is not really meaningful for the analyst, the transformation to: library:section!offset
or symbol makes more sense.

Because QBDI is injected in the same memory space as the target to analyze, we have access to the
memory layout which contains the base addresses and the libraries paths.

Memory Accesses Resolution

Similarly to call resolution, QBDI can resolve the value and the effective memory address. It means that
the memory address being read or written is provided within the callback so that users can access this
information without looking at the underlying instruction.
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1 VMAction mem_cbk(VMInstanceRef vm, FF.) {
2
3 F/ Memory info
4 MemoryAccess info = vmF>getInstMemoryAccess().back();
5 F/ Provide:
6 F/ LDR R0, [R5] F> R5
7 F/ LDR R4, [R1, R6] F> R1 + R6
8 F/ LDR R2, [R3, #0x18] F> R3 + 0x18
9 F/ STRB R8, [R1, -R2, LSL #4] F> R1 - (R2 F< 4)

10 uintptr_t addr = maccess.accessAddress;
11
12 F/ Value read or written (R0, R4, R2, R8)
13 uintptr_t value = maccess.value;
14 FF.
15 return VMActionF:CONTINUE;
16 }

The MemoryAccess.accessAddress attribute4 is filled with the address according to the addressing mode.
For instance, on the instruction STRB R8, [R1, -R2, LSL #4], it will contain the value of R1val ue −
(R2val ue ×16). As for call resolution, this feature is abstracted to the user so that the callbacks that use this
interface can work regardless of the underlying architecture (x86 vs AArch64).

One could use this MemoryAccess interface, to track bytes memory accesses within a function and filter
on the printable values. Such a heuristic is quite efficient to locate a string decoding routine. Even though
strings are statically protected by the obfuscators, at some point in the execution they need to be decoded.
In most cases, the decoded string is stored into a memory buffer which implies write memory accesses.
By tracking these accesses and inspecting the values (MemoryAccess.value), we are likely to observe the
clear strings no matter how the complexity of the string transformation is:

-----> Enter in sub_1421c <-----
0x014274 .text!0x177c (#0) {
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29240).b: 0x1e
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af70).b: /
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29241).b: 0xeb
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af71).b: s
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29242).b: 5
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af72).b: y
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29243).b: 0xd5
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af73).b: s
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29244).b: '
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af74).b: t
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29245).b: 0xcc
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af75).b: e
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29246).b: 9
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af76).b: m
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29247).b: 0x85
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af77).b: /
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29248).b: 7
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af78).b: b
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x29249).b: C
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af79).b: i
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x2924a).b: {
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af7a).b: n
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x2924b).b: %
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af7b).b: /
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x2924c).b: v
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af7c).b: s
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x2924d).b: w
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af7d).b: u
0x00179c ldrb w4, [x2, x5] -> [R] (.data + 0x2924e).b: 0x1
0x0017ac strb w4, [x0, x5] -> [W] (.bss + 0x2af7e).b: 0x0

}
0x014288 .text!0x16c80 (#0) {
0x016ca0 openat('', '/system/bin/su')

}

The figure 4 outlines the process.
4https://github.com/QBDI/QBDI/blob/39a936b2efd000f0c5def0a8ea27538d7d5fab47/include/QBDI/Callback.h#L130
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QBDI:
.text:05ABFE BL sub 5A83C
QBDI:

Pre call callback

Post call callback

Pretty print: 0x05ABFE:.text!0x05A83C

READ: <<!’!"rz<ov{<!#

WRITE: /system/bin/su

.text:05A83C LDRB R2, [R4,R3]

.text:05a83e SUB.W R1, R2, #0x61

.text:05a842 UXTB R1, R1

.text:05a844 CMP R1, #0x19

.text:05a846 ITTTT LS

.text:05a848 SUBLS R2, #0x54

.text:05a84A RSBLS.W R1, R1, R8,ASR#3

.text:05a84E ITT LS

.text:05a850 MLSLS.W R2, R12, R1, R2

.text:05a854 STRB R2, [R0,R3]

.text:05a856 ADD.W R3, R3, #1

.text:05a85A CMP R5, R3

.text:05a85C IT EQ
QBDI:
.text:05a85E BLXEQ R7
QBDI:
.text:05a860 MOV PC, LR

Pre call callback

Post call callback

Record memory
reads and writes

Figure 4 – Memory and call instrumentation to detect string decoding routine

One can find additional information on the Quarsklab blog: Android Native Library Analysis with QBDI -
Encoding Routine5.

The ExecBroker

Instrumented code is likely to call external functions like malloc(), mmap() or env->FindClass() whose
the instrumentation6 would not be relevant — from a reverse-engineering point of view — to understand
the logic of the obfuscated code. Moreover, these external functions may use shared variables7 with QBDI
that could lead to deadlock or infinite loops.

This limitation is well known by the DBI frameworks and Intel PIN choose to address this issue to provide
its own C & C++ runtime 8. On the other hand, QBDI implements a different mechanism that stops the
instrumentation process when an external call is detected and resumes the process when the function
finishes.

The ExecBroker is the QBDI’s component that implements this mechanism. The figure 5 represents the
different events when an external call occurs during the instrumentation.

5https://blog.quarkslab.com/android-native-library-analysis-with-qbdi.html#encoding-routine
6e.g. instruction trace
7mutex, static variables, . . .
8https://software.intel.com/sites/default/files/managed/8e/f5/PinCRT.pdf
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.text:005B2A74 MOVS R0, #4

.text:005B2A76 BLX.W malloc

.text:005B2A7A MOV R6, R0

.text:005B2A7C STR R6, [SP, #0x38+var 30]

.text:005B2A7E BLX.W free

.text:005B2A82 LDR R5, =(dword A84144 - 0x5B2A90)

.text:005B2A84 MOV R1, #0xEDF19156

.text:005B2A8C ADD R5, PC ; dword A84144

.text:005B2A8E LDR R0, [R5]

.text:005B2A90 ADD R0, R1

.text:005B2A92 STR R0, [R5]

.text:005B2A94 MOV R0, SP

.text:005B2A96 BL loc 5D1228

.text:005B2A9A LDRD.W R8, R10, [SP, #0x38+var 38]

.text:005B2A9E BLX.W getpid

.text:005B2AA2 MOV R11, R0

.text:00078850 PUSH.W R4-R11,LR

.text:00078854 SUB SP, SP, #0x1C

.text:00078856 MOV R4, R0

.text:00078858 LDR.W R0, =( stack chk guard ptr - 0x78862)

.text:0007885C CMP R4, #0

.text:0007885E ADD R0, PC

...

pc:0xeeb08850

ExecBrocker

QBDI::EXEC TRANSFER CALL

QBDI ExecBrocker

ExecBrocker

QBDI::EXEC TRANSFER RETURN

libc.so base address

0xeea90000

0x78850

LIEF

/system/lib/libc.so

malloc@libc.so

In
stru

m
en

ted

N
ot

In
stru

m
en

ted

malloc()

Figure 5 – Instrumentation based on rules

At the address 0x5B2A76, QBDI detects a call to the absolute address 0xeeb08850 that is not included in
the instrumentation ranges: it’s considered as an external call. Therefore, QBDI transfers its CPU internal
representation into the real CPU and changes the return address — lr register — to a special value so
it can catch when the function returns. The function 0xeeb08850 is then executed by itself, without
instrumentation.

When QBDI performs these operations, it informs the user by triggering two events:

• QBDI::EXEC_TRANSFER_CALL

• QBDI::EXEC_TRANSFER_RETURN

The event QBDI::EXEC_TRANSFER_CALL is triggered before running the function without instrumentation
while QBDI::EXEC_TRANSFER_RETURN is generated when the function finished its execution.

To convert the absolute address 0xeeb08850 into a symbol, one can first detect the module in which the
address is located. This step can be done by iterating on /proc/self/maps. Then, we can subtract the
module base address from 0xeeb08850 to get a relative offset within the library.

Finally, using the library path /system/lib/libc.so and the offset 0x78850, we can use an ELF parser
like LIEF[10] to resolve the offset into a symbol name.

In the figure 5, the address 0xeeb08850 is resolved into malloc(). One can find a small example of this
conversion in the QBDI’s examples9

This association between QBDI and LIEF can be used to generate a call trace of external functions. Fur-
thermore, as we are able to resolve calls into symbols, we can specialize the QBDI callbacks to handle and
pretty print the function’s parameters:

9https://github.com/QBDI/examples/blob/master/packer-android-x86/src/libshellx_qbdi.cpp#L18-L50
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1 VMAction exec_broker(VMInstanceRef, const VMState *vmState, GPRState *gprState, FPRState*, void* ctx) {
2
3 stdF:string symbol = resolve(gprStateF>pc);
4
5 if ((vmStateF>event & QBDIF:EXEC_TRANSFER_CALL) F= 0) {
6 if (symbol F= "malloc") {
7 const size_t malloc_size = gprStateF>x0;
8 }
9 }
10
11 if ((vmStateF>event & QBDIF:EXEC_TRANSFER_RETURN) F= 0) {
12 if (symbol F= "malloc") {
13 const uintptr_t malloc_addr = gprStateF>x0;
14 }
15 }
16
17 return QBDIF:CONTINUE;
18 }
19
20 vm.addVMEventCB(EXEC_TRANSFER_CALL, exec_broker, ctx);
21 vm.addVMEventCB(EXEC_TRANSFER_RETURN, exec_broker, ctx);

Figure 6 – ExecBroker parameters and return value processing

Compared to Frida hooking, the ExecBroker enables to trace external functions a priori so that the user
does not have to setup hook beforehand. In addition, QBDI doesn’t modify the assembly code: it just
changes the return address. Therefore, checking the integrity of /system/lib64/libc.so is not efficient
to detect QBDI’s ExecBroker while it is to detect Frida10. On the other hand, the instruction that performs
the external call needs to be in the instrumented range while Frida enables to catch the call unconditionally.

One can also use the ExecBroker to track functions that perform dynamic memory allocations (malloc,
mmap, . . . ) and inspect the memory buffers when they are released (e.g. with free()). Thanks to
QBDI::EXEC_TRANSFER_CALL, we can access the allocation’s size and with QBDI::EXEC_TRANSFER_RETURN
we can access the allocated address (see 6). These values (size and allocated address) can be stored in a
context structure so that when the buffer is released we know exactly its size. We can then iterate over its
bytes which could reveal strings or identifiers.

Figure 7 shows an example of this technique on the Tencent’s packer. On the left-hand side, we detect an
allocation of 0x819358 bytes located at address 0x7e33200000. Later in the execution, we detect that this
address is freed and by inspecting the buffer, we can find magic bytes of DEX file11.

Figure 7 – Memory allocation in Tencent’s packer

4. Uses Cases
The previous sections introduced QBDI’s features that can be used to instrument code. The next sections
expose four use cases on obfuscated code from different obfuscators.
10See the challenge R2pay.apk released in the r2con CTF 2020
11It has been confirmed with a manual analysis but the DEX file was somehow truncated
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4.1 JNI_OnLoad Obfuscation

The Java language specification lets developers declare functions whose the implementation is located in
a native library. The definitions of these functions use the keyword native as shown in the figure 8.

package gh;

public class wer {
private static final byte[] e = {41, 82, -31, 109, 9, 85, 95, 77, 57, 121, -53, 255, 59, -70, ...};

public static native String a(String[] strArr, String[] strArr2, String str, byte[] bArr);

public static native String b(String str);

public static native String c(String str);

public static native int d(byte[] bArr, byte[] bArr2);
}

Figure 8 – JNI functions in a Java class

In terms of obfuscation, this technique is interesting since it moves the logic of the functions in native code
that can be more efficiently obfuscated than the Dalvik Bytecode.

In this kind of protection, we usually find the entrypoint of the library in the JNI_OnLoad 12 function that
aims to bridge native functions declared in the Java code with a pointer in the library.

To figure out the offsets of the JNI functions, reverse engineers need to identify the external call to
env->RegisterNatives() — which is exposed by the Android runtime — and inspect the function pa-
rameters to find the JNINativeMethod structure that contains the offsets of the JNI functions.

Using the QBDI’s ExecBroker, we can dynamically catch the call to RegisterNatives() and setup a call-
back that inspects the parameters. In particular, the second parameter: r2/x2, points to the JNINativeMethod
structure.

The figure 9 shows the control-flow graph of the obfuscated JNI_Onload() function in Snapchat and the
figure 10 shows the output of QBDI on this function.

Figure 9 – Obfuscated CFG of Snapchat’s JNI_OnLoad

12It exists another way to expose these functions through a special naming (Java_<class>_<method>) but it leaks the symbol and
its offset.
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0x0248fe .text!0x3c769 (#0) {
0x03d5b4 jvmF>GetEnv(FF.)
0x03d640 envF>FindClass('gh/wer'): 0x5
0x03d748 envF>FindClass('java/lang/RuntimeException'): 0x19
0x03d7f6 envF>NewGlobalRef(0x19): 0xee6
0x03d812 envF>RegisterNatives('gh/wer', FF., nb_methods=4)
a F> /data/local/tmp/libXYplugin.10.59.0.0.so@0x24f85
b F> /data/local/tmp/libXYplugin.10.59.0.0.so@0x24629
c F> /data/local/tmp/libXYplugin.10.59.0.0.so@0x27251
d F> /data/local/tmp/libXYplugin.10.59.0.0.so@0x84e15
0x03d8ce .text!0x37695 (#0) {}
0x03d900 .text!0x4c629 (#0) {

0x04c878 .text!0x42b9d (#0) {
0x047744 .text!0x52bb9 (#0) {

0x054a90 envF>FindClass('com/XXXXXXXX/android/framework/misc/AppContext'): 0x21
}
0x047756 envF>NewGlobalRef(0x21): 0xef6
0x047744 .text!0x52bb9 (#1) {

0x054a90 envF>FindClass('android/content/Context'): 0x25
}

FF.
}

Figure 10 – QBDI Output

From this output, we can quickly identify the location of gh.wer.a() which is at the offset 0x24f85 in the
library.

This technique to resolve JNI functions is generic and could be applied in other applications whatever the
underlying obfuscation.

4.2 Android Packer

In addition to native code obfuscation, applications can use packers to add another layer of protection.

During our experimentations, we dealt with an application protected by a commercial packer13. This
solution uses several layers of protection that are tedious to analyze statically. Moreover, it implements
different anti-debug to prevent dynamic analysis.

The next sections outline some of these protections.

4.2 Watermarking

The main part of the protection is located in a native library named libXYZprotector.<pid>.so. By
tracing the library with QBDI14, we noticed a particular sequence of calls that are represented in the
figure 11.

0x00514c .text!0x6cd6 (#0) {
0x006ce0 stat64('/data/local/tmp/lib<protector>.so')

}
0x0052c8 .text!0x6c12 (#1) {
0x006c18 .text!0x6be0 (#2) {
}
0x006c20 open('/data/local/tmp/lib<protector>.so')

}
0x005228 .text!0x6bb8 (#0) {
0x000000 lseek(9, 0x0008, 0)

}
0x005316 .text!0x6b92 (#575) {
0x006ba0 read(9, 0xffcddabc, 0x8): DPLF

}
0x00517a .text!0x6be0 (#3) {
0x006bea F_errno()
0x006bf2 close()
0x006c04 F_errno()

}

Figure 11 – Dynamic trace generated with QBDI

13which is not Legu
14Configured with the ExecBroker, syscall & call callbacks
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From this trace, we can see that the function performs the following actions:

1. open the raw library: open(...)

2. seek and read the ELF’s identity field

3. verify the field’s value (not shown)

By comparing the ELF identity field between a genuine library and the one from the packer, we identified
a difference that is emphasized in figure 12.

In [1]: a = lief.parse("/bin/ls")

In [2]: b = lief.parse("lib<protector>.so")

In [3]: print(a.header.identity)
[127, 69, 76, 70, 01, 01, 01, 00, 00, 00, 00, 00, 00, 00, 00, 00]

Genuine
In [4]: # -ELF------------

In [5]: print(b.header.identity)
[127, 69, 76, 70, 01, 01, 01, 00, 68, 80, 76, 70, 00, 224, 00, 00]

Watermark
In [6]: # -ELF---DPLF-----

Figure 12 – ELF identity

This difference strongly suggests that the packer uses the padding area of the ELF identity field to water-
mark the library. Moreover, this modification breaks the Linux’s loader when trying to load the x86-64
version on Linux15.

4.2 Anti dump & Anti Debug

To prevent a memory dump that could be used to extract the in-memory DEX files, the packer implements
classical anti-dump and anti-debug techniques. These protections are not new but they are wrapped with
different layers of obfuscations.

The figure 13 shows the basic block and the CFG of the function involved in the anti-debug and the anti-
dump. Once the basic block identified, it is straightforward to understand its logic and how it protects the
application against dump and debugging. The main difficulty is to identify the basic block among those
that are melt in the function.
15https://blog.quarkslab.com/when-sidechannelmarvels-meet-lief.html#converting-an-android-library-to-linux-with-lief
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Figure 13 – Basic block of interest in the obfuscated function

The figure 14 is a section of the call trace generated by QBDI in which we can clearly see the calls to prctl
and setrlimit to disable debugging and dump.

0x045200 prctl(SET_DUMPABLE)
0x045220 setrlimit(CORE)
0x045224 call getpid(): 21935
0x045240 prctl(SET_PTRACER, 21935)
FF.
0x045320 malloc(0x18): 0x74891eacc0
0x04532c malloc(0x40): 0x74891f6a40
0x045348 envF>GetObjectClass(0x7fd0440cb8): 0x75
0x045424 envF>GetMethodID('0x75', 'getPackageManager', '()Landroid/content/pm/PackageManager;')
0x0454d0 envF>GetMethodID('0x75', 'getPackageName', '()Ljava/lang/String;'): 0x71cb6310
0x0454ec envF>CallObjectMethod(0x7fd0440cb8, 0x75.getPackageManager, FF.)
0x045504 envF>GetObjectClass(0x85): 0x99
0x045604 envF>GetMethodID('0x99', 'getPackageInfo', '(Ljava/lang/String;I)Landroid/content/pm/FF.)
0x045624 envF>CallObjectMethod(0x7fd0440cb8, 0x75.getPackageName, FF.)
0x045644 envF>CallObjectMethod(0x85, 0x99.getPackageInfo, FF.)
0x04565c envF>GetObjectClass(0xb9): 0xc1
0x045714 envF>GetFieldID(0xc1, 'signatures', '[Landroid/content/pm/Signature;'): 0x71b39c8c
0x04572c envF>GetObjectField(0x0000b9, 0xc1.signatures): [Landroid.content.pm.Signature;
0x045740 envF>GetObjectArrayElement(FF.)
0x04575c envF>GetObjectClass(0xe5): 0xf9
0x0457d8 envF>GetMethodID('0xf9', 'toByteArray', '()[B'): 0x71b8d8e8
0x0457f0 envF>CallObjectMethod(0xe5, 0xf9.toByteArray, FF.)
0x045808 envF>GetByteArrayElements(FF.)
0x045824 envF>GetArrayLength(0x101): 0x37b

Figure 14 – Call trace generated by QBDI

Since QBDI is a DBI and not a debugger, ptrace is not detected and since we are in the memory space of
the application, we can arbitrarily dump any address.

4.2 Unpacking

The main purpose of the packer is to protect the original DEX files by encrypting them in the APK. When
the application starts, it runs a routine that decrypts and loads the original DEX files. The encrypted DEX
files— classesX.dat on the figure 15— are embedded in the assets/ directory along with the encrypted
resources (resources.dat).
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Figure 15 – assets/ directory that contains encrypted DEX files

Using QBDI, we can generate a trace16 of the unpacking routine to figure out how the packer uses the
encrypted DEX files, and at which point they are likely to be decrypted in memory. Since QBDI is a DBI,
not a debugger, the previous anti-debug were not triggered and we did not have to bypass the protections
implemented in the library.

At some point, the uncompressed and decrypted DEX files are present in a memory buffer dynamically
allocated with mmap (figure 16). As we can track dynamic memory allocations with QBDI (i.e. mmap and
malloc), we can wait that the unpacking routine finishes and then inspect these memory buffers.

0x04a710 call 0x4a224 {
0x04a264 call 0x48cec {
}
0x04a360 memcmp(AndroidManifest.xml, assets/classes1.dat, 0x13)
0x04a360 memcmp(assets/applisto.mp3, assets/classes1.dat, 0x13)
0x04a360 memcmp(assets/classes0.dat, assets/classes1.dat, 0x13)
0x04a360 memcmp(assets/classes1.dat, assets/classes1.dat, 0x13)

}
0x04a7ec call 0x49f10 {

0xa501c => Size of classes1.dat
0x049f5c mmap2(0x0, 0xa501c, 1, 1): 0x748275a000

}
0x043404 call 0x417c0 {

0x041858 call 0x250e0 {
}
0x041884 call 0x41600 {

0x041668 call 0x3d120 {
}
0x041704 call 0x3d120 {
}
0x041728 mmap2(0x0, 0x179b20, 3, 34): 0x747f6df000
0x041754 call 0x201e4 {

0x02027c call 0x57b18 {
0x057a64 malloc(0x1bf0): 0x7471c58400
0x057a80 call 0x57964 {
}

}

Figure 16 – Section of the trace in the unpacking routine

While this technique is well known and quite simple, it’s still efficient on this packer and we managed to
recover the full17 original DEX files (figure 17).

$ ls
mmap-748275a000.dump mmap-748fa31000.dump mmap-7416a56000.dump mmap-7416b66000.dump
mmap-742ace6000.dump mmap-74dece1000.dump mmap-74de000000.dump mmap-73a112a000.dump
$ file ./mmap-748275a000.dump
./mmap-748275a000.dump: Dalvik dex file version 035

Figure 17 – Memory buffer that contains a plain DEX file

16A call trace is enough
17Some packers like Tencent’s one remove parts of the DEX files so that a dump is not enough to recover the original code
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4.3 Video game protection

Because Android video games are becoming more and more popular, they have to deal with similar threats
as desktop games: bots, cheat, premium items fraud, . . .

These attacks are usually performed by altering statically and/or dynamically the behavior of the applica-
tion with tools such as:

• Apktool: repackaging

• Frida: Application-wide hooking

• Xposed: System-wide hooking

• Lucky Patcher: patching

By looking at a famous video game, we found several of these protections:

• Anti bot: Java layer

• Anti emulator: Java layer

• Anti repackaging: Java layer

• Anti Frida: native obfuscated layer

We focused the analysis on the way the application manages to detect Frida as it is located in a native
library and protected by a commercial obfuscator.

When the game starts with the Frida server running in background, we can notice that the application
crashes with the backtrace exposed in the figure 18. From this backtrace, we can see that the crash comes
from the GameApp.createGameMain() JNI function.

F/ adb logcat -s "*:F"
F libc : Fatal signal 31 (SIGSYS), code 1 (SYS_SECCOMP) in tid 15317 (ll.XXX), pid 15317 (ll.XXX)
F DEBUG : FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF* FF*
F DEBUG : Build fingerprint: 'google/taimen/taimen:9/PPR2.180905.005/4928864:user/release-keys'
F DEBUG : Revision: 'rev_10'
F DEBUG : ABI: 'arm'
F DEBUG : pid: 15317, tid: 15317, name: ll.XXX FF> com.XXX.YYY FF<
F DEBUG : signal 31 (SIGSYS), code 1 (SYS_SECCOMP), fault addr --------
F DEBUG : Cause: seccomp prevented call to disallowed arm system call -6047136
F DEBUG : r0 d29a6c90 r1 ff861b44 r2 ffa384c0 r3 ffa384c0
F DEBUG : r4 ffa384c0 r5 ffa384c0 r6 ffa384c0 r7 ffa3ba60
F DEBUG : r8 00000032 r9 ffa374c0 r10 ffa384c0 r11 d3104d1c
F DEBUG : ip ffa3ba60 sp ffa36518 lr d2ba9445 pc d29a6c94
F DEBUG :
F DEBUG : backtrace:
F DEBUG : #00 pc 00051c94 /data/app/com.XXX.YYY-XHpL30LP7HmGbCY2f8GIZwF=/lib/arm/libg.so
F DEBUG : #01 pc 0050f82b /data/app/com.XXX.YYY-XHpL30LP7HmGbCY2f8GIZwF=/lib/arm/libg.so
F DEBUG : #02 pc 0050f82b /data/app/com.XXX.YYY-XHpL30LP7HmGbCY2f8GIZwF=/lib/arm/libg.so
F DEBUG : #03 pc 00021253 /data/app/com.XXX.YYY-XHpL30LP7HmGbCY2f8GIZwF=/oat/arm/base.odex (com.XXX.YYY.GameApp.createGameMain+234)
F DEBUG : #04 pc 0040d575 /system/lib/libart.so (art_quick_invoke_stub_internal+68)
F DEBUG : #05 pc 003e6c7b /system/lib/libart.so (art_quick_invoke_static_stub+222)

Figure 18 – Backtrace when Frida server is running

By instrumenting this function with QBDI, we can observe that the createGameMain function spawns
three threads (figure 19) that turned out to be involved in the detection routine 18. After analysis, the
first thread’s routine tries to connect to Frida server by scanning all the ports periodically. If it manages to
communicate with Frida server, it makes the application crash.
18Even though QBDI was not designed with built-in thread support, its design enables to deal with multi-threaded targets
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Figure 19 – Thread creation in GameApp.createGameMain()

The figure 20 shows the part of the trace that tries to connect to Frida’s socket while the figure 21 shows
the instructions associated with the bind(27, 127.0.0.1, 41577).

0x2516dc .text!0x44c9bc (#484) {
0x2516dc .text!0x44c9bc (#485) {
0x2516dc .text!0x44c9bc (#486) {
0x2516dc .text!0x44c9bc (#487) {
0x251750 F_errno()
0x251784 socket(IPV4, TCP, 0)
0x252eea F_errno()
0x251c22 setsockopt(27, SOCKET, RCVTIMEO)
0x2518f6 bind(27, 127.0.0.0.1, 41577)
0x251980 F_errno()
0x252dfa F_errno()
0x2519be F_errno()
0x251a0c syscall close()
0x24d854 free(0x92a57e00): @C F~/wlan0
0x24d854 free(0x92a57c40): z}`Vjdummy0
0x24d854 free(0x92a57a80): x Iz {lo

Figure 20 – Trace of the first thread
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.text:002518B8 loc_2518B8 ; CODE XREF: .text:loc_251C74

.text:002518B8 ; .text:00252E9A

.text:002518B8 ADD.W LR, SP, #8

.text:002518BC ADD.W R0, LR, #0x1FA0

.text:002518C0 LDR.W R3, [R0,#0x5A8]

.text:002518C4 LDR.W R6, [R0,#0x584]

.text:002518C8 ADD.W LR, SP, #8

.text:002518CC MOV.W R4, #0x11A

.text:002518D0 ADD.W R0, LR, #0x1FA0

.text:002518D4 MOV.W LR, #0x10

.text:002518D8 MOV R5, R0

.text:002518DA MOVS R0, #0

.text:002518DC STR.W R3, [R5,#0x778]

.text:002518E0 STR.W R6, [R5,#0x77C]

.text:002518E4 STR.W LR, [R5,#0x774]

.text:002518E8 STR.W R0, [R5,#0x770]

.text:002518EC MOV R0, R6

.text:002518EE MOV R1, R3

.text:002518F0 MOV R2, LR

.text:002518F2 MOV R12, R7

.text:002518F4 MOV R7, R4

.QBDI Callback

.text:002518F6 SVC 0

.text:002518F8 MOV R7, R12

.text:002518FA MOV R3, R0

.text:002518FC STR.W R3, [R5,#0x770]

.text:00251900 CMP R3, #0

.text:00251902 BLT loc_25195C

.text:00251904 B loc_251932

bind()
syscall

Figure 21 – Syscall bind()

As we can see in the figure 21, the code does not use the standard libc’s function bind() but prefers to
make a syscall. It makes sense since the function aims to detect Frida which could be used to hook the
libc’s bind function and to return a fake value. Nevertheless, this code is a good example to show how
QBDI is working at instruction level.

Finally, we can persistently patch the library with LIEF to replace the original syscall instruction with a
"mov r0, #-1" 19.

4.4 Root detection in a mobile device management application

A Mobile Device Management (MDM) is a software-based solution that provides features for companies
to manage a large number of devices and to apply company’s policies.

Usually, these solutions do not allow rooted devices as it would increase the attack surface. Thus, they are
likely to have a strong and reliable mechanism to detect such violations.

Trying to obfuscate a root detection routine by a third-party application20 is not easy since detecting the
device’s root status involves communicating with the system and therefore, calling library’s API. While
obfuscators can statically encode strings or data, the parameters going through external functions21 need
to be decoded and not obfuscated. One can think about the open() function: its first parameter needs to
be the clear path to file to open. Not an encoded buffer. Therefore in this kind of analysis, if we are only
interested in understanding how the application detects the device root status, it’s mostly a matter of how
19https://gist.github.com/romainthomas/f25b0377d8f0f37601c9a223e2105f32
20that is not own by Google neither the device constructor
21Those for instance that are imported from libc.so
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to trace external calls. We can hook all the functions that are likely to be called or we can trace the code
with QBDI and observe the external calls.

During our tests of QBDI, we identified a MDM solution that implements a root detection in a JNI function
obfuscated with the same obfuscator as the previous example. The figure 22 represents the CFG of this
function.

Figure 22 – getDeviceState() CFG

Similarly to the previous use cases, we based our analysis on a dynamic trace generated by QBDI which
led to the trace in figure 23.

0x069c60 strlen(' |;} |q#p";z|qry')
0x0695f4 strlen(' |;} |q#p";z|qry')
0x06980c strlen('ro.product.model')
0x069ea4 memcpy(0x72ccbea479, 0x72ccbea140, 0x10): ro.product.model
0x069c60 strlen(' F|"')
0x0695f4 strlen(' F|"')
0x06980c strlen('root')
0x069ea4 memcpy(0x72ccbea479, 0x72ccbea150, 0x4): root
0x069c60 strlen('y|-:y_-F|'|"rz-*-t r}-:r-G1-:r-/k:h :jh%:j&/')
0x0695f4 strlen('y|-:y_-F|'|"rz-*-t r}-:r-G1-:r-/k:h :jh%:j&/')
0x06980c strlen('ls -lR /system | grep -e :$ -e "-̂[r-][w-]x"')
0x0b80f0 malloc(0x30): 0x72d08ed620
0x069ea4 memcpy(0x72d08ed620, 0x72ccbea130, 0x2c): ls -lR /system | grep -e :$ -e "-̂[r-][w-]x"
0x069c60 strlen('`#}r `b')
0x0695f4 strlen('`#}r `b')
0x06980c strlen('SuperSU')
0x069ea4 memcpy(0x72ccbea479, 0x72ccbea150, 0x7): SuperSU
0x069c60 strlen('zn"pur|')
0x0695f4 strlen('zn"pur|')
0x06980c strlen('matches')
0x069ea4 memcpy(0x72ccbea479, 0x72ccbea150, 0x7): matches
0x069c60 strlen('} |pzrz')
0x0695f4 strlen('} |pzrz')
0x06980c strlen('procmem')
0x069ea4 memcpy(0x72ccbea479, 0x72ccbea150, 0x7): procmem

Figure 23 – Call trace that suggests string decoding

In this trace, we can notice a pattern that looks like a string decoding routine.

At address 0x69c60, we can see that the encoded string going through strlen() has the same length as
the clear string used at address 0x06980c.
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By statically looking at the basic block that covers the first address (figure 24), we can identify the algorithm
used to decode the strings.

Figure 24 – Basic block involved in the string decoding routine

One of the clear strings is associatedwith a command: ls -lR /system | grep -e :$ -e "-[r-][w-]x".
that is used later in the trace by popen() (figure 25).

0x03febc call 0x6d4ac {
0x06d5b4 memset(0x72ccbe9ab0, 0, 0x400)
0x06d5c0 pthread_mutex_lock()
0x06d964 popen('ls -lR /system | grep -e :$ -e "-̂[r-][w-]x", FF.)
0x06d98c fileno()
0x06d9a8 poll()
0x06d70c fgets(FF.): /system:
0x06d868 strlen('/system:')
0x06d52c memcpy(0x72ccbe9a99, 0x72ccbe9ab0, 0x9): /system:
0x06d6a0 call 0x78194 {

0x0b80f0 malloc(0x18): 0x72d015e500
}
0x06d614 fgets(FF.): /system/app:
0x06d868 strlen('/system/app:')
0x06d52c memcpy(0x72ccbe9a99, 0x72ccbe9ab0, 0xd): /system/app:
0x06d6a0 call 0x78194 {

0x0b80f0 malloc(0x30): 0x72d01eb800
0x0782a0 free(0x72d015e500):

}
0x06d614 fgets(FF.): /system/app/BasicDreams:

Figure 25 – Use of the decoded string

The capacity to identify where and when the data are used could be decisive if we aim to patch the library
to disable some of these protections. One could also craft a custom output in the instrumentation callback
that would hide the distinctive features of a rooted device.

Going further in the trace, the function getDeviceState() opens the /proc/net/unix file to detect if
some entries are associated with Magisk. In the figure 26 we can see the sequence of functions that check
if Magisk is present.
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0x056fac fopen('/proc/net/unix', FF.)
0x052e78 strcpy()
0x052e84 call 0x5f904 {

0x05fad0 strlen('MAGISK')
0x05faec fseek(72eb4140b0, 0, 2)
0x05faf4 ftell(493573193904): 0x0
0x05fb00 malloc(0x0): 0x72d0f4eac0
0x05fba4 strlen('MAGISK')
0x05fbc4 fread(0x72ccbea0b8, 0x1, 0x400): Num RefCount Protocol Flags Type St Inode Path0000000000000000: 00000002 00000000 000100 FF.
0x05fa24 memmem(Num RefCount Protocol Flags Type St Inode Path0000000000000000: 00000002 00000000 000100 FF., MAGISK)
0x05fb98 fseek(72eb4140b0, -70, 1)
0x05fab0 fread(0x72ccbea0b8, 0x1, 0x400): dev/socket/qmux_radio/uim_remote_client_socket00000000000000000: 00000002 00000000 00010000 0001 FF.
0x05fa24 memmem(dev/socket/qmux_radio/uim_remote_client_socket00000000000000000: 00000002 00000000 00010000 0001 FF., MAGISK)
0x05fb98 fseek(72eb4140b0, -70, 1)
0x05fab0 fread(0x72ccbea0b8, 0x1, 0x400): 00010000 0001 01 18810 /dev/socket/logd0000000000000000: 00000002 00000000 00010000 0005 01 18815 FF.
0x05fa24 memmem(00010000 0001 01 18810 /dev/socket/logd0000000000000000: 00000002 00000000 00010000 0005 01 18815 FF., MAGISK)
0x05fb98 fseek(72eb4140b0, -70, 1)
0x05fab0 fread(0x72ccbea0b8, 0x1, 0x400): et/tombstoned_intercept0000000000000000: 00000002 00000000 00010000 0005 01 23990 /dev/socket/tom FF.
0x05fa24 memmem(et/tombstoned_intercept0000000000000000: 00000002 00000000 00010000 0005 01 23990 /dev/socket/tom FF., MAGISK)
0x05fb98 fseek(72eb4140b0, -70, 1)
0x05fab0 fread(0x72ccbea0b8, 0x1, 0x400): 00 00010000 0001 01 30193 /dev/socket/qmux_radio/qcril_radio_config00000000000000000: 00000002 00 FF.
0x05fa24 memmem(00 00010000 0001 01 30193 /dev/socket/qmux_radio/qcril_radio_config00000000000000000: 00000002 00 FF., MAGISK)
FF.

Figure 26 – Magisk detection based on /proc/net/unix

Last but not least, the MDM library seems to be written in C++ which is sometimes more challenging to
reverse than C but on the other hand, language’s properties may help. Let’s consider the code in figure 27

#include <string>

void decode(char& c) {
c ^= 0x33;

}

int check_root(const std::string& input) {
std::string encoded = input;
for (char& c : encoded) {
decode(c);

}
F/ [IMPLICIT CALL] operator delete(void*); FF- decoded
return 0;

}

Figure 27 – C++ code with implicit destructor

In the function check_root() there is a std::string object allocated on the stack but whose the internal
buffer is dynamically allocated22.

The standard requires that when stack object goes out of its scope — in this case at the end of the function
— its destructor is automatically invoked. In this case automatically means generated by the compiler.

Therefore, there is an implicit operator delete() at the end of the function that releases the internal
buffer of std::string. At the assembly level, it behaves as an external call that can be caught by QBDI’s
ExecBroker.

At the end of the trace a lot of memory buffers are freed 23 and by inspecting these buffers we can have
a good overview of the different root checks performed by the MDM solution. The figure 28 shows some
parts of these buffers.
22For small strings this not true because of some optimizations
23free() and operator delete() have the same prototype and behavior therefore they are processed in a same free callback
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checkOTACerts F> /data/app/FF./lib/arm64/libcoredevice.so@0x409b4
getDeviceState F> /data/app/FF./lib/arm64/libcoredevice.so@0x42b9c
getValues F> /data/app/FF./lib/arm64/libcoredevice.so@0x4111c
start F> /data/app/FF./lib/arm64/libcoredevice.so@0x67ca4
getValues2 F> /data/app/FF./lib/arm64/libcoredevice.so@0x6e9d4
getString F> /data/app/FF./lib/arm64/libcoredevice.so@0x40714
getDeviceSalt F> /data/app/FF./lib/arm64/libcoredevice.so@0x6dbb4
getSeedValue F> /data/app/FF./lib/arm64/libcoredevice.so@0x6d9fc
getSeedValueV2 F> /data/app/FF./lib/arm64/libcoredevice.so@0x40420
getRandomValueNative F> /data/app/FF./lib/arm64/libcoredevice.so@0x6b7a0
isAppAllowed F> /data/app/FF./lib/arm64/libcoredevice.so@0x5f7dc
lookForMagiskV16 F> /data/app/FF./lib/arm64/libcoredevice.so@0x68728
-----> Exit from JNI_OnLoad <-----
-----> Enter in getDeviceState <-----
FF.
0x047230 free(0x72d09dd700): /system/bin/app_process64_xposedxrr
0x047230 free(0x72d09dd580): /system/bin/app_process32_xposedxrr
0x047230 free(0x72d0213b00): /system/bin/app_process64r
0x047230 free(0x72d0213ae0): /system/bin/app_process32r
0x047230 free(0x72d0213aa0): /system/bin/app_processipr
0x047230 free(0x72d019b4e0): grep --binary-files=text "Xposed" /system/bin/app_process64_xposedr8zr
0x047230 free(0x72d019b350): grep --binary-files=text "Xposed" /system/bin/app_process32_xposedrxr
0x047230 free(0x72d0160080): grep --binary-files=text "Xposed" /system/bin/app_process
0x047230 free(0x72d08cb810): /system/framework/XposedBridge.jarr(=
0x047230 free(0x72d0213a80): /etc/security/otacerts.zipr
0x047230 free(0x72d0213a00): com.ramdroid.appquarantiner
0x047230 free(0x72d08cb780): com.zachspong.temprootremovIsRoot.jb%
0x047230 free(0x72d08cb630): /system/usr/we-need-root/su-backupr!
0x047230 free(0x72d02139c0): com.koushikdutta.superuserr
0x047230 free(0x72d02139a0): com.thirdparty.superuserr
0x047230 free(0x72d02138a0): com.noshufou.android.su@r
0x047230 free(0x72d02138e0): /system/app/Superuser.apkr
0x04eb7c free(0x72d018a800): test-keys!8!r!8!r/data/system/bin/su/system/xbin/su'-c ls'sh idid(root)busybox df!9!r(eu.chainfir FF.
0x048840 free(0x72cf5ef300): /dataF/system/system/bin/system/sbin/system/xbin/vendor/bin/sys/sbin/etc/proc/devr
0x0594b0 free(0x72d08ed620): ls -lR /system | grep -e :$ -e "-̂[r-][w-]x"
0x0594b0 free(0x72d08ed770): ls -laR /system | grep [r-][w-]s[-r' ']QWK
0x0511f4 free(0x72d01b8000): /system/bin/sh'-c'1'prnetcfgpingrun-as /system/bin/grepdiag_mdlogls -l logamz_groupsuperSCH-I545p FF.
0x04b38c free(0x72d08b4120): getpropro.secure0
0x0475e0 free(0x72d03c1800): `rF=!r1%Ar1#ArF=!r!package:com.nextdoorA=r1(`ArA=r1(Ar!r1'0ArA0rF=!r1"Ar1'PAr! >!r1$0ArA2@r1!Ar1. FF.
F- Done
-----> Exit from getDeviceState <-----

Figure 28 – std::string buffers deallocated with operator delete(void*)

4.5 Legu Packer
Some parts of the reverse engineering of Legu2425 were done with Frida/QBDI. First, we started by getting
an overview of the main library (libshell-super.2019.so) with a call trace starting from JNI_OnLoad().
Then we identified a global structure which were involved in the packer configuration (e.g. number of
DEX files packed, Android OS version, Android runtime version, . . . ). To figure out the meaning of the
structure’s fields, we first identified the library’s instruction that allocates the structure through calloc()
and we put a single instruction callback to get the structure size and its allocated address. Then, using
QBDI memory callbacks we tracked all the memory reads and writes within this allocated buffer. Finally,
thanks to the memory trace we managed to resolve most of the structure’s fields statically. 26

By going through these different levels — from call trace to a memory and instruction trace — we success-
fully managed to figure out the packer’s logic.

A video that shows some parts of the analysis with Frida/QBDI is available here: https://www.romainthomas.
fr/publication/20-bh-asia-dbi/#demo2

5. Conclusion
Even though code obfuscation can be a hassle for reverse engineers, it forces analysts to develop new
techniques and new tools to handle such protections. Through this paper and the associated presentation,
we aimed to present a set of DBI primitives which enables to extract program invariants27 that can be
difficult to protect even under a ton of obfuscation layers.

The assessments performed on these different applications also showed that the kind of obfuscation to
protect the asset and the category of asset highly depend on each other. For instance, control-flow flatten-
ing does not really matter if we can dynamically trace the code. Similarly, the root detection in the MDM
solution, is protected with classical code and data obfuscation but there is not protection against dynamic
instrumentation.
24https://blog.quarkslab.com/a-glimpse-into-tencents-legu-packer.html
25https://github.com/quarkslab/legu_unpacker_2019
26Some parts of the library are obfuscated but a static analysis is still doable at basic block level
27One can think about a syscall in the original code: whatever the obfuscation/protection used, the syscall will be executed
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