
BREAK OUT OF THE TRUMAN SHOW

ACTIVE DETECTION AND ESCAPE OF DYNAMIC

BINARY INSTRUMENTATION

Ke Sun wildsator@gmail.com

Xiaoning Li ldpatchguard@gmail.com

Ya Ou perfectno2015@gmail.com

About Us

 Xiaoning

 Security Researcher

 Dr Ke Sun/Dr Ya Ou

 Independent Security Researcher

Typical DBI’s Software Architecture

Instrumentation Plugins

A
p
p
lic

a
ti
o
n

Instrumentation Interface

Code

Cache
JIT Compiler

Emulation Interface

OS/Hardware

DBI Detections Talks

 Pintools  DynamoRIO

Published DBI Detections Methodologies

New Approaches to Detect DBI

New Detections

 Passive Detections with Gating Code

 Unsupported Instructions

 Unsupported Behaviors

 Active Detection

 Xmode Code

 Code Cache Detection

 Thread Local Storage

 Unexpected Context

Passive Detections with Gating Code

 Unsupported instructions

 Retf

 Unsupported behaviors

 Does not support mode switch in WoW64

8

 CPU mode is determined by the “L” bit in the segment

descriptor of the code segment (CS).

Active Detections with Xmode Code

Segment Descriptors

 CS = 0023: 32-bit (L=0)

 CS = 0033: 64-bit (L=1)

 Dynamic mode switch can be carried out by far branches to

the corresponding segment

 Far Jump

 Far Call

 Far Return

 IRet

Active Detections with Xmode Code

db 0eah
dd Enter64bit_Ret
db 033h
db 000h

jmp far 0033: Enter64bit_Ret

Switch from 32-bit

to 64-bit mode

 Instruction compatibility

 Compatible instructions

Same binary code has same meaning under 32-bit/64-bit mode

 Incompatible instructions

Same binary code has different meaning under 32-bit/64-bit mode

compatible code

incompatible code

Active Detections with Xmode Code

 Compatible instructions has exactly the same binary &

disassembly under 32-bit and 64-bit mode, but still can have

different results due to different stack frame size.

64-bit mode 32-bit mode

after code execution

eax = 8

after code execution

eax = 4

Active Detections with Xmode Code

Active Detections with Xmode Code

 Direct execution in command line

 Executed under DBI tools (DynamoRIO)

Active Detection with Code Cache

 Code Cache Signature

 0xfeedbeaf in Pin Code Cache

 Direct execution by command line

 Executed by Pin

 Use predefined signature and memory search
 Direct execution only 1 hit

 Execution under DBI gives 2 hits: one in original PE image one in

code cache

 Signature can be certain code or data

Active Detection with Code Cache

Signature: 90 90 50 58 Signature: 78 56 34 12

 Execute & Search

Active Detection: Code Cache Detection

Signature Function Main Function

 Direct execution by command line

Active Detection: Code Cache Detection

 Executed by Pin

 Executed by DynamoRIO

 Signature location in code cache can be confirmed to be RWE

without calling memory APIs

Active Detection: Code Cache Detection

 Executed by Pin

 Executed by DynamoRIO

 Thread Local Storage (TLS) is the method by which each

thread in a given multithreaded process can allocate locations

in which to store thread-specific data.

 Dynamically bound (run-time) thread-specific data is supported

by way of the TLS API (TlsAlloc, TlsGetValue, TlsSetValue, and

TlsFree).

 DBI tools use TLS to store tool-specific data, which can be

detected by using TLS API: TlsGetValue

Active Detection with Thread Local Storage

MSDN: Thread Local Storage https://msdn.microsoft.com/en-us/library/6yh4a9k1.aspx

Thread Local Storage in Native App

 Executed by command line

 Executed by Pin

Thread Local Storage in Pin Context

…

Thread Local Storage in DynamoRIO Context

 Executed by DynamoRIO

…

Active Detection with Pin-specific

Context

Pin JIT hides EBX from application usage in

code cache

 Pin use a specific location in memory for EBX backup

 Real EBX value in runtime control by Pin is the base address for

registers’ backup location

Active Detection with Pin-specific Context

 Part of Code Cache Area

Pin-specific Context in EBX

Original Registers in Pin-specific Context

ebx

ebx+1Ch ebp backup location

ebx+24h ebx backup location

ebx+2Ch ecx backup location
ebx+30h eax backup location

ebx+20h esp backup location

 Detection Method:

 Directly write signature code to EBX backup location [EBX+24h]

 Read EBX to see if signature can be found

Active Detection with EBX signature

Direct execution by command line

Executed by Pin

DBI Escape Criteria

How to measure DBI escape

 Run banned instructions

 Run controlled instructions with controlled DBI context

 Run controlled instructions with DBI stack

 Run controlled instructions in DBI critical context

 Run controlled instructions hijacking DBI control flow

 Run controlled instructions tampering instrumentation client

All around how to break the limitation from DBI

DBI Escape Tracing with Hardware Features
 Performance Monitor Counter

Branch instrumentation framework

Event Handler

Target Process Context

User Policy Callbacks

Kernel Space

User Space

CPU

Target Codes Branches

E
ve

n
t

E
ve

n
t

Kernel Policy

Callbacks

Hardware Event with Native/DBI

 Indirect calls captured by PMI for the same binary with/

without DBI

Indirect Calls with Hardware Events

Captured Indirect Calls for dummy_func

Without DBI With DBI

Red dot is the Ind Call to

dummy_func at 1880

Running Without DBI

Running under Pin

Escaped from Pin

Calling dummy_func under

Pin without escape

1880 Address is absent

Pin

Red dot is the Ind Call to

dummy_func at 1880

Running Without DBI

Running under DR

Escaped from DR

Calling dummy_func under

DR without escape

1880 Address is absent

DynamoRIO

DBI Escape Approaches

Simplified Attack Surfaces

Instrumentation Plugins

A
p
p
lic

a
ti
o
n

Instrumentation Interface

Code

Cache
JIT Compiler

Emulation Interface

OS/Hardware

3

1

2

4

5

DBI Escape Approaches

 Code Cache Manipulation

 Run, Modify, Run

 Run, Modify Current Code Cache

 Critical Data Structures

 Pin Stack

 Pin/Pinclient callbacks

 Pin/Pinclient Data

 Demo with retf and Xmode Code

DBI Escape Research in Past

 Escape under Pin

 Extra codes executed while escape not counted by Pin

Code Cache – Run/Modify/Run

Extra codes not executed Extra codes executed

while escape

Extra codes executed

when no escape

Code Cache – Run/Modify/Run

 Escape under DynamoRIO

 Extra codes executed while escape not counted by DynamoRIO

Extra codes not executed

Extra codes executed

while escape

Extra codes executed

when no escape

Code Cache –Self Modify in Code Cache

Search Signature & Modify NOPs

Signature

NOPs

Modify

Code

Cache

DBI Key Context - Stack

 Pin has dedicated stack to run Pin’s code

 Jitted code in code cache uses OS allocated stack

DBI Key Context - TLS

 DBI has critical context point saved in TLS

Pin/Pinclient Critical Sections

 .charmve section in Pin Dll

 Both .charmve and .pinclie sections in Pintool Plugin

Pin Callbacks/Data

Pinclient Callbacks/Data

 PinClient Callbacks can be addressed as data structure

from memory

Escape with Xmode Code

 Escape under Pin

 32-bit / 64-bit mode switch can be carried out after escape

Escape with Xmode Code

 Escape under DynamoRIO

 32-bit / 64-bit mode switch can be carried out after escape

Demo

Negative Impacts on Exploit Defense

Create New Attack Surfaces

 Code cache provides prefect place for shell code with full

memory read/write

 DBI escape can be easily applied by exploit to hijack

control flow and activate exploit/shell code

Defend old exploits, but make new exploit easier!

Summary

 Disclosed New Detection Methodologies

 Discussed DBI Escape Criteria

 In-depth Discussion of DBI Escape with Different Ways

 Tampering Code Cache

 Tampering Critical DBI Contexts/Callbacks/Data

 DBI is a powerful tool to defend existing exploits, but it

also opens a big surface for new exploit utilizing RWE

code cache

Reference
 Dynamic Binary Instrumentation Frameworks: I know you're there spying

on me, Francisco Falcón / Nahuel Riva, RECon 2012

 SafeMachine malware needs love, too, Martin Hron / Jakub Jermář, VB 2014

 Defeating the Transparency Features of Dynamic Binary Instrumentation,

Xiaoning Li / Kang Li, BlackHat USA 2014

 Obfuscation to Defeat Static Analysis Using Cross-mode Coding, Ke Sun /

Xiaoning Li, Source Seattle 2015

 https://github.com/lgeek/dynamorio_pin_escape

 https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool

 http://www.dynamorio.org/

Thanks!

wildsator@gmail.com

ldpatchguard@gmail.com

perfectno2015@gmail.com

